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Abstract

This Thesis is focused on the development and implementation of general and efficient
numerical methods for the acoustic modelling and design of noise control devices in
the exhaust system of combustion engines. Special attention is paid to silencers, that
can be divided into reactive and dissipative configurations. For the latter, signifi-
cant differences are likely to appear in their acoustic behaviour, depending on the
temperature variations within the absorbent material. Also, material heterogeneities
associated with uneven filling processes and time degradation due to the exhaust
gases, can alter the silencer attenuation performance. Therefore, numerical tech-
niques considering all these features are required to guarantee an accurate prediction
of the acoustic behaviour.

First, a literature review is carried out. This is mainly related to one-dimensional
models and their associated matrix representation, as well as to acoustic models for
absorbent materials and perforated surfaces. It is worth noting that plane wave model
limitations make indispensable using alternative multidimensional methods, since the
latter are valid for a wide frequency range and for silencers with complex geometries.

In addition to developing acoustic models to simulate exhaust silencers in general
terms, the possibility of using new acoustic elements is also explored in this Thesis.
These elements have as an objective being an interesting potential alternative to the
fibrous absorbent materials commonly used in practice, whose negative impact on
health is a current cause for concern. In this sense, and following earlier studies, the
Thesis considers the use of microperforated surfaces and goes into detail about the
study of surfaces manufactured by sintering. The latter present, in some cases, the
particularity of having a nearly constant acoustic impedance, whose value depends,
among others, on the thickness and porosity of the plates. Both kind of surfaces have
been proved to be an interesting alternative to dissipative silencers; the microperfo-
rated surfaces in the low frequency range and the sintered screens in the mid and high
frequency range.

General acoustic models, in which the wave equation permits to consider variable
properties and mean flow, are considered. Thus, a finite element approach is first
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proposed for the acoustic analysis of perforated dissipative silencers including a per-
forated duct with uniform axial mean flow and an outer chamber with heterogeneous
absorbent material. The presence of material heterogeneities can be caused, for ex-
ample, by the manufacturing process as well as by the degradation due to the soot
particles contained in the exhaust gases. In this first approach, a variable bulk density
is introduced in the model. On the other hand, property variations can be also pro-
duced by temperature gradients. In this second case, a hybrid finite element model
has been derived for the acoustic analysis of perforated dissipative silencers includ-
ing several effects simultaneously: (1) High temperature and thermal gradients in
the central duct and the outer absorbent material; (2) A perforated passage carrying
non-uniform axial mean flow. Independently of the reasons for the propagation me-
dia non-homogeneity, their properties vary with position. The material of the outer
chamber can be characterized by means of its equivalent acoustic properties (complex
density and speed of sound), considered coordinate-dependent in the context of the
current investigation. This can be achieved via the introduction of a heterogeneous
bulk density (and the corresponding material airflow resistivity variations) as well as
by computing the resistivity distribution if the thermal gradients are significant. A
finite element approach has been implemented to solve the pressure-based wave equa-
tion for a non-moving heterogeneous medium, associated with the problem of sound
propagation in the outer chamber. On the other hand, the governing equation in the
central duct has been written and solved in terms of an acoustic velocity potential to
allow the presence of an axially inhomogeneous flow while overcoming some numerical
issues of the pressure formulation found in earlier studies. The coupling between both
regions and the corresponding acoustic fields has been carried out by means of a per-
forated duct and its acoustic impedance, adapted here to include absorbent material
heterogeneities and mean flow effects simultaneously. It has been found that tempera-
ture gradients and bulk density heterogeneities can have a significant influence on the
acoustic attenuation of an automotive silencer and so should be included in the theo-
retical models if accurate predictions are required. In some particular configurations,
it may be relatively precise to approximate the temperature/bulk density distribution
by using a uniform profile with an average value, specially for low resistivity mate-
rials. It has been shown, however, that this is not always possible and attenuation
overestimation is likely to be predicted, mainly for high radial variations of tempera-
ture/bulk density and high material flow resistivities, if the temperature/bulk density
distribution is not taken into account.

The use of optimization techniques for industrial devices is also relevant, since it leads
to the production of elements with better characteristics. From a practical point of
view, the material reduction usually means cost savings, which is very important, for
example, in the automotive sector, where large series are manufactured. In activities
related to transportation of people and goods, design criteria to achieve the optimum
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shape or the maximum weight reduction of vehicle devices usually yield an energy
saving. It is worth pointing out that in certain sectors (for example, aeronautical,
aerospace, automotive and naval industries), the requirements of optimum shape and
minimum weight are very relevant and, in some cases, absolutely indispensable. Evo-
lutionary algorithms (EA) are emergent techniques able to obtain a solution, even in
those problems in which the traditional optimization procedures have difficulties, such
as multiple constraints or stochastic data. Nevertheless, the favourable characteristics
of this kind of algorithms are achieved at the expense of carrying out a high number
of evaluations of the objective function, which can be an important problem from a
computational point of view. Optimization techniques are combined with the finite
element method in the current work, the objective being to achieve the maximum
attenuation in the frequency range of interest. A multichamber silencer optimization
problem is defined and several analyses are carried out to obtain the most suitable
configuration meeting the design constraints for each particular application.

The presence of material heterogeneities due to uneven filling processes or temperature
gradients has been considered through a full multidimensional finite element method,
although this approach is traditionally thought to be very time-consuming. Under
certain assumptions of axial uniformity, several techniques have been developed with
a view to reducing the computational effort of a full three-dimensional finite element
analysis for dissipative silencers with temperature gradients and a central perforated
passage carrying mean flow. These are based on a suitable decomposition of the
acoustic field into a set of transversal and axial modes within each silencer subdomain,
and a matching procedure of the corresponding modal expansions at the silencer
geometrical discontinuities through the continuity conditions of the acoustic pressure
and axial velocity. The relative computational efficiency and accuracy of predictions
for three matching techniques are studied, including collocation at nodes and Gauss
points and also mode-matching with weighted integration. All the techniques provide
accurate predictions of the silencer attenuation and outperform the computational
expenditure of a finite element computation. Some differences are found among the
various schemes in terms of computational speed and solution accuracy. Although
more accuracy is expected with the mode-matching method, the computational cost
required rapidly increases with the number of modes. For a given computational
effort, the most precise technique seems to be the nodal point collocation method,
which has a slight advantage over Gauss scheme.
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Resumen

La presente Tesis se centra en el desarrollo e implementación de métodos generales y
eficientes para el modelado y diseño acústico de componentes de la ĺınea de escape de
motores de combustión interna. Merecen una especial atención los silenciadores, que
se pueden dividir en configuraciones reactivas y disipativas. Estas últimas pueden
llegar a presentar diferencias significativas en el comportamiento acústico debido a
las variaciones de temperatura en el interior del material absorbente. La atenuación
producida por el silenciador también puede sufrir alteraciones debido a las hetero-
geneidades que presenta el material asociadas al llenado irregular de la cámara y a la
degradación de las fibras producida por el paso del tiempo. Por lo tanto, para obtener
una predicción precisa del comportamiento acústico del silenciador considerando todas
estas caracteŕısticas es necesaria la utilización de técnicas numéricas.

En primer lugar, se lleva a cabo una revisión bibliográfica. Esta recopilación recoge
principalmente los modelos unidimensionales y su representación matricial asociada,
aśı como modelos acústicos de materiales absorbentes y superficies perforadas. Merece
la pena destacar que las limitaciones inherentes a los modelos de onda plana hacen
indispensable la utilización de métodos multidimensionales alternativos, ya que los
últimos son válidos para un amplio rango de frecuencias, aśı como para silenciadores
con geometŕıas complejas.

Además de desarrollar modelos acústicos para simular silenciadores de escape en
términos generales, también se explora la posibilidad de utilizar nuevos elementos
acústicos. Éstos tienen como objetivo ser una alternativa potencialmente interesante
a los materiales fibrosos comúnmente utilizados en la práctica, cuyo impacto nega-
tivo sobre la salud es una fuente de preocupación en la actualidad. En este sen-
tido, y siguiendo estudios previos, la Tesis considera el uso de superficies microper-
foradas y profundiza en el estudio de superficies fabricadas mediante sinterización.
Estas últimas, en algunos casos, presentan la particularidad de tener una impedancia
acústica prácticamente constante, cuyo valor depende, entre otras cosas, del espe-
sor y la porosidad de las placas. Ambos tipos de superficies han demostrado ser
una alternativa interesante a los silenciadores perforados disipativos; las superficies
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microperforadas en el rango de bajas frecuencias y las superficies sinterizadas en el
rango de medias y altas frecuencias.

En la presente Tesis se consideran modelos acústicos generales, en los que la ecuación
de ondas permite considerar propiedades variables y flujo medio. Aśı pues, se propone
un enfoque en elementos finitos para el análisis acústico de silenciadores disipativos
perforados incluyendo un conducto perforado con flujo medio axialmente uniforme y
una cámara exterior con material absorbente heterogéneo. La presencia de hetero-
geneidades puede ser causada, por ejemplo, por el proceso de fabricación, aśı como por
la degradación causada por las part́ıculas de holĺın inmersas en los gases de escape. En
este primer modelo, se introduce una densidad variable. Por otro lado, las variaciones
de las propiedades también pueden ser producidas por los gradientes de tempera-
tura. En este segundo caso, se ha desarrollado un modelo de elementos finitos mixto
para el análisis acústico de silenciadores disipativos perforados que incluye varios efec-
tos simultáneamente: (1) elevada temperatura y gradientes térmicos en el conducto
central y el material absorbente externo; (2) un conducto central que canaliza flujo
medio axial no uniforme. Independientemente de las causas de la heterogeneidad
de los medios de propagación, sus propiedades vaŕıan con la posición. El material
de la cámara exterior se puede caracterizar por medio de sus propiedades acústicas
equivalentes (densidad y velocidad del sonido) complejas, consideradas dependientes
de las coordenadas en el contexto de la presente investigación. Esto se puede lograr
gracias a la introducción de una densidad heterogénea (y las correspondientes varia-
ciones de la resistividad) aśı como al cálculo de la distribución de la resistividad si
los gradientes térmicos son significativos. Se ha implementado un modelo de elemen-
tos finitos para resolver la ecuación de ondas basada en una formulación en presión
para un medio heterogéneo sin flujo medio, asociado al problema de propagación del
sonido en la cámara exterior. Por otro lado, la ecuación en el conducto central se
ha planteado y resuelto en términos de potencial acústico de velocidad que considera
la existencia de flujo medio a la par que evita algunos problemas numéricos hallados
en estudios previos al utilizar una formulación en presiones. El acoplamiento entre
ambas regiones y los correpondientes campos acústicos se ha llevado a cabo mediante
un conducto perforado y su correspondiente impedancia acústica, que aqúı ha sido
adaptada para poder incluir las heterogeneidades del material absorbente y los efectos
del flujo medio simultáneamente. Se ha visto que los gradientes de temperatura y las
heterogeneidades de la densidad influyen notablemente en la atenuación acústica de
un silenciador de automoción y por lo tanto, deben incluirse en los modelos teóricos.
En algunas configuraciones particulares puede ser relativamente preciso aproximar el
campo de temperatura o la variación de densidad utilizando una distribución uniforme
con un valor promediado, especialmente para materiales de baja resistividad. Sin em-
bargo, se ha demostrado que esto no siempre es posible y los cálculos sobrestiman la
atenuación, principalmente debido a las variaciones radiales de temperatura/densidad
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y las elevadas resistividades del material, si la distribución de temperatura/densidad
no se tiene en cuenta.

La utilización de técnicas de optimización para componentes industriales también es
relevante, ya que conduce a la producción de elementos con mejores caracteŕısticas.
Desde un punto de vista práctico, la disminución de material normalmente conlleva
una reducción en los costes, lo que es muy importante, por ejemplo, en el sector del
automóvil, donde se fabrican grandes series. En actividades relacionadas con el trans-
porte de personas y bienes, el criterio de diseño para conseguir la forma óptima o la
máxima reducción de peso de los componentes del veh́ıculo normalmente conlleva un
ahorro energético. Es importante destacar que en ciertos sectores (por ejemplo, en
las industrias aeronáutica, aeroespacial, de la automoción y naval) el requerimiento
de forma óptima y peso mı́nimo es muy relevante, y en algunos casos, absoluta-
mente indispensable. Los algoritmos evolutivos (AE) son técnicas emergentes debido
a su capacidad de obtener una solución, incluso en aquellos problemas en los que los
procedimientos de optimización tradicionales tienen dificultades, como restricciones
múltiples o datos estocásticos. No obstante, las caracteŕısticas favorables de este
tipo de algoritmos se consiguen a expensas de llevar a cabo un elevado número de
evaluaciones de la función objetivo, lo que puede ser un problema importante desde
un punto de vista computacional. Las técnicas de optimización se combinan con el
método de elementos finitos en el presente trabajo, siendo el objetivo lograr la máxima
atenuación posible en el rango de frecuencias de interés. Se define un problema de
optimización de un silenciador multicámara y se llevan a cabo varios análisis para
obtener la configuración más adecuada para cada aplicación que cumpla las restric-
ciones de diseño.

La presencia de heterogeneidades en el material debidas a un proceso irregular de
llenado de la cámara o a gradientes de temperatura se ha considerado mediante el
método de elementos finitos, aunque este enfoque tradicionalmente se ha caracterizado
por consumir un elevado tiempo de cálculo. Bajo ciertas suposiciones de uniformidad
axial, se han desarrollado varias técnicas con vistas a reducir el coste computacional
de un análisis 3D de elementos finitos para silenciadores disipativos con gradientes
de temperatura y un conducto central que canaliza el flujo. Éstas se basan en la
descomposición del campo acústico en un conjunto de modos axiales y transversales
dentro de cada subdominio del silenciador, y un procedimiento de ajuste de las corres-
pondientes expansiones modales en las discontinuidades geométricas del silenciador
mediante las condiciones de continuidad de la presión acústica y la velocidad axial.
Se estudia la eficiencia computacional y precisión de los cálculos para tres técnicas
de ajuste, incluyendo colocación en nodos y puntos de Gauss y también ajuste modal
con integración ponderada. Todas las técnicas proporcionan resultados precisos de
la atenuación del silenciador y logran mejores resultados en cuanto a coste computa-
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cional que los cálculos de elementos finitos. Se han encontrado algunas diferencias
entre los diferentes métodos en términos de velocidad de cálculo y precisión de la
solución. Aunque se obtiene más precisión con el método de ajuste modal, el coste
computacional requerido aumenta rápidamente con el número de modos. Para un
coste computacional dado, la técnica más precisa parece ser el método de colocación
puntual en nodos, con una ligera ventaja sobre la colocación en puntos de Gauss.
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Resum

La present Tesi es centra en el desenvolupament i implementació de mètodes generals
i eficients per al modelatge i disseny acústic de components de la ĺınia d’escapament
de motors de combustió interna. Mereixen una especial atenció els silenciadors, que
es poden dividir en configuracions reactives i dissipatives. Aquestes últimes poden
arribar a presentar diferències significatives en el comportament acústic a causa de les
variacions de temperatura a l’interior del material absorbent. L’atenuació prodüıda
pel silenciador també pot patir alteracions a causa de les heterogenëıtats que presenta
el material associades a l’ompliment irregular de la cambra i a la degradació de les
fibres prodüıda pel pas del temps. Per tant, per obtenir una predicció precisa del
comportament acústic del silenciador considerant totes aquestes caracteŕıstiques és
necessària la utilització de tècniques numèriques.

En primer lloc, es porta a terme una revisió bibliogràfica. Aquesta recopilació recull
principalment els models unidimensionals i la seua representació matricial associada,
aix́ı com models acústics de materials absorbents i superf́ıcies perforades. Val la pena
destacar que les limitacions inherents als models d’ona plana fan indispensable la
utilització de mètodes multidimensionals alternatius, ja que els últims són vàlids per
a un ampli rang de freqüències, aix́ı com per a silenciadors amb geometries complexes.

A més de desenvolupar models acústics per simular silenciadors d’escapament en
termes generals, també s’explora la possibilitat d’utilitzar nous elements acústics.
Aquests tenen com a objectiu ser una alternativa potencialment interessant als mate-
rials fibrosos comunament utilitzats en la pràctica, l’impacte negatiu dels quals sobre
la salut és una font de preocupació en l’actualitat. En aquest sentit, i seguint estudis
previs, la Tesi considera l’ús de superf́ıcies microperforades i aprofundeix en l’estudi
de superf́ıcies fabricades mitjançant sinterització. Aquestes últimes, en alguns casos,
presenten la particularitat de tenir una impedància acústica pràcticament constant, el
valor de la qual depèn, entre altres coses, del gruix i la porositat de les plaques. Tots
dos tipus de superf́ıcies han demostrat ser una alternativa interessant als silenciadors
dissipatius perforats; les superf́ıcies microperforades en el rang de baixes freqüències
i les superf́ıcies sinteritzades en el rang de mitjanes i altes freqüències.
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En la present Tesi es consideren models acústics generals, en els que l’equació d’ones
permet considerar propietats variables i flux mig. Aix́ı doncs, es proposa un enfo-
cament en elements finits per a l’anàlisi acústica de silenciadors dissipatius perforats
incloent un conducte perforat amb flux mig axialment uniforme i una cambra exterior
amb material absorbent heterogeni. La presència d’heterogenëıtats pot ser causada,
per exemple, pel procés de fabricació, aix́ı com per la degradació causada per les
part́ıcules de sutge immerses en els gasos d’escapament. En aquest primer model,
s’introdueix una densitat variable. D’altra banda, les variacions de les propietats
també poden ser prodüıdes pels gradients de temperatura. En aquest segon cas, s’ha
desenvolupat un model d’elements finits mixt per a l’anàlisi acústic de silenciadors
dissipatius perforats que inclou diversos efectes simultàniament: (1) elevada tempera-
tura i gradients tèrmics en el conducte central i el material absorbent extern; (2) una
conducció central que canalitza flux mig axial no uniforme. Independentment de les
causes de l’heterogenëıtat dels medis de propagació, les seves propietats varien amb la
posició. El material de la cambra exterior es pot caracteritzar per mitjà de les seues
propietats acústiques equivalents (densitat i velocitat del so) complexes, considerades
dependents de les coordenades en el context de la present investigació. Això es pot
aconseguir gràcies a la introducció d’una densitat heterogènia (i les corresponents
variacions de la resistivitat) aix́ı com al càlcul de la distribució de la resistivitat si
els gradients tèrmics són significatius. S’ha implementat un model d’elements finits
per a resoldre l’equació d’ones basada en una formulació en pressió per a un medi
heterogeni sense flux mig, associat al problema de propagació del so a la cambra exte-
rior. D’altra banda, l’equació en el conducte central s’ha plantejat i resolt en termes
de potencial acústic de velocitat que considera l’existència de flux mig a l’una que
evita alguns problemes numèrics trobats en estudis previs al utilitzar una formulació
en pressions. L’acoblament entre les dues regions i els corresponents camps acústics
s’ha dut a terme mitjançant un conducte perforat i la seua impedància acústica, que
aqúı ha sigut adaptada per poder incloure les heterogenëıtats del material absorbent
i els efectes del flux mig simultàniament. S’ha vist que els gradients de temperatura i
les heterogenëıtats de la densitat influeixen notablement en l’atenuació acústica d’un
silenciador d’automoció i per tant, s’han d’incloure en els models teòrics. En algunes
configuracions particulars pot ser relativament prećıs aproximar el camp de tempera-
tura o la variació de densitat utilitzant una distribució uniforme amb un valor mig,
especialment per a materials de baixa resistivitat. No obstant això, s’ha demostrat que
no sempre és possible i els càlculs sobreestimen l’atenuació, principalment a causa de
les variacions radials de temperatura/densitat i les elevades resistivitats del material,
si la distribució de temperatura/densitat no es té en compte.

La utilització de tècniques d’optimització per a components industrials també és relle-
vant, ja que condueix a la producció d’elements amb millors caracteŕıstiques. Des d’un
punt de vista pràctic, la disminució de material normalment comporta una reducció
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en els costos, el que és molt important, per exemple, en el sector de l’automòbil, on
es fabriquen grans sèries. En activitats relacionades amb el transport de persones
i béns, el criteri de disseny per aconseguir la forma òptima o la màxima reducció
de pes dels components del vehicle normalment comporta un estalvi energètic. És
important destacar que en certs sectors (per exemple, en les indústries aeronàutica,
aeroespacial, de l’automoció i naval) el requeriment de forma òptima i pes mı́nim és
molt rellevant, i en alguns casos, absolutament indispensable. Els algoritmes evolutius
(AE) són tècniques emergents a causa de la seua capacitat d’obtenir una solució, fins
i tot en aquells problemes en què els procediments d’optimització tradicionals tenen
dificultats, com restriccions múltiples o dades estocàstiques. No obstant això, les
caracteŕıstiques favorables d’aquest tipus d’algoritmes s’aconsegueixen a costa de dur
a terme un elevat nombre d’avaluacions de la funció objectiu, el que pot ser un pro-
blema important des d’un punt de vista computacional. Les tècniques d’optimització
es combinen amb el mètode dels elements finits en el present treball, sent l’objectiu
aconseguir la màxima atenuació possible en el rang de freqüències d’interès. Es de-
fineix un problema d’optimització d’un silenciador multicambra i es duen a terme
diverses anàlisis per obtenir la configuració més adequada per a cada aplicació que
complisca les restriccions de diseny.

La presència d’heterogenëıtats en el material degudes a un procés irregular d’ompliment
de la cambra o gradients de temperatura s’ha considerat mitjançant el mètode dels
elements finits, encara que aquest enfocament tradicionalment s’ha caracteritzat per
consumir un elevat temps de càlcul. Sota certes suposicions d’uniformitat axial, s’han
desenvolupat diverses tècniques amb vista a reduir el cost computacional d’una anàlisi
3D d’elements finits per silenciadors dissipatius amb gradients de temperatura i un
conducte central que canalitza el flux. Aquestes es basen en la descomposició del
camp acústic en un conjunt de modes axials i transversals dins de cada subdomini del
silenciador, i un procediment d’ajust de les corresponents expansions modals en les
discontinüıtats geomètriques del silenciador mitjançant les condicions de continüıtat
de la pressió acústica i la velocitat axial. S’estudia la relativa eficiència computa-
cional i precisió dels càlculs per a tres tècniques d’ajust, incloent col·locació en nodes
i punts de Gauss i també ajust modal amb integració ponderada. Totes les tècniques
proporcionen resultats precisos de l’atenuació del silenciador i aconsegueixen millors
resultats quant a cost computacional que els càlculs d’elements finits. S’han trobat
algunes diferències entre els diferents mètodes en termes de velocitat de càlcul i pre-
cisió de la solució. Encara que s’obté més precisió amb el mètode d’ajust modal, el
cost computacional requerit augmenta ràpidament amb el nombre de modes. Per a un
cost computacional donat, la tècnica més precisa sembla ser el mètode de col·locació
puntual en nodes, amb un lleuger avantatge sobre la col·locació en punts de Gauss.
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Chapter 1

Introduction

Summary:

In this chapter, some problems associated with the noise emitted by the running of
internal combustion engines are presented. Also, the development of accurate and
efficient numerical tools for the modelling and calculation of the acoustic performance
of dissipative silencers is justified. The scope of the Thesis is explained, as well as the
structure used to obtain the main objectives of this work.
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1.1. Motivation and background

1.1 Motivation and background

In the last decades, concerns about the acoustic environmental pollution have con-
siderably increased. In cities, one of the main sources of noise are vehicles, whose
emissions of sound are due to the noise produced by reciprocating internal combus-
tion engines, by the interaction of the tyres with the roadbed, etc.

For vehicles using combustion engines, the exhaust system is one of the main sources
of noise. For this reason, silencers have a special relevance as they reduce the sound
to levels allowed by the legislation in force. The incorporation of absorbent materials
increases the attenuation levels achieved by the silencer in the mid and high frequency
range [57, 126]. To facilitate the evacuation of the exhaust gases and decrease the
swept of the absorbent material, configurations normal to the flow are avoided. In the
last years, however, new configurations have been explored as an alternative to tradi-
tional dissipative silencers to reduce the harmful effects of fibrous materials on human
health and the environment. One of the alternatives that seems especially interest-
ing is based on the combination of multichamber configurations and microperforated
surfaces [8, 64].

Regarding the modelling and acoustic analysis of silencers, the most widely used
methodologies are the three-dimensional techniques [44–47, 62, 160, 161, 174, 178] that
have displaced the one-dimensional models [126] because of their higher accuracy and
versatility. While multidimensional analytical approaches [1, 15, 61, 66, 104, 158, 159]
are useful for relatively simple geometries, numerical techniques, such as the finite ele-
ment method (FEM) [44–47, 62, 103, 105, 160, 161] and the boundary element method
(BEM) [178, 181], have been more widely used than analytical methods as they per-
mit more general and complex calculations. Comparing FEM and BEM, it can be
observed that the FEM is more versatile than the BEM when dealing with general
problems that include, for example, material heterogeneities and non-uniform mean
flow convective effects [181]. One of the main disadvantages of these numerical meth-
ods is their high computational cost as the number of degrees of freedom increases.
For this reason, alternative techniques arise to palliate this drawback. Some authors
take benefit from the fact that most automotive silencers present an arbitrary but
axially uniform cross section, thus allowing the proposal of some approaches to be
more efficient from a computational point of view. Glav [80, 81] considered the wave
equation, in the absence of mean flow, at the cross section of dissipative silencers
(without perforated duct) and obtained its associated eigenvalue problem. Once this
problem was analytically solved, he applied a point collocation technique to axially
couple the acoustic fields (acoustic pressure and velocity) and then obtain the full
pressure field to compute the attenuation achieved by the silencer. Afterwards, Kirby
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1. Introduction

combined the finite element method (more versatile than analytical techniques) with a
point collocation approach [100, 105] and the mode-matching method [101] to obtain
the transmission loss of perforated dissipative silencers in the presence of mean flow.

Another important factor to consider is that, in spite of the fact that traditionally the
properties within the silencer (bulk density of the absorbent material, temperature
field, etc.) have been considered uniform [54, 126, 155, 158], in real applications they
can present strong variations. These heterogeneities can have a notable influence on
the acoustic performance of the silencer [16, 62, 138, 160, 178].

Nowadays, due to the demands of markets and manufacturing companies, finding the
optimal component for each application is becoming an important factor for the au-
tomotive industry in order to determine the most suitable configuration that meets
the design constraints. For that reason, optimization techniques have experimented
a rapid growth and can be classified in different ways. The most common classifi-
cation divides the algorithms that guide the optimization process into deterministic
and stochastic algorithms [37–39, 56]. The main advantage of the deterministic ap-
proaches is their high speed of convergence, while the stochastic algorithms allow a
greater exploration of the search space. Besides, stochastic algorithms present a bet-
ter behaviour against noise. For this reason, during recent years these methods, and
more specifically the evolutionary algorithms such as the genetic ones [24, 38, 56, 183],
have become especially relevant.

1.2 Objectives

The aim of the present Thesis is to obtain advanced acoustical models for fundamental
components of the exhaust system in internal combustion engines, such as silencers.
Therefore, it is expected to extend and complete the models available in the literature.
In order to achieve this aim, the following partial objectives are proposed:

• Experimental characterization of the acoustic behaviour of sintered surfaces
and exploration of potential applications as an alternative to the traditional
perforated dissipative silencer.

• Development and implementation of in-house FE models that allow the multi-
dimensional simulation of perforated dissipative silencers containing heteroge-
neous materials and mean flow. Several approaches are proposed to deal with
this design situation which are of practical interest. In the first model, the bulk
density of the absorbent material is considered to be heterogeneous. This fact
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leads to spatial variations in the material resistivity, which also affects the char-
acteristic impedance of the perforated duct. The influence of the material bulk
density heterogeneities on the attenuation will be studied. A second model is
also proposed, where the existence of thermal gradients within the silencer is
considered. These temperature variations modify the properties of the differ-
ent propagation media: air in the central duct and absorbent material within
the chamber. In addition, the mean flow confined within the central duct will
also be non-uniform from an axial point of view, leading to the corresponding
variations of the perforated screen impedance and additional convective terms
in the formulation. The effects of high temperatures as well as thermal gradi-
ents within the silencer on the acoustic attenuation performance of perforated
dissipative configurations will be studied in detail.

• Development and implementation of in-house three-dimensional finite element
(FE) models to compute the acoustic attenuation performance of multichamber
silencers to achieve as much attenuation as possible in the desired frequency
range by using different surfaces and the most suitable geometry.

• Development and implementation of accurate and efficient numerical techniques
to study the acoustic performance of perforated dissipative silencers of arbitrary,
but uniform, cross section in the presence of transversal thermal gradients and
mean flow. Two different approaches are proposed for reducing the computa-
tional expenditure of a full three-dimensional FE calculation. The first com-
bines a two-dimensional FE eigenvalue problem with the point collocation (PC)
method while in the second approach, PC is replaced by the mode-matching
(MM) technique.

1.3 Organization and development of the Thesis

The Thesis is focused on three different subjects with a view to completing the ex-
isting models, as well as filling some gaps found in the bibliography: (1) Modelling
and characterization of sintered surfaces and optimization of multichamber silencers
incorporating them; (2) Advanced numerical FE models to consider different kinds
of heterogeneities in the propagation media within the silencer; (3) Computationally
efficient methods to study any geometry with an arbitrary, but axially uniform, cross
section, considering the presence of transversal thermal gradients. The organization
and main structure of the work consist of six chapters.

In Chapter 1, the targets and the organization of this Thesis are described.
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1. Introduction

In Chapter 2, the bases of the acoustic theory applied to ducts and silencers are
presented, with special emphasis on plane wave models and their associated matrix
representation. In this chapter, the main part of the nomenclature is defined, as well
as the variables used within the Thesis. Some silencer typologies used in practice and
their fundamental properties are described. In addition, some relevant characteristics
of perforated and microperforated surfaces are described, and the properties of a num-
ber of commonly used fibrous absorbent material models are presented. Also, some
details are provided for the basic equations that characterize the wave propagation
in media other than air. Besides, the way of quantifying the sound attenuation by
means of different indicators is discussed. Finally, the models described are applied
to some particular silencer configurations.

In Chapter 3, a generalization of the absorbent material models described in Chapter 2
is carried out to obtain more realistic results and predictions. These models consider
that the material properties are heterogeneous. Non-homogeneity can be due to
several causes, such as temperature variations within the silencer, uneven filling of the
chamber during manufacturing, material degradation over time due to the exhaust
gases, etc. Also, sintered surfaces are modelled, characterized and explored as a
possible potential alternative to the traditional perforated dissipative silencers.

In Chapter 4, the finite element method (FEM) is applied to the computation of the
acoustic attenuation performance for perforated dissipative silencers. Three differ-
ent formulations are proposed: (1) A 3D pressure-based approach; (2) A 3D velocity
potential-based technique; (3) A hybrid method combining approaches (1) and (2) to
consider the heterogeneities associated with properties of the different propagation
media (air and absorbent material). As previously mentioned, these heterogeneities
can be due to the silencer manufacturing process (chamber filling with fibrous ab-
sorbent material) or to its operating conditions (fibre degradation/pollution, thermal
gradients, etc.). The hybrid formulation is applied, on the one hand, to predict the
attenuation in the presence of temperature gradients and, on the other hand, to study
the influence of the bulk density variations on the acoustic attenuation. Also, a practi-
cal shape optimization procedure is presented and applied to a multichamber silencer
with different geometries in order to obtain the most suitable configuration for the
cases under study.

In Chapter 5, two computationally efficient numerical techniques are detailed with a
view to reducing the computational expenditure of a full multidimensional FE calcu-
lation. Thus, one of the main advantages of these methods is that they permit obtain-
ing the attenuation of silencers with an arbitrary, but axially uniform, cross section
with less computational effort. As will be shown, axial and transversal solutions of
the wave equation are combined. First, the FEM is employed in a two-dimensional
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problem to extract the eigenvalues and associated eigenvectors for the silencer cross
section. Mean flow as well as transversal temperature gradients and the correspond-
ing thermal-induced material heterogeneities are included in the model. The main
hypothesis is that the acoustic impact of axial temperature variations is small com-
pared to transversal gradients. PC and MM schemes are then used to couple the
acoustic fields (pressure and axial acoustic velocity) at the geometric discontinuities
between the silencer chamber and the inlet and outlet pipes. Transmission loss pre-
dictions are compared favourably with a general FE approach, offering a reduction in
the computational effort. The methods are applied to some common automotive si-
lencer configurations and the influence of the temperature field on the silencer acoustic
behaviour is studied.

In Chapter 6, the conclusions of the work are summarized and some potential future
lines of investigation are briefly described.
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Chapter 2

Fundamentals: wave equation

and acoustic characterization

Summary:

In this chapter, the governing equations of sound propagation and the fundamentals of
acoustics theory are applied to ducts and silencers, emphasizing the traditional plane
wave models and their associated matrix representation that is detailed for certain
relevant elements such as ducts with uniform section, expansions and contractions. A
review of the literature is carried out regarding the characterization of perforated ele-
ments and a number of common absorbent materials used in practical applications. A
description of the usual silencer typologies used in the exhaust systems and their basic
characteristics is presented. Also, the definition of some sound attenuation indicators
is provided to evaluate the acoustic behaviour of silencers. Then, the quantification
of the sound attenuation produced by the configurations of interest is considered for
purely reactive and resonant geometries and also dissipative configurations. The chap-
ter ends with an exposition of the inherent limitations related to the plane wave models,
which justify the development of more accurate modelling techniques.
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2.1. Introduction

2.1 Introduction

The physical phenomena associated with sound wave propagation can be described by
means of the appropriate mathematical equations [49, 125, 144]. These equations are
more or less complex depending on the number of simplifying hypotheses taken into
account when their deduction is carried out. Simplifying hypotheses always have to be
justified by means of the suitable experimental verifications and their basic function
is to reduce the complexity of the equations with a view to simplifying obtaining the
solution. In this section, the mathematical expressions of these equations are shown.
These expressions are relations that define the behaviour over time (or frequency) and
space of the pressure, velocity, density or any other variable of the acoustic problem
considered. Once the equations of interest are defined, such as the wave equation, their
solution can obtained analytically [126] or numerically [181]. The basic drawback of
analytic solutions lies in the fact that these can be only obtained in certain cases; for
example, for simple geometries such as rectangular, circular or conical domains, thus
limiting their generalization (although, fortunately, these geometries are commonly
used in practical applications related to ducts and silencers). On the other hand,
analytical techniques present some advantages: the mathematical treatment can be
easier under certain assumptions, computation times can be strongly reduced and
some useful conclusions and parametric guidelines for silencer design can be inferred
[82, 85, 158]. Also, by means of simple models where the analytical solution is valid,
it is possible to define improved strategies for a more general design technique such as
the FEM [19, 43, 138]. Some physical models are shown in the next sections for the
acoustic computation of silencers. First, general behaviour equations are considered;
appropriate simplifying hypotheses are applied in Section 2.2.

2.1.1 Models for the acoustic calculation

Different models can be considered for the study of the acoustic attenuation of si-
lencers [35, 126]. Here, two models are presented: (1) The non-linear fluid-dynamic
model; (2) The linear acoustic model. Although the former is more general, it is be-
yond the scope of the current investigation and only the latter approach is considered
in this Thesis. The fluid-dynamic model is no longer used in this work and therefore,
only some relevant characteristics will be explained. The choice between these models
is related to their characteristics, which are exposed below.
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2. Fundamentals: wave equation and acoustic characterization

I. Dynamic model

The solution of a general fluid-dynamic problem requires a simultaneous consideration
of three equations:

• Continuity equation

• Dynamic equilibrium equation

• Energy equation

Also necessary is the inclusion of an equation of state, an internal energy equation and
a viscosity equation. Finally, the suitable relations between fluid velocity, pressure,
temperature, density, internal energy and viscosity are considered.

The continuity equation can be written as [89]

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (2.1)

that can be expressed in vector form as:

∂ρ

∂t
+∇T (ρ~u) = 0 (2.2)

u, v and w being the components of the velocity ~u in x, y and z, respectively, ρ the
density, t the time and ∇T = {~i ∂/∂x ~j ∂/∂y ~k ∂/∂z}. Equation 2.1 is met for any
fluid that satisfies the continuity hypothesis.

The dynamic equilibrium equation, in a Newtonian fluid [89], can be written as

ρax = ρBx − ∂p

∂x
+

∂

∂x

(
2µ
∂u

∂x
+

(
ζ − 2

3
µ

)
∇T~u

)

+
∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂u

∂z
+
∂w

∂x

)) (2.3)

ρay = ρBy −
∂p

∂y
+

∂

∂y

(
2µ
∂v

∂y
+

(
ζ − 2

3
µ

)
∇T~u

)

+
∂

∂z

(
µ

(
∂v

∂z
+
∂w

∂y

))
+

∂

∂x

(
µ

(
∂v

∂x
+
∂u

∂z

)) (2.4)

ρaz = ρBz −
∂p

∂z
+

∂

∂z

(
2µ
∂w

∂z
+

(
ζ − 2

3
µ

)
∇T~u

)

+
∂

∂x

(
µ

(
∂w

∂x
+
∂u

∂z

))
+

∂

∂y

(
µ

(
∂w

∂y
+
∂v

∂z

)) (2.5)

12 E.M. Sánchez-Orgaz



2.1. Introduction

where ρBx, ρBy y ρBz are volumetric forces, µ corresponds to the dynamic viscosity
and ζ is the second viscosity coefficient, whose value is zero for monoatomic gases.
The accelerations in the x, y and z axes are ax = Du/Dt, ay = Dv/Dt y az = Dw/Dt
respectively, D/Dt being the total or material derivative, defined as

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(2.6)

In the case of non-isothermal flows where the viscosity depends on the temperature,
the continuity equations and dynamic equilibrium are coupled with the energy equa-
tion, and all the equations have to be simultaneously solved. In general, the energy
equation can be written as

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
+

∂

∂z

(
κ
∂T

∂z

)
+
∂Q

∂t
+Φd −∇T ~qr

=
∂

∂x
(pu) +

∂

∂y
(pv) +

∂

∂z
(pw) +

ρ

2

D

Dt

(
u2 + v2 + w2

)
+ ρ

DE

Dt

(2.7)

and expresses the existing equilibrium between the incoming, the outgoing and the
accumulated energy. In equation 2.7 κ represents the thermal conductivity, T the
temperature, Q the heat generated in the fluid per volume unity, E the internal
energy, ~qr the vector of heat radiation flux and Φd is the heat dissipation function,
given by

Φd = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)2

+ 2µ

((
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂v

∂z

)2
)

+ µ

((
∂w

∂y
+
∂v

∂z

)2

+

(
∂u

∂z
+
∂w

∂x

)2

+

(
∂v

∂x
+
∂u

∂y

)2
) (2.8)

where λ = ζ − 2/3µ. As can be seen, the value of Φd is zero for non-viscous flows.

In order to completely specify the flow problem, it is necessary to include three ad-
ditional equations. These are the equations of state, the internal energy and the
viscosity equations [89], which can be written in general form as

ρ = ρ(p, T ) (2.9)

E = E(p, T ) (2.10)

µ = µ(p, T ) (2.11)

To obtain the solution of a general flow problem, the procedure can be as follows:
given the domain, the fluid properties, the equations (2.1), (2.3)-(2.5), (2.7)-(2.11),
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2. Fundamentals: wave equation and acoustic characterization

and a suitable set of boundary and initial conditions, search the velocity fields u, v
and w, as well as the pressure p, temperature T, density ρ, internal energy E and the
viscosity µ [89]. Therefore, the solution requires solving eight equations with eight
unknowns. This is a complex situation, whose difficulty increases because the acting
forces or the temperature can deform the boundary domain. A solution of this kind
is complex and remains beyond the scope of this Thesis.

II. Linear acoustic model

The linear acoustic model owes its name to the hypotheses formulated to obtain the
wave equation, or in the case of harmonic behaviour, the Helmholtz equation [126],
which results in linearizing and combining the continuity, dynamic equilibrium and
constitutive equations of the fluid. The linearizing procedure is based on the fact that
the increment of pressure and density (and velocity, in the case of a moving medium)
of the particles is small with respect to its average or equilibrium value. It is evident
that this restricts the application range of the wave equation, so that it is only valid
in the study of acoustic phenomena of small amplitude. For silencers this is useful
since the excitation systems do not usually exceed 140 dB [58, 124].

2.2 Wave equation

Due to the importance of the linearized wave equation in this Thesis, its deduction will
be carried out in this section. Then, by solving the linearized equation, the behaviour
of the fundamental acoustic variables will be characterized. In order to simplify the
nomenclature in this chapter and in subsequent chapters, total variables are denoted
here with subscript T , subscript 0 being used for the average values, while notation
without any subscript is retained for the acoustic perturbation variables used in the
linearization procedure.

To start with, the initial hypotheses considered to obtain the wave equation are given
[126]:

• It is supposed that the fluid in which the wave propagates is ideal (non-viscous),
and more specifically an ideal gas.

• The wave propagation process is considered adiabatic. There is a very small
interchange of thermal energy between the particles of a fluid, their entropy
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2.2. Wave equation

remaining almost invariable. Therefore, in an acoustic perturbation the particles
do not interchange energy. Indeed, during the fluid compression process an
increase of the temperature is generated and inversely, in the expansion, the
temperature decreases. At a given instant the propagation of a longitudinal wave
would produce heat transfer from a condensation to a rarefaction, separated by
half wavelength λ/2. The quantity of heat transferred depends on the thermal
conductivity of the fluid. In the audible frequency range (20-20000 Hz), most of
the acoustic perturbations have a relatively large wavelength λ and a thermal
conductivity small enough to produce an appreciable heat transfer and therefore,
the wave propagation is considered adiabatic. This hypothesis, together with
the previous idealization, lead to an isotropic process, verifying the relation

pT = Constant · ργT (2.12)

γ being the ratio between the specific heat capacity at constant pressure and
the specific heat capacity at constant volume [14, 30]

• Small variations in the pressure, density and velocity functions of the particle
are assumed. So, the problem can be linearized and a small acoustic amplitude
is superposed to the pressure, the density and the average velocity, resulting in

ρT = ρ0 + ρ (2.13)

pT = p0 + p (2.14)

~uT = ~u0 + ~u (2.15)

where ρ, p and ~u are considered small when compared with the average value.

In general, the fluid has a non-zero average velocity resulting in the well-known con-
vective wave equation. For a non-moving medium, particles have only a vibratory
motion around their equilibrium position that provokes the propagation of the acous-
tic perturbation without a net motion of the fluid [140].

2.2.1 Non-moving medium

The ideal fluid hypothesis does not consider the viscosity effects, so the Navier-Stokes
equations (2.3)-(2.5) are expressed as

ρT
DuT
Dt

= ρTBx − ∂pT
∂x

(2.16)
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2. Fundamentals: wave equation and acoustic characterization

ρT
DvT
Dt

= ρTBy −
∂pT
∂y

(2.17)

ρT
DwT

Dt
= ρTBz −

∂pT
∂z

(2.18)

known as Euler equations [179]. If these equations are written in vector form one
obtains

ρT
D~uT
Dt

= ρT ~B −∇pT (2.19)

From certain thermodynamic considerations [49], the following expression can be de-
duced

DpT
Dt

= c20
DρT
Dt

(2.20)

where c0 is the speed of sound in the air and is given by

c20 =

(
∂pT
∂ρT

)

s

(2.21)

s being the entropy and taking the derivative for constant entropy. For an ideal gas,
taking into account the expression given by (2.12), equation (2.21) remains as

c20 =

(
∂pT
∂ρT

)

s

=
γ (p0 + p)

ρ0 + ρ
≈ γp0

ρ0
(2.22)

On the basis of the total derivative definition given by equation (2.6), the continuity
equation (2.1) can be written as

DρT
Dt

+ ρT∇T~uT = 0 (2.23)

Combining equations (2.20) and (2.23), results in

DpT
Dt

+ ρT c
2
0∇T~uT = 0 (2.24)

Neglecting the gravity terms, the Euler equation (2.19), yields

ρT
D~uT
Dt

= −∇pT (2.25)

Then the time-derivative of the expression (2.24) can be expressed as

D2pT
Dt2

+
D

Dt

(
ρT c

2
0∇T~uT

)
(2.26)
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2.2. Wave equation

The linear governing equations of the acoustic perturbations are determined from first-
order terms of the initial non-linear equations. The zeroth-order terms are cancelled
since the environmental variables of the medium correspond to a valid state thereof.
For example, given that zeroth-order terms have to be satisfied in the absence of
perturbation, for the Euler equations (2.25), this yields

ρ0

(
u0
∂u0
∂x

+ v0
∂u0
∂y

+ w0
∂u0
∂z

)
+
∂p0
∂x

= 0

ρ0

(
u0
∂v0
∂x

+ v0
∂v0
∂y

+ w0
∂v0
∂z

)
+
∂p0
∂y

= 0

ρ0

(
u0
∂w0

∂x
+ v0

∂w0

∂y
+ w0

∂w0

∂z

)
+
∂p0
∂z

= 0

(2.27)

whose integration provides the Bernouilli equation for a steady flow [179].

In the case of a non-moving medium, the mean flow velocity is zero and it can be
considered that ~uT = ~u [126, 140]. Then, the expression (2.27) yields ∇p0 = 0, the
linearization of the equation (2.24) gives

∂p

∂t
+ ρ0c

2
0∇T~u = 0 (2.28)

and for the Euler equation (2.25) the following expression is obtained

ρ0
∂~u

∂t
= −∇p (2.29)

Combining the expressions (2.28) and (2.29), and eliminating ~u, leads to the wave
equation in the absence of flow [140]

∇2p− 1

c20

∂2p

∂t2
= 0 (2.30)

where the acoustic field of interest is the acoustic pressure perturbation p. As will
be shown in Section 2.2.2, this equation is a particular case of the convective wave
equation after considering ~u0 = 0. Assuming harmonic behaviour, the pressure is ex-
pressed as p = Pejωt, and substituting it in the wave equation results in the Helmholtz
equation [126]

∇2P + k20P = 0 (2.31)

where k0 = ω/c0 is the wavenumber, P the complex acoustic pressure amplitude
(function of the spatial coordinates), ω = 2πf the angular frequency and j the imag-
inary unit.
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2. Fundamentals: wave equation and acoustic characterization

For a propagation medium whose density ρ0 and speed of sound c0vary with position,
an appropriate generalization of equation (2.30) is [140]

ρ0∇
(

1

ρ0
∇p
)
− 1

c20

∂2p

∂t2
= 0 (2.32)

2.2.2 Moving medium

In those situations in which ρ0 and c0 are constant, and considering a steady flow field
(in general a function of the coordinates x, y and z ), equation (2.27) can be combined
with (2.26) and (2.25), providing the convective wave equation [140]

∇2p− 1

c20

D2p

Dt2
+ 2ρ0

(
∂u0
∂x

∂u

∂x
+
∂v0
∂x

∂u

∂y
+
∂w0

∂x

∂u

∂z
+
∂u0
∂y

∂v

∂x

+
∂v0
∂y

∂v

∂y
+
∂w0

∂y

∂v

∂z
+
∂u0
∂z

∂w

∂x
+
∂v0
∂z

∂w

∂y
+
∂w0

∂z

∂w

∂z

)
= 0

(2.33)

the variables being the acoustic velocity ~u and the acoustic pressure p (the mean flow
field is supposed to be known), and ∇2 = ∂2/∂x2+ ∂2/∂y2+ ∂2/∂z2 is the Laplacian
operator. In compact form this yields [140]

∇2p− 1

c20

D2p

Dt2
+ 2ρ0

∑

ij

∂u0j
∂xi

∂ui
∂xj

= 0 (2.34)

with i, j = 1, 2, 3, and u01 = u0, u02 = v0, u03 = w0, u1 = u, u2 = v and u3 = w. For
a uniform mean flow case, without spatial variation, the classic convective equation
is recovered [126]

∇2p− 1

c20

D2p

Dt2
= 0 (2.35)

in which the mean flow velocity field is assumed to be known and the acoustic pressure
p is the only unknown. The total derivative in equations (2.34) and (2.35) is given by

D

Dt
=

∂

∂t
+ u0

∂

∂x
+ v0

∂

∂y
+ w0

∂

∂z
(2.36)

No equation of comparable simplicity to (2.35) is known to exist, however, when
the ambient medium is moving and the ambient velocity field varies with position. A
simple wave equation for inhomogeneous moving media has been given for a somewhat
special case [140], this being when the ambient flow is irrotational and steady, and
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2.3. One-dimensional acoustics of ducts

when the entropy per unit mass has the same value at every point and for all time.
The appropriate dependent wave field amplitude is the velocity potential φ for the
acoustic part of the flow [43, 140]. Thus, the previous hypotheses lead to

~u = ∇φ (2.37)

where φ is a potential function. In this way, the following expression is obtained

∇2φ− 1

c20

D2φ

Dt2
= 0 (2.38)

in which the only variable is the acoustic velocity potential φ. This equation can also
be applied for a non-moving medium, just considering that the mean flow velocity is
zero. The relation between the acoustic pressure and the acoustic velocity potential
is given by [126, 140]

p = −ρ0
Dφ

Dt
(2.39)

The mean flow velocity field can be obtained from the mean flow velocity potential
φ0, which satisfies the Laplace equation

∇2φ0 = 0 (2.40)

by means of an expression similar to that given by equation (2.37)

~u0 = ∇φ0 (2.41)

in spite of the fact that this approximation can considerably differ from the real flow
field [6, 50].

If ρ0 and c0 vary with position, the resulting wave equation is [140]

1

ρ0
∇ (ρ0∇φ)−

D

Dt

(
1

c20

Dφ

Dt

)
= 0 (2.42)

Equations (2.32) and (2.42) have great importance for their consideration within this
Thesis.

2.3 One-dimensional acoustics of ducts

In practice, an important and common assumption to solve the wave equation is based
on the consideration of a one-dimensional propagation, resulting in the traditional
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2. Fundamentals: wave equation and acoustic characterization

plane wave models. These have been profusely used in the acoustic literature [27, 55,
70, 135]. Therefore, some relevant information to model the acoustic behaviour of
silencers is presented in this section. Munjal’s works [126] are a remarkable source of
information.

2.3.1 Non-moving medium

First, the case of a stationary medium is considered. The results presented are ex-
tended in the following section to consider a moving medium (see Section 2.3.2). Start-
ing from equation (2.35), and assuming harmonic solution p = Pejωt, the Helmholtz
equation is derived (2.31). Supposing a rigid wall duct with its axis parallel to the
z direction, and assuming that the propagation only depends on this coordinate, a
non-moving medium equation can be written as

∂2P

∂z2
+ k20P = 0 (2.43)

whose solution is [126]
P (z) = P+e−jk0z + P−ejk0z (2.44)

P+ and P− being complex wave amplitudes associated with the progressive and
regressive plane wave, respectively. Therefore, the propagation is described as the
sum of two components: one that advances in the positive direction of z and another
in the opposite direction. Starting from Euler equation (2.29), the acoustic velocity
can be written as

U =
−1

jρ0ω

∂P

∂z
(2.45)

so

U (z) =
1

ρ0c0

(
P+e−jk0z − P−ejk0z

)
=

1

Z0

(
P+e−jk0z − P−ejk0z

)
(2.46)

where Z0 is known as the characteristic impedance of the medium. Sometimes it is
convenient to use as a second acoustic variable the mass flow V instead of the velocity.
For a duct of transversal section S, the relation between both variables is given by

V = ρ0SU (2.47)

which can be rewritten as

V (z) =
S

c0

(
P+e−jk0z − P−ejk0z

)
=

1

Y0

(
P+e−jk0z − P−ejk0z

)
(2.48)

Y0 = c0/S being the characteristic impedance of the duct. Wave amplitudes P+ and
P− are determined from the boundary conditions applied to the duct. This will be
detailed in Section 2.4.
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2.3. One-dimensional acoustics of ducts

The one-dimensional Helmholtz equation (2.43) has been deduced assuming an ideal
fluid. The consideration of plane wave models permits the introduction of the viscous
effects without losing the simplicity of the associated solution. Thus, in the case of
a viscous propagation medium, the wavenumber and the characteristic impedance
of the duct are complex numbers. Therefore, the wavenumber k0 used in equations
(2.44), (2.46) and (2.48) is now defined as a complex propagation constant β [55, 126]

β = (k0 + α)− jα = k − jα (2.49)

where α is the acoustic pressure attenuation constant, whose definition depends on
the consideration of the heat transfer through the duct wall. For a circular duct of
radius R it can be expressed as [55]

α =
1

Rc0

√
µω

2ρ0

(
1 +

γ − 1√
γPr

)
(2.50)

Pr being the Prandtl number that is defined as µCp/κ, where µ is the dynamic
viscosity, Cp the specific heat capacity at constant pressure and κ the thermal con-
ductivity of the duct walls. If the thermal transfer through the walls of the duct is
not considered, equation (2.50) can be rewritten as

α =
1

Rc0

√
µω

2ρ0
(2.51)

Finally, the pressure and the mass flow can be described as

P (z) = P+e−αz−jk0z + P−eαz+jk0z (2.52)

V (z) =
1

Y

(
P+e−αz−jk0z − P−eαz+jk0z

)
(2.53)

where [126]

Y = Y0

(
1− α

k0
+ j

α

k0

)
(2.54)

The ratio α/k0 is small, particularly at high frequencies, in such a way that except
for very long ducts, the effect of the viscothermal attenuation can be neglected.

2.3.2 Moving medium

For a one-dimensional treatment of the problem, a duct of rigid walls can be supposed
aligned with the z axis in the presence of a uniform mean flow in the same direction,
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defined by the velocity Umf . The relative propagation velocity of the wave with
respect to the medium is still c0, whereas in a non-moving system of reference, the
progressive wave advances with a velocity Umf + c0, and the regressive wave has a
velocity Umf−c0. In this case the waves are swept downstream by the fluid in motion,
which is known as the convective effect. The classic convective wave equation (2.34)
can be written as

∂2p

∂z2
− 1

c20

D2p

Dt2
= 0 (2.55)

and the total derivative (2.36) is now

D

Dt
=

∂

∂t
+ Umf

∂

∂z
(2.56)

Combining the previous expressions, yields

(
1−M2

) ∂2p
∂z2

− 2
M

c0

∂2p

∂z∂t
− 1

c20

∂2p

∂t2
= 0 (2.57)

whereM = Umf/c0 is the Mach number. The harmonic version of the equation (2.57)
is [49]

(
1−M2

) ∂2P
∂z2

− 2jk0M
∂P

∂z
+ k20P = 0 (2.58)

The solution sought for equation (2.58) has the form

P (z) = P+e−j
k0

1+M
z + P−ej

k0
1−M

z (2.59)

By using Euler equation (2.25), the axial acoustic velocity is related to the pressure
by means of

ρ0

(
jωU + Umf

∂U

∂z

)
= −∂P

∂z
(2.60)

and this can be expressed as

U (z) =
1

Z0

(
P+e−j

k0
1+M

z − P−ej
k0

1−M
z
)

(2.61)

while the mass flow is

V (z) =
1

Y0

(
P+e−j

k0
1+M

z − P−ej
k0

1−M
z
)

(2.62)

The characteristic impedances of the medium and the duct, Z0 and Y0, are defined in
the same way as in the case of a non-moving propagation medium.
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2.3. One-dimensional acoustics of ducts

Similarly to the study carried out for a quiescent medium in Section 2.3.1, the vis-
cothermal effects of the fluid can be included in order to consider both the additional
aeroacoustic losses due to the turbulent friction and the convective effects of the mean
flow. In this case, the wavenumber is given by [126]

β± ≈ ∓
(
α+ ξM + jk

1±M

)
(2.63)

where the symbols + and − refer to the progressive and regressive propagation com-
ponents respectively. In this expression, ξ = F/(2d), F being the Froude factor and
d the duct diameter. For exhaust systems, Munjal [126] proposes the value given by
Lee’s formula

F = 0.0072 +
0.612

Re0.35
Re < 4 · 105 (2.64)

where Re = Umfdρ0/µ is the Reynolds number.

The acoustic pressure can be written as

P (z) = P+e−
α+ξM+jk

1+M
z + P−e

α+ξM+jk
1−M

z (2.65)

In this solution, it can be observed that the total aeroacoustic attenuation in a moving
medium depends on the Mach number, and is also a sum of the contributions of the
viscothermal and turbulent flow friction effects. Also, the factors 1±M that represent
the convective effect of the mean flow have an influence on both the attenuation
coefficient and the wavenumber [126]. The following notation can be introduced

α± =
α+ ξM

1±M
=
α (M)

1±M
(2.66)

k± =
k

1±Mk
(2.67)

with k = k0 + α. The value of α(M), equal for the perturbations in both directions
of the flow, can be considered as the real coefficient of the aeroacoustic attenuation
for a moving medium.

With the previous notation, the mass flow can be expressed as

V (z) =
1

Y

(
P+e−α+z−jk+z − P−eα

−z+jk−z
)

(2.68)

where the characteristic impedance of the duct is [126]

Y = Y0

(
1− α+ ξM

k0
+ j

α+ ξM

k0

)
(2.69)
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However, according to Dokumaci [69], the wavenumber is given by k0K
±, where the

propagation constant K can be written as

K =

√
1 + ((1 + j)/κ)(1 + (γ − 1)/

√
Pr)

√
2 (2.70)

γ being the ratio of specific heat coefficients, Pr the Prandtl number, κ = r
√
ρ0ω/µ

the shear wavenumber, µ the dynamic viscosity coefficient, s the thermal conductivity,
r the duct radius while the propagation constant K± is defined as

K± =
K

1±MK
(2.71)

where the symbols + and − refer again to the progressive and regressive propagation
components respectively. Thusm, the acoustic pressure can be expressed as

P (z) = P+e−jk0K
+z + P−e−jk0K

−z (2.72)

Regarding the previous procedure, it is worth noting that there are several implicit
simplifications with the purpose of assessing the aeroacoustic attenuation coefficient.
Equations (2.65) and (2.69) should be considered as an approximation of the wave
propagation in a viscous moving medium [126]. Nevertheless, these equations are very
useful in engineering because of the similarity between the equations corresponding to
a viscous quiescent medium and those of an inviscid moving flow, previously detailed.

2.4 Plane wave models. Matrix representation

Once the solution of the wave equation is obtained considering the one-dimensional
theory, matrix methods can be developed to assess the acoustic performance of the
elements belonging to the exhaust system. The global acoustic response of an exhaust
system depends on the working conditions and to evaluate it several considerations
have to be taken into account, including the noise generation source, the influence
of the external conditions and the elements arranged in the exhaust system. Matrix
methods can be applied in order to obtain a characterization that only depends on
the behaviour of the component under study and provides a quantification of its
intrinsic characteristics. The definition of each element can be obtained separately
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through the well-known four-pole matrix [58, 126]. Thus, a complex acoustic system
can be decomposed into several subcomponents, each one having its corresponding
behaviour matrix. The global response of the system is obtained from the combination
of all the matrices involved. This philosophy can be applied to silencers, which can be
modelled as a series of chambers, resonators, geometric discontinuities, etc., connected
by ducts. It is supposed that, although the acoustic field can be multidimensional
within the different subcomponents, plane wave conditions hold in the connecting
interfaces among the different devices involved.

2.4.1 Generalities

v

1 2 3 4

Engine
Catalyst TerminationSilencer

P1U1

P2 P3 P4

U2 U3 U4

[T12] [T34]

Figure 2.1: Scheme of an exhaust system.

A simplified scheme of an acoustic system is shown in Figure 2.1, consisting of an
engine (main source of noise), a catalyst, a silencer and some additional elements
connected downstream (termination).

The matrix definition of a given device, as for example the catalyst, implies the choice
of the variables of interest at the inlet section (plane 1) and outlet section (plane 2).
A commonly used formulation in practice consists of considering the pressure and
axial velocity at planes 1 and 2, that are related by means of the following expression

{
P1

U1

}
=

[
Ac Bc

Cc Dc

]{
P2

U2

}
=
[
T12
]{P2

U2

}
(2.73)

which constitutes the basis of the transfer matrix approach. The acoustic perturba-
tion at a point of the duct, defined by the state vector {P1 U1}T , is related to the
perturbation at another point, downstream with respect to the first point, defined by
the state vector {P2 U2}T , by means of the transfer matrix [T12] of the device placed
between planes 1 and 2. In general it is admitted that for any system, provided that
the wave is plane in planes 1 and 2, a transfer matrix such as that defined in equation
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(2.73) can be found. An immediate property that will be used hereafter consists of
the possibility of computing the transfer matrix of a full system from the matrices of
each subsystem, just by carrying out the sorted multiplication of these, as they relate
to two state vectors associated with specific points. This property is basic, and the
versatility of the method when representing complex systems lies in it.

The four-pole transfer matrix can be obtained by means of the calculation of the
acoustic system under study with suitable boundary conditions. These conditions are
based on the physical meaning of each of the matrix poles, which is simple as it can
be deduced from the previous expressions, obtained from equation (2.73)

Ac =
P1

P2

∣∣∣∣
U2=0

(2.74)

Bc =
P1

U2

∣∣∣∣
P2=0

(2.75)

Cc =
U1

P2

∣∣∣∣
U2=0

(2.76)

Dc =
U1

U2

∣∣∣∣
P2=0

(2.77)

The condition P2 = 0 is equivalent to the consideration of an ideal open end in plane 2
and the condition U2 = 0 corresponds to an ideal rigid closed end. Both conditions can
be used without any difficulty in the numerical computation of the acoustic problem,
regardless of the level of complexity. Also, they indicate the possibility of estimating
the approximate values of the four poles from experiments with two different boundary
conditions..

The transfer matrices of some common elements usually found in silencers are obtained
in the next sections for illustration purposes.

2.4.2 Transfer matrix of a duct

A duct of length L and cross section S, as shown in Figure 2.2, is considered first. In
order to obtain the transfer matrix of the duct, the following definitions of pressure
and acoustic velocity, given by (2.44) and (2.46), are taken into account

P (z) = P+e−jk0z + P−ejk0z

26 E.M. Sánchez-Orgaz



2.4. Plane wave models. Matrix representation

U (z) =
1

Z0

(
P+e−jk0z − P−ejk0z

)

P1

U1

P2

U2

L

S
z

Figure 2.2: Duct with uniform cross section.

Taking into account equations (2.74)-(2.77), two analyses have to be carried out with
their associated boundary conditions. The process can begin with U2 = 0, combined
with an arbitrary excitation Pi (for convenience a value equal to unity is usually
considered), giving

P (z = 0) = P1 = Pi = P+ + P− = 1 (2.78)

U (z = L) = U2 =
1

Z0

(
P+e−jk0L − P−ejk0L

)
(2.79)

whose solution is

P+ =
1

2

cos (k0L) + j sin (k0L)

cos (k0L)
(2.80)

P− =
1

2

cos (k0L)− j sin (k0L)

cos (k0L)
(2.81)

which completely defines the pressure P (z) and the velocity U(z) in the duct. Thus,
the terms A and C of the transfer matrix are

A =
P1

P2

∣∣∣∣
U2=0

= cos (k0L) (2.82)

C =
U1

P2

∣∣∣∣
U2=0

=
j

Z0
sin (k0L) (2.83)
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The calculation of B and D involves the consideration of P2 = 0, yielding

P (z = 0) = P1 = Pi = P+ + P− = 1 (2.84)

P (z = L) = P2 = P+e−jk0L + P−ejk0L = 0 (2.85)

so that

P+ =
−j
2

cos (k0L) + j sin (k0L)

sin (k0L)
(2.86)

P− =
1

2

sin (k0L) + j cos (k0L)

sin (k0L)
(2.87)

and therefore

B =
P1

U2

∣∣∣∣
P2=0

= jZ0 sin (k0L) (2.88)

D =
U1

U2

∣∣∣∣
P2=0

= cos (k0L) (2.89)

Then, for a duct, the expression is

{
P1

U1

}
=




cos (k0L) jZ0 sin (k0L)
j

Z0
sin (k0L) cos (k0L)



{
P2

U2

}
(2.90)

A similar approach, considering as variables the pressure and the mass flow, gives

{
P1

V1

}
=




cos (k0L) jY0 sin (k0L)
j

Y0
sin (k0L) cos (k0L)



{
P2

V2

}
(2.91)

If there is mean flow, the same procedure can be applied starting from equations
(2.59) and (2.61) for the pressure and velocity, which after further manipulations,
yields [126]

{
P1

U1

}
= e

−jM
k0

1−M2 L




cos

(
k0

1−M2
L

)
jZ0 sin

(
k0

1−M2
L

)

j

Z0
sin

(
k0

1−M2
L

)
cos

(
k0

1−M2
L

)



{
P2

U2

}
(2.92)
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The four poles of a duct are shown in Figure 2.3 to explain their main characteristics.
The length of the duct is L = 0.3 m and the mean flow velocities are given by the Mach
numbers M = 0, M = 0.1 and M = 0.2. It is worth noting that, in a duct, A and D
overlap, and the same happens with B/Z0 and Z0C. When no mean flow exists, the
imaginary part of A and D is zero, as well as the real part of B and C. Nevertheless,
the presence of mean flow originates phase differences in the waves that make the
aforementioned parts different from zero. Besides, the mean flow modifies the parts
that are initially non-zero for M = 0. This effect increases for higher frequencies.
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Figure 2.3: Real and imaginary parts of the four poles for a duct with length L = 0.3 m:

, M = 0; , M = 0.1; , M = 0.2.

2.4.3 Transfer matrix at expansions and contractions

This case is especially interesting because it constitutes the fundamental element of
the attenuation mechanism in reactive silencers [26, 126]. A sketch of two geometric
discontinuities consisting of an expansion (S1 < S2) and a contraction (S1 > S2) is
shown in Figure 2.4.
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. . . .
P1

U1

S1 < S2 S1 > S2

L1 L2 L1 L2
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P2
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U1

P ′
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P ′
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U ′
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P2

U2

Figure 2.4: Geometric discontinuities between ducts.

In the absence of mean flow, the relationship between the acoustic variables at both
sides of the geometric discontinuity can be written as

P ′

1 = P ′

2 (2.93)

ρ0S1U
′

1 = ρ0S2U
′

2 (2.94)

which means that the acoustic pressure and the mass flow do not change at the
geometric discontinuity. Now, these expressions can be written in matrix form as

{
P ′
1

U ′
1

}
=

[
1 0
0 S2/S1

]{
P ′
2

U ′
2

}
(2.95)

{
P ′
1

V ′
1

}
=

[
1 0
0 1

]{
P ′
2

V ′
2

}
(2.96)

This simple representation of the area change is very useful to model a silencer in ma-
trix form, as it is usually formed of different geometric discontinuities. Nevertheless,
it should be noted that the representation given by expressions (2.95) and (2.96) is
approximated, since in every section change the acoustic pressure and velocity fields
have to be necessarily continuous, leading to the generation of multidimensional phe-
nomena [73, 96, 147]. These phenomena take on special relevance as the frequency
increases and therefore, the previous matrices are only valid in the low frequency
range.

However, the plane wave models allow their approximated consideration, valid in the
low frequency range, according to a length correction factor [96, 137, 147, 153]. Thus,
the expression (2.96) {

P ′
1

V ′
1

}
=

[
1 0
0 1

]{
P ′
2

V ′
2

}
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can be modified to include the length correction δ, resulting in

{
P ′
1

V ′
1

}
=


1

jωδ

S1
0 1



{
P ′
2

V ′
2

}
(2.97)

The values of δ depend on the frequency and the geometries defining the area discon-
tinuity [59, 126, 137].

Once the matrix associated with the area change is known, it is possible to relate the
acoustic variables at plane 1 to the corresponding variables at plane 2 (see Figure
2.4), by simply multiplying in an orderly way the matrices belonging to each element,
that is

{

P1

U1

}

=





cos (k0L1) jZ0 sin (k0L1)
j

Z0

sin (k0L1) cos (k0L1)









1 0

0
S2

S1









cos (k0L2) jZ0 sin (k0L2)
j

Z0

sin (k0L2) cos (k0L2)





{

P2

U2

}

(2.98)

2.5 Perforated plates and ducts

Perforated elements are a usual component in silencers [120, 126, 168]; in practical ap-
plications, they can appear with diverse configurations such as completely or partially
perforated ducts and plates.

The usual characterization of perforated elements is based on the concept of acoustic
impedance, defined as the ratio of the acoustic pressure drop to the normal velocity
through the perforations [120, 126]. In general, the impedance is difficult to model;
but it can be approximately described as a complex function of several parameters
such as the orifice diameter dh, thickness tp and porosity σ, which is the ratio of
perforated area to the total surface [108, 139, 168]. Also, it can depend on the mean
flow through the holes or grazing the holes, and the material backing the perforations
[171]. Acoustic attenuation phenomena involve different effects associated with the
area change that the fluid particles undergo when passing through the perforations.
The process implies reflection and transmission of the waves and energy dissipation
due to friction. The acoustic fields near the perforated element can be relatively
complex [122], above all in the presence of mean flow [172], in such a way that the
treatment received in the literature is always simplified, according to the concept of
impedance presented in Section 2.5.1.

E.M. Sánchez-Orgaz 31



2. Fundamentals: wave equation and acoustic characterization

2.5.1 Characteristic impedance of a perforated surface

The impedance of a perforated element is the ratio between the acoustic pressure
jump at both sides of the surface and the acoustic velocity across the holes,

Zp =
Pi − Po

Ū
= R0 + jX0 (2.99)

where Pi is the acoustic pressure at the orifice inlet, Po the acoustic pressure at the
orifice outlet and Ū is the average acoustic velocity through the hole. The acoustic
impedance can be expressed in terms of the resistance R0 and the reactance X0, real
and imaginary parts of the impedance respectively.

In a linear regime, for applications where the acoustic pressure levels are considered to
be low, the acoustic impedance is linearly related to the pressure difference between
both sides of the perforated duct. However, in the case of perforated plates for silencer
applications, the fluid dynamics of the holes can exhibit non-linear features when
exposed to sound pressure levels typical of combustion engines [123]. Experimental
measurements carried out at the orifices show a quadratic behaviour [92]. In these
cases the acoustic impedance depends on the velocity through the orifices [67, 92].

A review of the existing literature shows that there are many impedance models
available [64, 102, 108], whose results can sometimes present important discrepancies
[108]. In this section, an exposition of the models most commonly used is carried out.
Many of these models have been experimentally validated. The first and simplest
case corresponds to a perforated element placed within a non-moving medium. The
following expression can be found in references [169, 171]

Zp = ρ0c0
6 · 10−3 + jk0 (tp + 0.75dh)

σ
(2.100)

The real or resistive part, associated with the acoustic energy losses, remains almost
invariable. The imaginary or reactive part, which depends on the frequency and
geometric characteristics of the perforated surface, is determined by means of the
following expression

X0 = ρ0ω
(tp + 0.75dh)

σ
(2.101)

Porosity has a considerable influence on the acoustic impedance, since it appears in the
expression (2.100) at the denominator. To avoid the overestimation of the impedance
associated with this model, a correction factor F (σ) is considered in recent references
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[59, 66, 104] to take into account the interaction between orifices. This interaction
can be translated into a reduction of the reactive part of the impedance

Zp = ρ0c0
6 · 10−3 + jk0 (tp + 0.75dhF (σ))

σ
(2.102)

Better results are achieved substituting 0.75dh by 0.85dhF (σ) whereby the expression
(2.100) can be written as [59, 66, 104]

Zp = ρ0c0
6 · 10−3 + jk0 (tp + 0.85dhF (σ))

σ
(2.103)

The correction factor F (σ) is calculated through formulae such as the Ingard’s inter-
action factor [91]

FI (σ) = 1− 0.7
√
σ (2.104)

or the Fok’s expression [27]

FF (σ) = 1− 1.41
√
σ + 0.34

(√
σ
)3

+ 0.07
(√
σ
)5

(2.105)

In this Thesis, the correction factor F (σ) is calculated as the average of the values
obtained by the expressions (2.104) and (2.105) [27]

F (σ) = 0.5 (FI (σ) + FF (σ)) (2.106)

In the non-linear regime [92, 171] the increase of the acoustic pressure till values over
120 dB (the pressure amplitude in internal combustion engines can exceed 140 dB [67])
involves a non-linear increase of the resistance while the reactance tends to decrease,
also in a non-linear form, but to a lower degree when compared to the resistance.

The consideration of mean flow makes it more difficult to obtain the impedance associ-
ated with perforated elements. Therefore, sometimes experimental measurements are
carried out to obtain empirical models of the acoustic behaviour close to the orifices.
In the perforated surfaces exposed to the tangential mean flow, defined by the Mach
numberM , turbulences are generated that modify the local impedance [108] changing
the pattern of the acoustic energy distribution through the orifices as a consequence
of the convective effects. The resistance of the orifices tends to increase as the mean
flow is higher, whereas the reactance tends to slightly decrease [108, 143].

According to an empirical model, Garrison et al. [76] obtained the following expression

Zp = (1 + 1.9M)R0 + j (1− 1.65M)X0 (2.107)
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Rao and Munjal [143] carried out tests to assess the effects of the mean flow in some
typologies of perforated ducts by applying conditions of tangential flow velocity similar
to those existing in automotive silencers. The empirical expression that determines
the acoustic impedance under these conditions is

Zp = ρ0c0
7.337 · 10−3 (1 + 72.23M) + j2.2245 · 10−5 (1 + 51tp) (1 + 204dh) f

σ
(2.108)

in which the mean flow affects the resistive part of the model. The ranges defined
for the validity of this expression are 0.05 ≤M ≤ 0.2 for the tangential flow velocity,
3% ≤ σ ≤ 10% for the porosity, 1 mm ≤ tp ≤ 3 mm for the thickness of the perforated
surface and 1.75 mm ≤ dh ≤ 7 mm for the orifice diameter.

Sullivan [169], according to the empirical model of Garrison et al., modified his
impedance model without mean flow (2.100) to include the effect of the normal mean
flow velocity on the resistive component. This effect is similar to that produced in
a plug silencer where the flow is forced to pass through the orifices and the veloc-
ity presents two components: a component tangential to the surface, whose value is
maximum at the inlet and zero at the plug, and a normal or transversal component
Ū0 considered uniform [58, 169]

Zp = ρ0c0

2.57
Ū0

c0
+ jk0 (t+ 0.75dh)

σ
(2.109)

An empirical expression developed by Bauer [25] additionally relates the viscous effects
of the medium to the Mach number M in the modification of the resistive part of the
acoustic impedance

Zp = ρ0c0

√
8µρ0ω

ρ0c0

(
1 +

tp
dh

)
+ 0.3M + 1.15

Ū0

c0
+ jk0 (tp + 0.25dh)

σ
(2.110)

Jayaraman and Yam [95] modify the impedance model of Sullivan for plugs (2.100)
when considering the tangential mean flow as an influential part of the variation of
the resistance

Zp =
ρ0c0
σ

(
0.514d

σ

M

l
+ j4.8 · 10−5f

)
(2.111)

where d is the diameter of the duct and l its length. It is worth noting that the
magnitudeM/l is the axial gradient of the mean flow Mach number, which is variable
since the Mach number linearly decreases from a maximum value M at the inlet of
the perforated duct to zero over the perforated length l [82].
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Another group of expressions that consider the variation of the resistive part of the
acoustic impedance according to the flow resistance Rf and the correction length
factor δ/δ0 is proposed by Kooi and Sarin [106], Cummings [51] and Kirby and Cum-
mings [102]. The flow resistance Rf can be expressed as follows [42]

Rf =
∆P

U
(2.112)

where ∆P is the difference in pressure at both sides of the porous sample and U the
velocity through the sample.

Kooi and Sarin [106] propose

Rfc0
fdh

=
1

4

(
5− tp

dh

)(
9.9

u∗

fdh
− 3.2

)
(2.113)

where Rf corresponds to the average flow resistance in the orifice area and u∗ is
the friction velocity, a parameter written in units of velocity that is often used as a
scaling parameter for the fluctuating component of velocity in turbulent flow, and can
be obtained as [152]

u∗ =

√
τw
ρ0

(2.114)

where τw is the shear stress at the wall and ρ0 the fluid density. The length correction
factor is obtained as

δ

δ0
=





0.92− 0.75
u∗

ftp
+ 0.11

(
u∗

ftp

)2

, 0.2 ≤ u∗

ftp
≤ 3.5

−0.04 ,
u∗

ftp
> 3.5

(2.115)

in which δ represents the length correction in the presence of mean flow and δ0 the
length correction in the absence of mean flow. Cummings [51] expresses Rf as

Rfc0
fdh

=

(
12.52

(
tp
dh

)−0.32

− 2.44

)
u∗

fdh
− 3.2 (2.116)

and the length correction factor as

δ

δ0
=





1 ,
u∗

ftp
≤ 0.12

dh
tp

(
1 + 0.6

tp
dh

)
e



−





u∗

ftp
−0.12

dh
tp



/

(

0.25+
tp
dh

)





− 0.6
tp
dh

,
u∗

ftp
> 0.12

dh
tp

(2.117)
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Kirby and Cummings [102], modified the resistive part and obtained

Rfc0
fdh

=

(
26.16

(
tp
dh

)−0.169

− 20

)
u∗

fdh
− 4.055 (2.118)

while their length correction factor yields

δ

δ0
=





1 ,
u∗

ftp
≤ 0.18

dh
tp

(
1 + 0.6

tp
dh

)
e



−





u∗

ftp
−0.18

dh
tp



/

(

1.8
tp
dh

)





− 0.6
tp
dh

,
u∗

ftp
> 0.18

dh
tp
(2.119)

For these three last cases, the resistive part of the dimensionless acoustic impedance
R0 is the sum of the flow resistance Rf and the viscous losses Rν due to the turbulent
flow. Therefore

R0 = Rf +Rν (2.120)

where

Rν =

√
8νω

c0

tp
dh

(2.121)

and ν represents the kinematic viscosity. The reactive part of the dimensionless
acoustic impedance X0 depends on the length correction factor δ/δ0

X0 = k0

(
tp +

δ

δ0
0.85dh

)
(2.122)

Due to the difference of parameters considered in both groups of impedances, Lee and
Ih [108] bring them together in one empirical expression whose normalized resistive
part is

R0 = ρ0c0
a0 (1 + a1 |f − f0|) (1 + a2M) (1 + a3dh) (1 + a4tp)

σ
(2.123)

where a0 = 3.94 · 10−4, a1 = 7.84 · 10−3, a2 = 14.9, a3 = 296 and a4 = −127.
Note that some of this coefficients have dimensions. In this resistive part, the critical
frequency f0 is related to the mean flow velocity Mach number M and the diameter
of the orifice dh as

f0 = φ1
1 + φ2M

1 + φ3dh
(2.124)
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The coefficients are given by φ1 = 412, φ2 = 104 and φ3 = 274. These values are
obtained according to a non-linear regression analysis of the results from experimental
tests (that consider f0, M and dh). The resistance is a decreasing function of the
frequency until a minimum value is reached at the critical frequency, from which it
starts to increase. The reactive part is influenced by the mean flow velocity and the
frequency, among others, yielding

X0 = ρ0c0
b0 (1 + b1dh) (1 + b2tp) (1 + b3M) (1 + b4f)

σ
(2.125)

where b0 = −6 · 10−3, b1 = 194, b2 = 432, b3 = −1.72 and b4 = −6.62 · 10−3. As
for the resistive part, some of these coefficients have dimensions. Reactance increases
with frequency and its magnitude generally decreases as the flow Mach number M
increases. The valid range of values for each of these parameters is as follows: 60
Hz≤ f ≤ 4000 Hz, for the frequency, 0 ≤ M ≤ 0.2, for the mean flow velocity, 2
mm≤ dh ≤ 9 mm, for the diameter of the orifices, 1 mm ≤ tp ≤ 5 mm, for the
thickness of the plate and 2.79% ≤ σ ≤ 22.3% for the porosity. Similar to previous
works [180], it has been considered that the coefficients involved in expressions (2.123)-
(2.125) do not depend on the temperature. Equations (2.123) and (2.125) have been
used in this Thesis, as well as in some of the associated contributions. Further details
will be given in Section 3.2 in order to include the effect of the absorbent material
and its heterogeneities.

2.5.2 Characteristic impedance of microperforated surfaces

Silencers with microperforated ducts are currently under study as a possible alter-
native to the traditional perforated dissipative silencers, since they help to avoid the
potentially harmful effects of the absorbent materials on human health [8, 64]. An-
other relevant characteristic is that they are lighter than dissipative silencers. In this
section, the model developed by Allam and Åbom [8] for microperforated surfaces is
briefly described. This model is based on the results obtained by Maa [112, 114, 115],
who published the first attempts to comprehensively characterize these kinds of sur-
face. Maa defined the microperforated area as a perforated surface where the size of
the orifice and the ratio of the perforated screen provide an impedance whose real part
is close to the characteristic impedance of the air (approx. 400 Pa s/m in Standard
Temperature and Pressure). The thickness of a microperforated plate must be around
1 mm, the porosity a value around 1% and the hole diameter a submillimetric value.

Maa [112, 114, 115] modelled a microperforated surface with circular orifices as if
it were composed of a grid of tiny tubes, separated by distances much higher than
their diameter. Nevertheless, these distances are small when compared to the incident
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wavelength. Maa developed an impedance model for microperforated surfaces accord-
ing to Rayleigh’s model for ducts of small length [144] and Crandall’s simplifications
[48]. The equation of motion for the air (in a duct sufficiently short in comparison to
the wavelength) is given by

jωρ0uh − µ

r

∂

∂r

(
r
∂

∂r
uh

)
=

∆p

tp
(2.126)

∆p being the pressure difference between the ends of the duct (with the same thick-
ness tp as the surface), ρ0 the air density, µ its viscosity coefficient and r the radial
coordinate of the duct in cylindrical coordinates. This equation can be solved for the
particle velocity uh, and the ratio of ∆p to the average value of ūh over the cross
section of the duct giving as a result the specific acoustic impedance of the short duct
[115]

Z =
∆p

ūh
= jωρ0tp

(
1− 2

κ
√−j

J1
(
κ
√−j

)

J0
(
κ
√−j

)
)−1

(2.127)

where κ = dh
√
ω/(4ν) is the shear wavenumber that depends on the diameter of

the tube dh, the angular frequency ω, as well as on the kinematic viscosity ν. J0
and J1 are the Bessel functions of the first kind and zeroth and first-order [8]. The
normalized impedance of a microperforated plate can be obtained by dividing the
specific impedance Z by the characteristic impedance of the air ρ0c0 and the porosity
σ, obtaining the following expression

z =
Z

ρ0c0σ
=
jωtp
σc0

(
1− 2

κ
√−j

J1
(
κ
√−j

)

J0
(
κ
√−j

)
)−1

(2.128)

It is necessary to include an end correction to model the orifices [125]. This theoretical
correction can be decomposed into external resistive and a reactive terms. Ingard [91]
suggested the utilization of the values proposed by Rayleigh [144] to assess the resistive
part due to the friction of the airflow over the screen surface: Rs = 1/2

√
2ωρ0µ, µ

being the dynamic viscosity. According to some measurements previously carried out,
Guo et al. [83] determined that the correction value proposed by Ingard and equal to
4Rs provides better results for orifices with sharp edges, while for rounded edges an
improvement is obtained using the correction proposed by Maa [115], given by 2Rs.
Then, the total external resistivity can be written as

r =
2αRs

σρ0c0
(2.129)

where α is a factor that depends on the kind of edge of the orifice, its value being 2
for a rounded orifice edge and 4 when it is sharp.
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When the air is impulsed within the small ducts composing the microperforated sur-
face, the performance of the orifices can be assimilated to a piston behaviour. Accord-
ing to the literature [8, 48, 164], the mass reactance due to the piston sound radiation
in both ends of the duct is 0.85d. Thus, the normalized expression for the external
reactance can be written as

χ =
δω

σc0
(2.130)

Besides, a non-linear orifice behaviour can exist, modifying both the acoustic resis-
tance and reactance. This fact was studied by Sivian [164], who observed that the
acoustic resistance is higher as the particle velocity in the holes increases. This is due
to the vorticity produced by the high sound intensity at the orifice outlet, dissipating
acoustic energy; however, the reactance starts to decrease. This non-linear term was
quantified by Maa [113] as znon−lin = |ûh| /(σc0), |ûh| being the absolute value of
the particle velocity within the holes. For the resistive part, this term can be directly
added as an external term to the real part of expression (2.128), while for the reac-
tive term Maa [113] proposed an empirical formula, which is multiplied by the end
correction term δ(1 + znon−lin)

−1.

Finally, the normalized full expression of the resistive part for the microperforated
surface is

rmp = Re


jωtp
σc0

(
1− 2

κ
√−j

J1
(
κ
√−j

)

J0
(
κ
√−j

)
)−1


+

2αRs

σρ0c0
+

|ûh|
σc0

(2.131)

while the reactive part is

χmp = Im


jωtp
σc0

(
1− 2

κ
√−j

J1
(
κ
√−j

)

J0
(
κ
√−j

)
)−1


+

δω

(
1 +

|ûh|
σc0

)−1

σc0
(2.132)

Expressions (2.131) and (2.132) are valid for porosities below 5%, for which the in-
teraction between holes is negligible.

2.6 Absorbent materials

Absorbent materials are widely used in a great variety of applications to improve the
sound attenuation. The main function of the absorbent materials is the reduction of
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the amplitudes of the acoustic fields associated with the wave propagation phenomena
by dissipation of the acoustic energy [29]. Natural and artificial fibres, as well as
polymeric and ceramic foams are commonly used materials in practical applications
[10, 18, 117–119]. In exhaust systems, chambers incorporating absorbent materials
are denominated dissipative silencers [126].

In a silencer, the absorbent material that wraps one or several perforated ducts can
be characterized on many occasions as an isotropic structure. There exist internal
cavities or interconnected pores in the structure, randomly distributed, in which the
air can move [146]. The path followed by the air through a porous structure, when
mean flow is considered, is generally defined by a tortuous path. If the flow is not
turbulent, the air volume passing through the material is directly proportional to the
difference of pressure that originates the flow [14].

The acoustic attenuation is produced, on the one hand, by the reflection of the acoustic
wave, and on the other by the viscous losses at the interstices. Depending on the
method used in the silencer manufacturing process, the variation of the material
density can generate heterogeneity, anisotropy and spatial variation of the acoustic
properties [16, 29, 149].

The incorporation of absorbent materials in vehicle exhaust systems has tradition-
ally presented some problems associated with the degradation of their properties over
time, the high temperatures they are subjected to and soiling due to the particles
from the exhaust gases [74]. Also, the loss of material produced by the gas flow
swept has to be considered in some configurations. In order to avoid this problem,
Selamet et al. [155] proposed filling the outer chamber of a dissipative silencer with
continuous strand fibres of texturized fibreglass. The texturization process separates
4000 filament roving strands of fibreglass into individual filaments by turbulent air
flow. The degree to which the strands are separated into individual filaments affects
both the complex-valued wavenumber and the impedance of the absorbent material.
The physical and chemical properties of various materials and their relative durabil-
ity in simulated automotive silencer operations are described by Huff [88]. Despite
the improvements of the material properties and the increasing interest not only in
reducing the noise levels under the legal limits, but also in the sound quality, having
promoted use of the absorbent materials as a part of the silencers over recent decades
[47, 65, 100, 138, 155, 159, 160], recent studies [5, 8, 64, 182] have raised an interesting
trend that promotes the search of less polluting alternatives.
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2.6.1 Introduction

Some of the most important properties of absorbent materials can be summarized in
steady airflow resistivity, material density, porosity, tortuosity, elasticity, as well as
fibre orientation in the case of a fibrous material. The resistivity is one of the most
significant magnitudes in the characterization of absorbent materials. To measure the
resistivity of an absorbent material, a sample is placed in a duct, and a differential
pressure induces a steady flow of air [10]. The flow resistivity R is given by

R =
∆P

u∆l
(2.133)

where ∆P is the difference in pressure at both sides of the porous sample, ∆l corre-
sponds to the thickness and u is the velocity through the sample. This last magnitude
can be measured with a Pitot-Static tube.

It should be pointed out that fibrous materials are generally anisotropic [12, 21]. For
example, in a panel of absorbent material the fibres generally lie in planes parallel to
the surface of the material. The flow resistivity in the normal direction is different
from that in the planar direction. In the former case, air flows perpendicularly to
the surface of the panel while in the latter case it flows parallel to the surface of the
layer [10]. The normal flow resistivity is larger than the planar flow resistivity. For a
fibrous material, the resistivity depends, among others, on the porosity σ and dynamic
viscosity µ [10, 120], the size of the material fibres, their shape and orientation, as
well as on the tortuosity q [14, 28].

Materials such as fibreglass consist of an elastic frame which is surrounded by air [10].
The porosity σ of an absorbent material is the ratio of the air volume Va to the total
volume of porous material Vm

σ =
Va
Vm

(2.134)

2.6.2 Material characterization

The quantities involved in the sound propagation within a porous material can be
defined locally, on a microscopic scale, considering for instance cylindrical pores having
a circular cross section, as functions of the distance to the axis of the pores. However,
studying the sound propagation in porous materials on a microscopic scale is difficult
due to the complex geometries of the frames. Only the mean values of the quantities
involved are of practical interest. The averaging must be performed on a macroscopic
scale, on a homogenization volume with dimensions sufficiently large for the average
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to be significant. At the same time, these dimensions must be much smaller than the
acoustic wavelength. The description of sound propagation in a porous material can
be complicated by the fact that sound also excites and moves the frame of the material.
If the frame is motionless, in a first step, the air inside the porous medium can be
replaced on the macroscopic scale by an equivalent free fluid. This equivalent fluid has
a complex effective density ρm and a complex bulk modulus Km. The wavenumber
km and the characteristic impedance Zm of the equivalent fluid are also complex
[10, 57, 134]. This model can be used for a number of fibrous materials used by
industry in the manufacturing process of silencers [65, 138, 149, 155, 156, 180]. The
second model, also known as the poroelastic approach, is based on Biot’s theories
[32, 33] and was adapted by Allard et al. [11] to the acoustic problem. In this model,
the elasticity of the solid phase is considered, which has a significant interaction with
the spaces filled by air or another gas [131]. Delany and Bazley [57] carried out
experimental studies including a wide assortment of absorbent materials for which
analytical expressions were obtained to define the impedance Zm and the wavenumber
km as a function of frequency and resistivity. Later, several authors [104, 138, 155],
according to this approach, extended the results to additional materials and carried
out numerous studies of the acoustic behaviour of silencers with absorbent materials.
Delany and Bazley’s expressions [57] can be adapted and written as

Zm = Z0

(
1 + a5

(
fρ0
R

)a6

− ja7

(
fρ0
R

)a8
)

(2.135)

km = k0

(
1 + a3

(
fρ0
R

)a4

− ja1

(
fρ0
R

)a2
)

(2.136)

where Z0 = ρ0c0 represents the characteristic impedance of the fluid medium, k0 =
2πf/c0 is the air wavenumber, f the frequency and R the resistivity of the absorbent
material. The ai coefficients, i = 1, 2, ..., 8, depend on the material under considera-
tion and are obtained from a curve fitting process following laboratory measurements
[100, 155]. Additional properties, depending on the previous expressions, complement
the characterization of the absorbent material, such as the complex speed of sound
and the complex density. These are defined by

cm =
ω

km
(2.137)

ρm =
Zm

cm
=
Zmkm
ω

(2.138)

However, the empirical power-law of Delany and Bazley [57] produces non-physical
predictions at low frequencies. To overcome this problem Kirby and Cummings [103]
proposed a semi-empirical model which combines the empirical power-law of Delany
and Bazley with a theoretical microstructure model at low frequencies. Values for the
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propagation constant Γ̃ and characteristic impedance Zm were given by Kirby and
Cummings as [103]

Γ̃ = j
√
γq2 (ω)

(
(ln (1− σ) + 1 + 2σ)σ ln (1− σ) + σ2 + 3σ3/2 + σ4/3

(ln (1− σ) + σ + σ2/2)
2

−
(
γ − 1

γ

)
Pr − j

σ

2πξfq20s
2 (ω)

)1

2

(2.139)

Zm

ρ0c0
= j

√
q2 (ω)

γσ2

(
(ln (1− σ) + 1 + 2σ)σ ln (1− σ) + σ2 + 3σ3/2 + σ4/3

(ln (1− σ) + σ + σ2/2)
2

−
(
γ − 1

γ

)
Pr − j

σ

2πξfq20s
2 (ω)

)1

2

(2.140)

where σ is the porosity of the porous material, ξf is a dimensionless frequency pa-
rameter (ξf = ρ0f/R, where f is the frequency and R the flow resistivity of the bulk
porous material), γ is the ratio of specific heats for air, Pr is the Prandtl number and
the tortuosity q2(ω) and shape factor s2(ω) are given by

q2 (ω) =

((
1 + a3ξ

a4

f

)(
1 + a5ξ

a6

f

)
− a1a7ξ

(a2+a8)
f

) (
ln (1− σ) + σ + σ2/2

)2

(ln (1− σ) + 1 + 2σ) ln (1− σ) + σ + 3σ2/2 + σ3/3
(2.141)

s2 (ω) =
q2 (ω)

2πξfq20

(
a1ξ

a2

f

(
1 + a5ξ

a6

f

)
+ a7ξ

a8

f

(
1 + a3ξ

a4

f

)) (2.142)

where ai are the Delany and Bazley’s [57] coefficients obtained experimentally for a
particular absorbent material. Regarding equations (2.139) and (2.140), it is worth
remarking that a transition value exists for ξf , denoted as ξf0 , below which q2(ω)
must be set equal to q20(ω), q0 being the steady flow tortuosity, in equations [103].

2.6.3 Additional considerations

I. Effect of the absorbent material on the acoustic impedance of the per-

forated duct

Perforated surfaces give, from a structural point of view, rigidity to the silencer and
support to the absorbent material. They also prevent the material from being swept
by the exhaust gases. From an acoustical point of view, the most significant effect of

E.M. Sánchez-Orgaz 43



2. Fundamentals: wave equation and acoustic characterization

the material in contact with the perforations is to increase the reactance, or imaginary
part, of the acoustic impedance of the perforated surface [36, 94].

Several studies have been carried out to determine the acoustic impedance of per-
forated elements in contact with porous materials in both the absence and presence
of mean flow. One of the main targets of these analytical works is to determine the
effect of absorbent materials on the perforated element impedance. Initially, Bolt
[34] focused his investigation on the variation of the reactance of perforated elements
in contact with the absorbent material. This author indicated that an increase in
the number of holes in contact with the absorbent material tends to improve the
absorption coefficient at low frequencies; on the other hand, at high frequencies the
opposite trend was observed. Ingard and Bolt [94] showed that the combination of
absorbent material and perforated elements is equivalent to a Helmholtz resonator.
Callaway and Ramer [36] and Ingard [93] increased the real part of the perforated
screen impedance leaving a free space between the surface and the absorbent material.

Some empirical works combine the acoustic properties of the perforated surfaces and
the absorbent materials to obtain the absorption coefficient. For example, Davern
[54] considered the effect of the porosity, perforated plate thickness, density of the
absorbent material, free space, and the contact between the absorbent material and
perforated surfaces on the absorption coefficient.

Additional semi-empirical studies are oriented to establish the characteristics of the
interaction between perforated surface-absorbent material, emphasizing the compu-
tation of the impedance of perforated surfaces. In this sense Kirby and Cummings
[102], as previously mentioned, developed a semi-empirical formulation for the compu-
tation of the acoustic impedance of perforated elements in contact with the absorbent
material, taking into account the presence of a grazing mean flow. It is worth not-
ing that orifice interaction effects were negligible in the tests reported by the authors
[102]. This model combined the empirical formulation proposed by Delany and Bazley
[57] for the characterization of absorbent materials with a microstructural theoretical
model [11] at low frequencies. These authors presented a semi-empirical predictive
model, combining the formulae for the perforated duct impedance in the absence of
a porous medium with the predicted bulk acoustic properties of the absorbent mate-
rial. This prediction method for the perforated duct impedance in the presence of a
porous medium is based on the heuristic assumption that the hydrodynamic effects
of grazing flow on the orifice resistance and end correction on the side of the orifice
facing the flow are unaltered by the presence of the porous medium, which has the
principal effect of changing the mass end correction on the side of the orifice facing
the porous material. For a single orifice with no porous backing and no mean flow

44 E.M. Sánchez-Orgaz



2.6. Absorbent materials

present, the normalized mass end correction is given by [102]

χ = 0.425k0dh (2.143)

dh being the hole diameter and k0 the air wavenumber.

The equivalent mass end correction when a porous material is present is obtained [94]
by substituting the properties of air for the properties of the porous medium, namely,

χm = 0.425ZmdhΓ̃/(ρ0c0) (2.144)

Note that the end correction is now complex, and has a resistive component. The
perforated duct impedance is given in terms of the empirically-predicted impedance
[102]

ξ̃p =
1

σ

(
ξ′p − 0.425k0dh +

0.425dhZmΓ̃

ρ0c0

)
(2.145)

ξ′p being the dimensionless impedance of an orifice in the absence of absorbent mate-
rial.

Selamet et al. [155] modified the expression of the perforated plate impedance pre-
sented by Sullivan and Crocker [171] in view of the work by Kirby and Cummings
[102] as

Z̃p = ρ0c0

(
6 · 10−3 + jk0

(
tp + 0.375

(
1 +

Zm

Z0

km
k0

)
dh

))

σ
(2.146)

Later, Denia et al. [66] also proposed an expression by modifying the expression
of the perforated duct of Sullivan and Crocker [171] to incorporate the effect of the
absorbent material

Z̃p = ρ0c0

(
6 · 10−3 + jk0

(
tp + 0.425

(
1 +

Zm

Z0

km
k0

)
dhF (σ)

))

σ
(2.147)

where F (σ) is the correction factor related to the acoustic interaction between holes.

The results obtained with both formulae (2.146) and (2.147) show good agreement
when compared with experimental results [66, 155].

II. Moving medium

The exhaust gases at the silencer inlet can induce a flow field in the absorbent material.
Although the corresponding flow velocities are usually small from a practical point of
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view, sometimes the acoustic behaviour of the material can be modified. Considering
that the absorbent material is initially homogeneous and has isotropic properties, a
non-uniform mean flow field can generate anisotropy and heterogeneities [138].

Although the knowledge about the acoustic behaviour of perforated surfaces in the
presence of grazing flow is still improvable, it is found that the magnitude of the
resistance increases in general with the mean flow Mach number, but the rate of the
decrease of resistance with frequency is nearly the same for a very low Mach number
condition. However, the decreasing trend of resistance for higher frequencies changes
at a certain frequency, at which the resistance is nearly zero. This special frequency
f0 is denominated critical frequency in resistance and is different for each flow velocity
condition. Reactance, however, increases with frequency and its magnitude generally
decreases as the flow Mach number increases [108]. Kirby and Cummings [102] studied
perforated plates subjected to grazing flow and backed by porous media, and obtained
expressions (2.118) and (2.119) considering the influence of the mean flow in the term
χp. In addition, expression (2.147) [66] can be applied for a mean flow case, which
leads to

Z̃p = ρ0c0

(
ξ′p + j0.425k0dh

(
ρm
ρ0

− 1

)
F (σ)

)

σ
(2.148)

ξ′p being the dimensionless impedance of an orifice in the absence of absorbent material
but including the presence of mean flow, whose resistive and reactive parts are given
by expressions (2.120) and (2.122).

As previously indicated, another relevant formulation of the acoustic impedance for
a perforated surface in the presence of mean flow was presented by Lee and Ih [108].
The resistive and reactive parts R0 and X0, are calculated by means of (2.123) and
(2.125), respectively. The final expression is given by

Z̃p = ρ0c0


ξ

′

p +

j0.425k0dh

(
ρm
ρ0

− 1

)
F (σ)

σ


 (2.149)

To characterize the perforated element in the presence of mean flow and absorbent
material, equation (2.149) will be used along the Thesis.
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2.7 Silencers

A silencer is, generally, a passive element, connected to a source of noise, whose
function is to attenuate the sound level to acceptable values in both the duct and
the surrounding environment. The acoustic response of the silencers depends on the
phenomena that produce the sound attenuation [26, 126]. Silencers can be divided
into two main groups: reactive and dissipative configurations [31, 126].

2.7.1 Reactive configurations

In reactive silencers the attenuation is mainly produced when a part of the incident
energy is reflected back to the source at the area changes and other geometrical
particularities producing a destructive wave interference [126, 142]. However, a simple
area change does not result in any loss of power in the course of transmission [126]. A
typical example is a simple expansion chamber, composed of an inlet tube, a central
chamber and an outlet duct, as can be observed in Figure 2.5. The energy dissipated
in this case is almost negligible.

Figure 2.5: Reactive silencer with a simple expansion chamber.
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2.7.2 Dissipative configurations

In dissipative silencers, the main attenuation phenomena (in addition to those asso-
ciated with the aforementioned geometric discontinuities) are produced by the uti-
lization of absorbent materials with a high specific surface (specifically in the form
of fibres or pores). The absorbent material dissipates the wave propagation into heat
[126] by the viscous boundary layer effect. In this case, the propagation of the acoustic
wave produces a linear relationship between pressure drop and velocity. Also, dissi-
pative characteristics can be obtained (although to a lower degree) by introducing
perforated ducts and plates that favour the dissipation of energy during the propaga-
tion of the acoustic wave in the perforations [102]. For the case of perforated ducts in
the presence of flow, the turbulent losses give an equivalent acoustic flow resistance
which will be proportional to the mean flow speed reflecting the quadratic pressure
drop. Figure 2.6 shows a scheme of a dissipative silencer.

Air

Absorbent material
Perforated duct

Figure 2.6: Perforated dissipative silencer with absorbent material.

In reality, all the reactive silencers produce some dissipation as a consequence of
the energy losses associated with any real fluid when it circulates within the ducts,
area changes, etc. In the same way, dissipative silencers have associated reactive
effects due to the presence of expansions and contractions. In the literature, it is
frequent to find the silencers containing perforated elements in the category of reactive
configurations. Anyway, the dissipation introduced by these components cannot be
negligible in certain configurations [8, 9, 64].

Hybrid silencers can also be included within configurations with dissipation, since they
combine the geometric and attenuation characteristics of resonators and dissipative
silencers, providing a combination of reactive and dissipative effects. Some works have

48 E.M. Sánchez-Orgaz



2.8. Sound attenuation in silencers

demonstrated the benefit of combining both types of behaviour in hybrid mufflers, i.e.,
reactive and dissipative effects for low and high frequencies respectively, which may
lead to a broadband attenuation performance including resonant peaks at particular
frequencies that can be pre-selected by the designer [59, 60, 66, 116].

2.8 Sound attenuation in silencers

The quantification of the sound attenuation in silencers requires the introduction of
some basic concepts related to the energy associated with an acoustic wave, together
with the definition of the suitable indicators of the noise reduction level. The de-
duction of the energy expressions involves the consideration of some thermodynamic
relationships [126] to obtain a number of useful equations in terms of the acoustic
fields considered here. As the presence of flow is relevant, its effect has to be included
in the equations.

2.8.1 Energetic considerations

A duct in which the acoustic wave propagates in the presence of mean flow with ve-
locity Umf is considered first. In general harmonic behaviour is assumed, the values
of interest being obtained from the temporal average along a period of the instanta-
neous acoustic fields. The acoustic intensity I associated with the wave, defined as
the energy that passes through the duct cross section by time unit and surface, is
given by [126]

I = 〈pu〉+ Umf

ρ0
〈pρ〉+ Umfρ0

〈
u2
〉
+ U2

mf 〈uρ〉 (2.150)

where 〈〉 indicates the temporal average, this equation being only valid for plane waves
and uniform mean flow. Now, using the expression (2.21), the density perturbation
can be removed from equation (2.150), resulting in

I = 〈pu〉+ M

ρ0c0

〈
p2
〉
+Mρ0c0

〈
u2
〉
+M2 〈pu〉 (2.151)

The acoustic power W can be obtained by simply integrating the intensity over the
cross section,

W =

∫

S

IdS =

∫

S

(
〈pu〉+ M

ρ0c0

〈
p2
〉
+Mρ0c0

〈
u2
〉
+M2 〈pu〉

)
dS (2.152)
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Considering harmonic behaviour of the waves results

Pejωt =
(
P+ + P−

)
ejωt =

(∣∣P+
∣∣ ejαp +

∣∣P−
∣∣ ejαr

)
ejωt (2.153)

Uejωt =
1

ρ0c0

(
P+ − P−

)
ejωt =

1

ρ0c0

(∣∣P+
∣∣ ejαp −

∣∣P−
∣∣ ejαr

)
ejωt (2.154)

and carrying out the temporal integration over a period T = 2π/ω, expression (2.152)
can now be written as

W =W (ω) =
S

2ρ0c0

(∣∣P+
∣∣2 (1 +M)

2 −
∣∣P−

∣∣2 (1−M)
2
)

(2.155)

In the previous expression the distinction between the power associated with the
progressive and the regressive wave can be clearly observed. In the absence of mean
flow, M = 0 is considered.

2.8.2 Sound attenuation parameters in silencers

One of the basic targets of acoustic modelling is to obtain the sound attenuation
produced by a device of the exhaust system, that can be measured in terms of one of
the following parameters:

• Insertion loss (IL): this parameter provides information about the acoustic
behaviour of a device (e.g. silencer or catalyst) coupled with an acoustic source
and a termination. Therefore, its value will be determined by the characteristics
of the whole system. It is defined as the difference in dB between the power
level measured at a point before and after inserting the device between the
measurement point and the noise source. Thus, if W1 is the acoustic power
without the device and W2 with the device inserted, the following expression
can be obtained [126]

IL = 10 log

(
W1

W2

)
(2.156)

• Transmission loss (TL): this is independent of the source and requires an ane-
choic termination at the downstream end. It is defined as difference between
the power level incident on the device and that transmitted downstream into
an anechoic termination. If P+

1 is the incident pressure and P+
2 the transmitted

one, the following expression is obtained in the absence of flow [126]

TL = 10 log

(
S1

∣∣P+
1

∣∣2

S2

∣∣P+
2

∣∣2

)
= 20 log

((
S1

S2

) 1
2
∣∣∣∣
P+
1

P+
2

∣∣∣∣

)
(2.157)
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• Level difference (LD): this is the difference in sound pressure levels between
two arbitrarily selected points in the exhaust pipe and the tail pipe. It does not
required an anechoic termination. If P1 is the pressure upstream and P2 is the
value downstream, it yields [126]

LD = 20 log

(∣∣∣∣
P1

P2

∣∣∣∣
)

(2.158)

In this Thesis the transmission loss is used as an acoustic characterization of the
silencers, since it does not involve the source and the radiation impedances, given
that it represents the difference between the incident and the transmitted acoustic
energy considering an anechoic termination. Thus, the fact that this parameter does
not depend on the termination is interesting when the objective is to obtain the
acoustic transmission behaviour of an element or a set of elements in isolation of the
terminations. Therefore, this parameter will be used from now on in this Thesis.

2.9 Applications

In this section, the transmission loss of reactive and dissipative silencers is computed
in order to show the basic sound attenuation characteristics. Both types of silencer
has been widely studied in the literature [46, 56, 65, 105, 126, 158]. Particularly, the
dissipative configuration have been profusely studied from a multidimensional point of
view in subsequent chapters. Since the characteristics of the behaviour are described
by means of the transfer matrix method, the assessment of the TL from the four poles
of a generic acoustic device is initially described. Thus, a matrix relating the variables
at the inlet and the outlet of the device (denoted by subscripts 1 and 2 respectively)
is considered. {

P1

U1

}
=

[
A B
C D

]{
P2

U2

}
(2.159)

According to equations (2.44) and (2.46), the following expressions are obtained

P1 = P+
1 + P−

1 (2.160)

U1 = U+
1 + U−

1 =
1

ρ0c0
(P+

1 − P−

1 ) (2.161)

and therefore

P+
1 =

P1 + ρ0c0U1

2
(2.162)
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Given an anechoic termination

P2 = P+
2 = ρ0c0U2 (2.163)

Using the TL definition given by expression (2.157), it is obtained that

TL = 20 log

((
S1

S2

) 1
2
∣∣∣∣
P1 + ρ0c0U1

2P2

∣∣∣∣

)
= 20 log

((
S1

S2

) 1
2
∣∣∣∣
P1 + ρ0c0U1

2ρ0c0U2

∣∣∣∣

)
(2.164)

and considering now equation (2.159), the TL can be written as

TL = 20 log



(
S1

S2

) 1
2

∣∣∣∣∣∣∣∣

A+
B

ρ0c0
+ ρ0c0C +D

2

∣∣∣∣∣∣∣∣


 (2.165)

A similar procedure can be followed considering the four poles that relate pressure
and mass flow, obtaining

TL = 20 log



(
S1

S2

) 1
2

∣∣∣∣∣∣∣∣

A+
S2B

c0
+
c0C

S1
+
S2D

S1

2

∣∣∣∣∣∣∣∣


 (2.166)

2.9.1 TL of a simple expansion chamber

A silencer similar to the one shown in Figure 2.5 is considered. This geometry consists
of an inlet duct, a central chamber and an outlet duct, whose lengths and cross
sectional areas are, respectively, L1, L2, L3, S1, S2 and S3,. The global transfer
matrix of the silencer, considering pressures and velocities, is obtained by multiplying
the matrices of the ducts and area changes, given by expressions (2.90) and (2.95)
respectively, which yields

{
P1

U1

}
=

[
A1 B1

C1 D1

]

1 0

0
S2

S1



[
A2 B2

C2 D2

]

1 0

0
S3

S2



[
A3 B3

C3 D3

]{
P3

U3

}
=

[
A B
C D

]{
P3

U3

}

(2.167)

Rearranging the previous expression and applying the TL definition given by equation
(2.165), results in

TL = 10 log

(
m2

4m1

(
1 +

m1

m2

)2

+
m2

4m1
(m2

1 − 1)

(
1− 1

m2
2

)
sin2(k0L2)

)
(2.168)

52 E.M. Sánchez-Orgaz



2.9. Applications

with m1 = S2/S1 y m2 = S2/S3. Obviously, the attenuation is zero for m1 = m2 = 1.

In order to illustrate the acoustic attenuation performance of this kind of silencer, the
configurations presented in Table 2.1 are considered. The silencers are composed of
pipes with a circular cross section, which can be defined by their radii and lengths.

Geometry R1 (m) R2 (m) R3 (m) L2 (m)

1 0.0268 0.0886 0.0268 0.3
2 0.0268 0.0886 0.0268 0.15
3 0.0268 0.0532 0.0268 0.15

Table 2.1: Dimensions of simple expansion chambers.

The results obtained are shown in Figure 2.7, where it can be observed that the
TL consists of a series of domes of attenuation with constant width and pass bands.
The maximum value of attenuation of the attenuation curves appear at frequencies
f = (2n + 1)c0/(4L2), n = 0, 1, 2, ... due to the existence of 2n + 1 quarter-waves
within the chamber. The troughs or pass bands are associated with a frequency f =
nc0/(2L2), n = 0, 1, 2, ..., which implies that n half-wavelengths appear inside the
silencer chamber. As the length increases, the number of attenuation domes is higher
in the frequency range under consideration. Regarding the maximum amplitude of
attenuation, this is proportional to the relation between the chamber and the duct
section, with the increasing area ratio leading to higher silencer attenuation.
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Figure 2.7: TL of a reactive silencer: , Geometry 1; , Geometry 2; ,

Geometry 3.
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2.9.2 TL of perforated dissipative silencer

A perforated dissipative silencer was previously depicted in Figure 2.6. The silencer is
composed of a central airway carrying mean flow and a surrounding chamber contain-
ing absorbent material. It is assumed that no mean flow exists within the chamber
(or, if present, its influence on the silencer attenuation is considered negligible), which
is consistent with the literature [100, 126, 170].

The following model is an extension of the matrix approach presented by Munjal [126],
including absorbent material within the chamber. Thus, considering that equations
of continuity (2.23) and dynamic equilibrium (2.25) can be expressed at any section
of the duct as [126]

Umf1

∂ρ1
∂z

+ ρ0
∂U1

∂z
+

4ρ0
d1

U = −jωρ1 (2.169)

ρ0

(
jωU1 + Umf1

∂U1

∂z

)
= −∂P1

∂z
(2.170)

At the chamber, the corresponding equations can be written as follows [177]

ρ̃
∂U2

∂z
− 4d1ρ̃2
d22 − d21

U = −jωρ̃2 (2.171)

jωρ̃U2 = −∂P2

∂z
(2.172)

d1 and d2 being the diameters of the duct and the chamber respectively, ρ0 and ρ̃ the
average values of the air and the material equivalent densities, Umf1 the mean flow
velocity, and U1, U2, ρ1, ρ̃2, P1, and P2 the acoustic perturbations. The pressure
condition over the perforated plate can be written as

U(z) =
P1(z)− P2(z)

Z̃p

(2.173)

where the impedance Z̃p has to be adapted to the presence of absorbent material, as
has been indicated in Section 2.6.3. In addition, a continuity condition is required.
In this case, a kinematic continuity condition is considered, where radial velocity is
the same at each side of the orifices leading to U1 = −U2 [104].

Finally, supposing a perfect gas behaviour, the expression (2.20) can be considered to
eliminate the densities ρ1 and ρ̃2 and it is repeated here for clarity,

DPT

Dt
= c20

DρT
Dt

(2.174)
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where ρT and PT are the total density and pressure. In the same way, the velocities
U1, U2 and U can be eliminated resulting in

∂2P1

∂z2
+

(
−M1

1−M2
1

(
j2k0 +

4ρ0c0

d1Z̃p

))
∂P1

∂z
+

(
1

1−M2
1

(
k20 −

4jk0ρ0c0

d1Z̃p

))
P1

+

(
M1

1−M2
1

(
4jρ0c0

d1Z̃p

))
∂P2

∂z
+

(
1

1−M2
1

(
4jk0ρ0c0

d1Z̃p

))
P2 = 0

(2.175)

(
4d1

d22 − d21

(
jk0ρ̃c0

Z̃p

))
P1 +

∂P 2
2

∂z2
+

(
k̃2 − 4d1

d22 − d21

(
jk0ρ̃c0

Z̃p

))
P2 = 0 (2.176)

The previous equations can be written in matrix form as follows

[
D2 + α1D + α2 α3D + α4

α5 D2 + α6

]{
P1

P2

}
=

{
0
0

}
(2.177)

where D = ∂/∂z. Thus, the coefficients are

α1 =
−M1

1−M2
1

(
j2k0 +

4ρ0c0

d1Z̃p

)
α2 =

1

1−M2
1

(
k20 −

4jk0ρ0c0

d1Z̃p

)

α3 =
M1

1−M2
1

(
k20 −

4ρ0c0

d1Z̃p

)
α4 =

1

1−M2
1

(
4jk0ρ0c0

d1Z̃p

)

α5 =
4d1

d22 − d21

(
jk0ρ̃c0

Z̃p

)
α6 = k̃2 − 4d1

d22 − d21

(
jk0ρ̃c0

Z̃p

)
(2.178)

k0 = ω/c0 and k̃ = ω/c̃ being the air and absorbent material wavenumbers respec-
tively. Now equation (2.177) is reordered, which yields





D2P1

D2P2

DP1

DP2





+




α1 α3 α2 α4

0 0 α5 α6

−1 0 0 0
0 −1 0 0








DP1

DP2

P1

P2





=





0
0
0
0





(2.179)

that can be written in general form as {P ′} = [A(z)]{P}. Then, starting from (2.179)
and computing the four pole matrix of the silencer, the acoustic attenuation can be
easily calculated. The general solution can be written as

{P} =
4∑

i=1

{ψ}iCie
βiz (2.180)
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where βi are the eigenvalues and {ψ} the eigenvectors associated with matrix −[A].

Then, normalizing the vectors, their first components have a unit value and the solu-
tion of equation (2.179) is

∂P1

∂z
=

4∑

i=1

ψ1,iCie
βiz =

4∑

i=1

Cie
βiz (2.181)

∂P2

∂z
=

4∑

i=1

ψ2,iCie
βiz (2.182)

P1 =

4∑

i=1

ψ3,iCie
βiz (2.183)

P2 =

4∑

i=1

ψ4,iCie
βiz (2.184)

while the velocity field can be written as [126]

U1 =

4∑

i=1

Kie
βiz (2.185)

where coefficients Ki can be obtained by substituting (2.181) and (2.185) in equation
(2.170), which yields

Ki = − Ci

ρ0(jω + Umf1βi)
(2.186)

On the other hand, the velocity in the chamber can be expressed as

U2 =
4∑

i=1

−ψ2,iCi

ρ̃jω
eβiz (2.187)

Now, multiplying equations (2.185) and (2.187) by the characteristic impedance of
air, yields

ρ0c0U1 =

4∑

i=1

− Ci

jk0 +M1βi)
eβiz (2.188)

ρ0c0U2 =

4∑

i=1

−ψ2,iCiρ0
jk0ρ̃

eβiz (2.189)

56 E.M. Sánchez-Orgaz



2.9. Applications

and expressions (2.183), (2.184), (2.188) and (2.189) can be written in compact form
as 




P1(z)
P2(z)

ρ0c0U1(z)
ρ0c0U2(z)





=
[
A(z)

]





C1

C2

C3

C4





(2.190)

where [A(z)] can be assessed from equations (2.183) and (2.182).

Then, considering that the axial velocity is zero at both sides of the chamber, i.e.
U2(0) = 0 and U2(L) = 0, the previous expression can be rewritten as





P1(0)
P2(0)

ρ0c0U1(0)
ρ0c0U2(0)





=
[
A(0)

] [
A(L)

]−1





P1(L)
P2(L)

ρ0c0U1(L)
ρ0c0U2(L)





=
[
MT

]





P1(L)
P2(L)

ρ0c0U1(L)
ρ0c0U2(L)





(2.191)

where the components of matrix [MT ] have been obtained as [A(0)][A(L)−1].

Once the boundary conditions are substituted in equation (2.191), the definition of
the transfer matrix provided by (2.159) is taken into account, giving

{
P1(0)
P2(0)

}
=

[
A B
C D

]{
P1(L)
P2(L)

}
(2.192)

the poles being

A =MT11 −
MT41
MT42

MT12 B = ρ0c0

(
MT13 −

MT43
MT42

MT12

)

C =
1

ρ0c0

(
MT31 −

MT41
MT42

MT32

)
D =MT33 −

MT43
MT42

MT32

(2.193)

where the terms MTij belong to the matrix defined in expression (2.191). Then, once
the poles of the transfer matrix are obtained, the TL corresponding to the perforated
dissipative silencer is obtained by substituting them into expression (2.165).

Some results are finally provided considering a geometry defined by the following
values: d1 = 0.0268 m, d2 = 0.0886 m and L = 0.3 m, while the main parameters
related to the perforated pipe and the absorbent material are tp = 0.001 m, dh =
0.0035 m, σ = 11% and R = 4896 rayl/m respectively. The impedance of the perfo-
rated duct is computed by means of the expression (2.149). In addition, the absorbent
material considered is Owens Corning texturized fibreglass, which can be characterized
by the wavenumber km and the complex impedance Zm, whose general expressions
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have been given in equations (2.136) and (2.135) respectively. Theses expressions are
particularized here for the Owens Corning texturized fibreglass as [155]

Zm = Z0

(
1 + 0.09534

(
fρ0
R

)−0.754

− j0.08504

(
fρ0
R

)−0.732
)

(2.194)

km = k0

(
1 + 0.16

(
fρ0
R

)−0.577

− j0.18897

(
fρ0
R

)−0.595
)

(2.195)

The mean flow effect on the TL is depicted in Figure 2.8 and two different trends
can be found. At low frequencies the attenuation is higher for low Mach numbers,
while at high frequencies the opposite tendency is found. It is also worth noting
that the introduction of a dissipative fibre increases the attenuation and eliminates
simultaneously the pass bands that appear in a reactive chamber (see Figure 2.7).
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Figure 2.8: TL of a dissipative silencer: , M = 0; , M = 0.1; , M = 0.2.

2.10 Limitations

The plane wave hypothesis supposes that the sound pressure is uniform across the
duct cross section [49]. This is valid if the axial dimension of the duct is large enough
compared to its transversal dimensions. Besides, the frequency has to be lower than
the first cut-on frequency, corresponding to the first non-planar pressure mode of the
duct. Multidimensional modes start to propagate when the frequency is over this
cut-on value and the plane wave hypothesis is no longer valid.
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On the other hand, the acoustic field is also multidimensional at geometric disconti-
nuities of silencers (as previously indicated, a silencer can be understood as several
ducts of different dimensions interconnected in a particular, suitable configuration),
even at frequencies below the cut-on frequencies, due to the appearance of evanescent
modes that are rapidly attenuated but clearly modify the acoustic behaviour of the
silencer [153].

Figure 2.9 shows the TL of an expansion chamber (whose geometry is defined as
Geometry 1 in Table 2.1) computed by means of the FEM and the plane wave model.
If both of them are compared, it can be observed that at low frequencies the results
obtained are quite similar. However, at high frequencies the discrepancies between
both methodologies are considerable due to the propagation of higher order modes.
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Figure 2.9: TL of a reactive silencer: , plane wave; , FEM.

2.11 Conclusions

In this chapter, the fundamental equations of the acoustic behaviour of a fluid and
their linear associated models have been introduced, considering certain hypotheses, in
order to simplify the mathematical approach. Besides, several matrix representations
commonly used in the literature have been presented. These representations have been
adapted and applied to certain elements belonging to silencers (ducts, area changes,
etc.) to quantify their acoustic attenuation. Also, a review of the literature for the
models that permit characterizing perforated elements in the presence of absorbent
materials has been carried out. These models are the basis of the approaches that
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will be presented in Section 3.2, where thermal-induced heterogeneities within the
silencer and non-uniform properties of the absorbent material are considered in order
to obtain more realistic and accurate results of acoustic behaviour. Also, a review of
models for microperforated silencers has been undertaken, since these configurations
are likely to be a good alternative to the traditional perforated dissipative silencers
in some practical applications, such as multichamber silencers (as will be shown, for
example, in Sections 4.7.3 and 4.7.4).

Some relevant silencer configurations have been presented, as well as the phenomena
that originate the acoustic attenuation and the parameters usually considered for its
assessment. The noise reduction in reactive and perforated dissipative geometries has
been evaluated by means of the transfer matrix representation.

Finally, the deficiencies related to the plane wave model have been shown. For re-
active and dissipative silencers, this model is likely to be no longer valid even at
low frequencies because multidimensional evanescent and propagating higher order
modes can appear, modifying the acoustic performance of the silencer. Therefore, a
multidimensional approach is required, which justifies the necessity for new models
including this phenomena. For this reason, the mathematical approaches presented
in this Thesis are based on 3D full FE formulations, as well as on other models that
consider a combination of a 2D FE formulation with the collocation point technique
or the mode-matching method to reduce the computational effort required by full 3D
FE calculations.
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Chapter 3

Extended models for absorbent

materials and sintered surfaces

Summary:

In this chapter, an extension of the existing absorbent material models is presented in
order to increase their accuracy, assuming more realistic working conditions. There-
fore, the models consider the variation of the propagation media properties due to the
heterogeneous bulk density of the absorbent material or to the presence of thermal
gradients. This fact affects the acoustic impedance of the perforated surface making it
also coordinate-dependent. Thus, the usual definition of acoustic impedance is mod-
ified to include this dependence. On the other hand, sintered surfaces are presented
as a potential alternative to the traditional configuration of a perforated dissipative
silencer. Sintered surfaces are characterized via experimental measurements and a
model for the acoustic impedance is also proposed according to the results obtained in
the laboratory. Finally, the attenuation of reactive and dissipative configurations is
quantified.
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3.1 Introduction

The acoustic behaviour of dissipative silencers strongly depends on the properties of
the absorbent material. In many design applications, it is necessary to predict accu-
rately their acoustic performance for a wide frequency range and general working con-
ditions. From a practical and computational point of view, it is easier for the silencer
designer to consider homogeneous materials. Nevertheless, this assumption is often
far from reality, since material properties can present significant spatial variations.
Therefore, it can be important to take the presence of heterogeneities into account
when modelling bulk reacting fibrous materials, as these variations are expected to
considerably affect the acoustic performance of the silencer [16, 160, 161]. Material
heterogeneity can be due to the fact that, within the silencer, the mean flow fields
are non-uniform [138], and considerable thermal gradients can appear [71, 98, 178] as
a result of the uneven filling process of the chamber [16, 160, 161]. Thus, the prop-
erties of the propagation media vary from one point to another within the silencer,
which notably affects the acoustic behaviour of the silencer. Usually, a bulk reacting
fibrous material can be characterized by means of its wavenumber and characteristic
impedance [57, 108]. In this chapter, the definition of these two properties are ana-
lyzed in detail when: (1) The bulk density of the absorbent material is heterogeneous;
(2) Thermal gradients exist within the silencer. In addition, the possible laws for the
density and temperature field variations proposed are detailed.

On the other hand, the use of nearly constant impedance surfaces, as sintered screens,
is proposed since they permit the considerable reduction in the sound emissions, in
the mid and high frequency range [64]. Following the principles of microperforated si-
lencers (see Section 2.5.2), this alternative can be useful in some practical applications
to avoid the potentially harmful effects of some fibres on human health (additional
considerations related to the weight and cost of the silencer are also interesting, but
beyond the scope of the current investigation).

3.2 Models for the absorbent material with

variable properties

In this section, two models of absorbent material including heterogeneous properties
are described. The first model considers the variation of the properties due to a
heterogeneous bulk density of the absorbent material, whereas the second takes into
account the influence of the temperature gradients on the different propagation media
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properties. In addition, the influence of the heterogeneous properties on the acoustic
impedance of a perforated surface is also described.

3.2.1 Absorbent material with heterogeneous bulk density

As previously indicated, the presence of heterogeneities can produce significant spatial
variations of material properties. These heterogeneities can be caused by an uneven
filling of the chamber; for example, when the fibre is rolled around the central duct
or it is pushed into the chamber. Selamet et al. [160] studied a dissipative silencer
containing two concentric annular layers of absorbent material with different airflow
resistivities in the absence of mean flow. In this work, a 2D analytical approach
was used to compute the wavenumbers and transversal pressure modes in the central
airway and chamber. Finally, the transmission loss was obtained through the appli-
cation of the mode-matching technique by considering the continuity conditions of
the acoustic pressure and axial velocity at the geometrical discontinuities. A good
agreement was found between the results derived from this method and FE calcu-
lations. In a later work from the same authors [161], the acoustic effect of voids
inside the silencer, modelled by means of axially staggering filled/empty segments
in the outer chamber, was studied by considering a similar approach to the previ-
ous reference [160]. In this case, the method provided good correlation with both
experimental measurements and FE calculations. Antebas et al. [16, 17] presented
a pressure-based FE approach to compute the transmission loss of perforated dissi-
pative silencers including a continuously-varying bulk density distribution. In these
investigations, a linear function was proposed to model the axial variation of the
bulk density, leading to heterogeneous material properties such as the flow resistivity,
equivalent complex density and speed of sound. Some numerical issues were found
at very low frequencies in the presence of a moving propagation medium [17]. On
the other hand, anisotropy is likely to appear for silencers manufactured in such a
way that the fibres are aligned in a specific direction or when a strongly directional
mean flow exists within the absorbent material. Peat and Rathi [138] presented an
FE approach to model the acoustic behaviour of dissipative silencers with anisotropic
and heterogeneous properties caused by an induced flow, even if the material is ini-
tially isotropic and homogeneous. Despite being usual to place a perforated surface
to protect the fibre and reduce the static pressure losses, it was not considered in this
study.

Heterogeneities can also be caused by the soot particles contained in the exhaust gases
from the engine [7]. From a modelling point of view, this can lead to a variable material
resistivity, and therefore to a coordinate-dependent equivalent density and speed of
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sound [10, 16, 17]. The presence of a perforated screen [123, 171] has an impact on the
silencer performance, and the fibrous backing material has a considerable effect on the
acoustic impedance of the perforations [102, 107]. Therefore, material heterogeneities
are expected to produce spatial variations of the perforated duct impedance. Sullivan
and Crocker studied the acoustic behaviour of a perforated surface in the absence of
absorbent material [171]. Kirby and Cummings [102] presented empirical formulae
for the acoustic impedance of a perforated surface with absorbent material located
close to one side of the plate in the presence of mean flow. More relevant information
describing the influence of the fibrous material on the acoustic performance of a
perforated surface can be found in the work of Lee et al. [107].

On the other hand, Pedrosa [139] carried out several experiments in order to study
the influence of the bulk density distribution and the filling process of the chamber
on the acoustic attenuation. This author rolled the dissipative fibre around a central
grid placed within a chamber and ensured the bulk density of the fibre was different
in each test, while keeping the mass constant. The quantity of fibre used was 0.469
kg, its resistivity being 5321 rayl/m at 25 ◦C. The transmission loss curves obtained
after the different filling processes of the chamber are shown in Figure 3.1.
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Figure 3.1: Transmission loss of a dissipative silencer with bulk density variation and

constant mass (0.469 kg): , FE computation; , , , , ,

Experimental measurements with different bulk density distributions.

The blue line represents the theoretical transmission loss with a homogeneous bulk
density, while the rest of the curves have been experimentally obtained after filling
the chamber manually several times with the same quantity of fibre. It can be ob-
served that at low frequencies the results of the different experiments are very similar.
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Nevertheless, at high frequencies the discrepancies are significant. Therefore, it can
be concluded that including the bulk density variations of the fibre in a dissipative
silencer model is important to achieve an accurate prediction of its acoustic perfor-
mance. The attenuation achieved by the silencer can be computed using numerical
techniques, since some authors [161] found good agreement between them and exper-
imental measurements. Further details of the numerical method (FEM) applied to
determine the acoustic behaviour of a silencer including bulk density variations will
be given in Section 4.5.1.

I. Variation of the properties

As mentioned in Section 2.6, an absorbent material can be characterized by its equiva-
lent acoustic properties, as the wavenumber km = ω/cm and characteristic impedance
Zm = ρmcm, both complex and coordinate-dependent [10, 57]. These properties are
usually uniform in the literature, since a homogeneous steady airflow resistivity R is
assumed [59, 158]. This means that the bulk density of the absorbent material also
has to be constant, since its relationship with the material resistivity is given by the
following expression [103]

R = A1ρ
A2

b (3.1)

where coefficients A1 and A2 depend on the material and can be obtained from a
curve fitting process following experimental data.

ρr4(Rch)

ρr3(Rd)

ρr2(Rch)

ρr1(Rd)

Absorbent material

Perforated duct

Z̃p(x, r)

ρb(x, r) = c0 + c1x+ c2r + c3xr

Air

x

r

Figure 3.2: Bulk density distribution of the absorbent material for an axisymmetric

silencer.

The bulk density is usually considered constant in the literature [57, 66, 102, 104,
107]. However, the heterogeneities that appear during the manufacturing process
of the silencer lead to spatial variations of the bulk density. As can be observed in
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3.2. Modelling of the absorbent material with variable properties

Figure 3.2, an axisymmetric silencer is considered for computational purposes and the
heterogeneous bulk density distribution can be approximated by a bilinear function
as ρb(x, r) = c0 + c1x + c2r + c3xr [149], where x and r are the axial and radial
coordinates respectively. With a view to obtaining the coefficients ci, the density
value in four points of the chamber is required. In this case, the distribution can be
computed from the values ρri , i = 1, 2, ..., 4 (see Figure 3.2).

This leads to heterogeneous resistivity of the absorbent material [16, 17, 160, 161],
which according to equation R = A1ρb(x)

A2 depends on the coordinates and therefore,
expressions (2.135) and (2.136) can be expressed as

Zm = Z0

(
1 + a5

(
fρ0
R(x)

)a6

− ja7

(
fρ0
R(x)

)a8
)

(3.2)

km = k0

(
1 + a3

(
fρ0
R(x)

)a4

− ja1

(
fρ0
R(x)

)a2
)

(3.3)

where Z0 = ρ0c0 is the characteristic impedance of the air and f is the frequency.

II. Acoustic impedance of the perforated surface

The impedance of the perforated plate is considerably affected by the absorbent ma-
terial [102]. Therefore, the heterogeneities presented by the fibre have to be included
in the acoustic model of the perforated surface to guarantee the accuracy of the com-
putations. Also, the impedance depends on the mean flow [108, 126]. As shown
previously, the perforated duct impedance is given by

Z̃p = ρ0c0


ξ

′

p +

j0.425k0dh

(
ρm(x)

ρ0
− 1

)
F (σ)

σ


 (3.4)

where ξ′p is the dimensionless impedance of the perforated surface considering the
influence of the mean flow without taking into account the absorbent material (for
further details see Section 2.6.3)

ξ′p =
Zp

ρ0c0
=
R0 + jX0

ρ0c0
(3.5)

In the computations carried out in the current investigation, the perforated duct is
parallel to the x axis and is then the only relevant coordinate.
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3. Extended models for absorbent materials and sintered surfaces

3.3 Absorbent material with thermal-induced

heterogeneity

The temperature distribution in the silencer is strongly related to a number of pa-
rameters, such as the geometrical configuration, thermal conductivities and convection
heat transfer coefficients determining the surface heat flux from the metallic housing
to the surrounding air. In addition, convection coefficients depend on numerous fluid
properties, flow conditions, vehicle speed and also the geometries of the surfaces in-
volved [90]. Engine load and speed are relevant parameters as well, and significant
temperature modifications can be found by running the engine at idle condition or
accelerating to a certain speed. In reference [71], a method is developed for estimating
the temperature profiles of the exhaust gases from the surface temperatures of the
exhaust piping. Concerning the silencer, the corresponding axial temperature gradi-
ent ∆Tax = Ti − To (Ti and To being the inlet and outlet temperatures, respectively)
associated with different vehicle models is shown to vary over a wide interval. Engines
running at idle and free accelerated conditions are considered. In this latter case, the
particular ranges presented in [71] at a speed of 2000 rpm are 40 ◦C ˜ 200 ◦C for
∆Tax, 240 ˜ 725 ◦C for Ti, and 200 ◦C ˜ 650 ◦C for To. Reference [73] shows the axial
temperature gradient along an exhaust system of a single-cylinder four-stroke engine.
A reactive silencer is presented whose temperature variation is ∆Tax = 200 ◦C ap-
proximately, with Ti = 510 ◦C and To = 315 ◦C. Transversal temperature variations
∆Trad can also be significant in exhaust silencers, and thermal gradients higher than
100 ◦C can be found in the literature [87], resulting in complex profiles of the relevant
acoustic properties. The presence of high temperature and strong thermal gradients
in dissipative silencers modifies their acoustic attenuation performance. Therefore, it
is important to consider them in order to assess the silencer attenuation [65].

3.3.1 Variation of the properties

The temperature distribution within the silencer, causative of the variation of the
properties of the different propagation media [65, 127, 167], is modelled according to
the silencer region under analysis. In this case, an axisymmetric configuration, as
shown in Figure 3.3, is considered for computational purposes:

• A constant temperature is assumed within the inlet and the outlet ducts due
to their small dimensions in comparison with the rest of the silencer. The
temperature values are defined as Ti and To respectively.
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3.3. Absorbent material with thermal-induced heterogeneity

• In the central perforated duct, a linear variation depending on the x coordinate
is assumed, while the radial variation of temperature is neglected because the
radius of the duct is much smaller than the outer radius of the chamber. Thus,
the gradient in the central duct can be written as

Td(x) = b0 + b1x (3.6)

b0 and b1 being the coefficients of the polynomial that defines the temperature
field.

• At the outer chamber with absorbent material, the temperature varies according
to the expression

Tch(x, r) = c0 + c1x+ c2r + c3xr + c4r
2 + c5xr

2 (3.7)

combining a linear variation along the axial direction and a quadratic law in the
radial coordinate, defined from the temperatures values Tri , i = 1, 2, ..., 6. Note
that this quadratic function is used to interpolate the approximate logarithmic
temperature distribution through a cylindrical domain [90].
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Tch(x, r) = c0 + c1x+ c2r + c3xr + c4r
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Ti ToTd(x) = b0 + b1x

x
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Figure 3.3: Temperature field within an axisymmetric silencer.

For a given temperature distribution, the density ρ0(x) and speed of sound c0(x) can
be easily evaluated at each integration point assuming the ideal gas law, as shown in
the work of Dokumaci [68], where the local dependence of these properties on the mean
flow velocity is not taken into account since the flow velocities under consideration
are relatively low.

On the other hand, the characteristic properties of the absorbent material depend on
the resistivity that spatially varies as a consequence of the existing thermal gradients.
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3. Extended models for absorbent materials and sintered surfaces

Consequently, the local resistivity can be calculated at each point of the dissipative
chamber as [65]

R(T (x)) = R(T0)
µ(T (x))

µ(T0)
(3.8)

µ being the dynamic viscosity of the air (whose reference value can be approximately
µ(T0) = 1.84 · 10−5 Pa·s for T0 = 25 ◦C). For a continuously varying temperature
field T (x), the viscosity µ(T (x)) can be computed by means of Sutherland’s equation
[152]

µ(T (x)) = 1.458 · 10−6 (273.15 + T (x))1.5

273.15 + T (x) + S
(3.9)

where the Sutherland’s constant S is a characteristic of the gas. The value considered
for air is S = 110.4 K.

However, as far as the temperature increases, expressions (3.8) and (3.9) lead to
an overestimation of the material resistivity when compared to Christie’s power law
[41, 180]

R(T (x)) = R(T0)

(
T (x) + 273.15

T0 + 273.15

)0.6

(3.10)

For example, an approximate deviation of 10% has been found at 500 ◦C. Williams et
al. [180] have recently provided further experimental validation to the use of equation
(3.10). These authors have shown that the data measured at different temperatures
collapse well onto Delany and Bazley curves if equation (3.10) is used for relating
temperature and resistivity, and therefore the 0.6 power law will be used hereafter.

Then, once the resistivity is obtained, the impedance and the wavenumber of the
absorbent material can be calculated by means of equations (3.2) and (3.3). Now,
the equivalent density and speed of sound computation at each integration point is
straightforward as they can be obtained as ρm = Zm/cm and cm = ω/km.

II. Perforated surface acoustic impedance

The dimensionless impedance of a perforated surface in the presence of a grazing
mean flow can be expressed as [108]

ξ′p(x) =
Zp(x)

ρ0(x)c0(x)
=
R0(x) + jX0(x)

ρ0(x)c0(x)
(3.11)

where the dependence on the coordinates has been explicitly indicated. Note that
the tilde has been intentionally omitted from Zp(x) to indicate that the effect of the
absorbent material is not included in the acoustic behaviour of the holes.
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3.4. Sintered surface model

This expression depends on R0 and X0, as defined in equations (2.123) and (2.125)
[108]. Nevertheless, it is worth remarking that the Mach number M(x) is now
coordinate-dependent due to the axial temperature gradient. So, the previous ex-
pressions based on the model of Lee and Ih (see Section 2.6.3) are redefined assuming
that they can be extended to situations where the Mach number varies with position,
giving

R0(x) = ρ0(x)c0(x)
a0 (1 + a1 |f − f0(x)|) (1 + a2M(x)) (1 + a3dh) (1 + a4tp)

σ
(3.12)

X0(x) = ρ0(x)c0(x)
b0 (1 + b1dh) (1 + b2tp) (1 + b3M(x)) (1 + b4f)

σ
(3.13)

The critical frequency can now be expressed as follows

f0(x) =
φ1(1 +M(x)φ2)

(1 + φ3dh)
(3.14)

If the effect of the absorbent material on the perforated surface is also included, Lee
and Ih’s model results in

Z̃p(x) = ρ0(x)c0(x)


ξ

′

p(x) +

j0.425k0(x)dh

(
ρm(x)

ρ0(x)
− 1

)
F (σ)

σ


 (3.15)

where, as in equation (3.4), the dependence on the coordinates has been considered
to model the presence of heterogeneities in the properties of the material, as well
as in the mean flow Mach number. The equation (3.15) simultaneously includes the
influence of the mean flow and the absorbent material on the acoustic impedance of
the perforated screen. It should be noted that x = x, since the perforated duct is
parallel to the x axis.

3.4 Sintered surface model

The sintered surfaces are presented as a potential alternative to the traditional config-
uration of perforated dissipative silencer that is commonly used in internal combustion
engines. In this section, the experimental methodology used to characterize sintered
surfaces is described. In the experiments carried out the mean flow has not been
taken into account. Most of the methods found in the bibliography characterize an
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3. Extended models for absorbent materials and sintered surfaces

absorbent material according to its characteristic impedance [107, 166, 173]. Never-
theless, these methods can be easily adapted to obtain the acoustic impedance of a
surface as will be shown later.

3.4.1 Material characterization

In particular one of the most common methods to acoustically characterize an ab-
sorbent material is the transfer matrix method [2, 166], which has been adapted in
the present work to characterize sintered surfaces. A scheme of the setup used to
obtain the acoustic impedance of the sintered samples is shown in Figure 3.4, while
the real setup can be observed in Figure 3.5.

A

B

C

D

Computer with :

−Data acquisition system

−Data generation system

Noise Source :

Loudspeaker

Microphone

conditioning

amplifier

Microphones

Anechoic termination

d

x2

x4

x3

x1

1 2 3 45 6

Figure 3.4: Scheme of the experimental setup for the characterization of material samples

by means of the transfer matrix method.

In this setup the impedance pipe is supplied with four microphones and a loudspeaker
(see Figure 3.4). The loudspeaker generates noise within the pipe that passes through
the sintered surface placed in the sample holder (see Figure 3.6) and continues towards
the outlet pipe.

Regarding the microphones, two are placed upstream and two downstream of the
samples, their function being to pick up the sound pressure data (P1, P2, P3, P4) at
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3.4. Sintered surface model

Figure 3.5: Picture of the experimental setup for the characterization of material samples

by means of the transfer matrix method.

Figure 3.6: Sample holder for the study of the sintered plates.

E.M. Sánchez-Orgaz 73



3. Extended models for absorbent materials and sintered surfaces

the corresponding microphones locations. The pressures can be written as

P1 = Ae−jk0x1 +Bejk0x1 (3.16)

P2 = Ae−jk0x2 +Bejk0x2 (3.17)

P3 = Ce−jk0x3 +Dejk0x3 (3.18)

P4 = Ce−jk0x4 +Dejk0x4 (3.19)

where k0 is the wavenumber of the air, x1, x2, x3 and x4 are the distances from each
microphone until the face of the sample, while d is the thickness of the sample under
study.

Then, solving the system composed of equations (3.16)-(3.19) yields

A =
j(P1e

jk0x2 − P2e
jk0x1)

2 sin(k0(x1 − x2))
(3.20)

B =
j(P2e

−jk0x1 − P1e
jk0x2)

2 sin(k0(x1 − x2))
(3.21)

C =
j(P3e

jk0x4 − P4e
jk0x3)

2 sin(k0(x3 − x4))
(3.22)

D =
j(P4e

−jk0x3 − P3e
jk0x4)

2 sin(k0(x3 − x4))
(3.23)

The transfer matrix between sections 5 and 6 can be expressed as

{
P
U

}

x=0

=

[
A56 B56

C56 D56

]{
P
U

}

x=d

(3.24)

Thus, the above expression of the pressure and velocity (3.24) can be obtained from
their progressive and regressive components

P |x=0 = A+B (3.25)

U |x=0 =
A−B

ρ0c0
(3.26)

P |x=d = Ce−jk0d +Dejk0d (3.27)

U |x=d =
Ce−jk0d −Dejk0d

ρ0c0
(3.28)
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3.4. Sintered surface model

where ρ0 is the density of the air and c0 is the speed of sound.

In the transfer matrix four unknowns appear, so two additional equations will be
required. To obtain those expressions there are two alternatives. The first one involves
carrying out a new test with, for example, a different outlet condition. A second
approach consists of assuming that the system is symmetric and reciprocal [166].
This assumption has been shown to provide good results for absorbent materials, and
the associated hypotheses are valid as long as the mean flow is not considered. In the
particular case of these surfaces, the performance of this second method is more than
enough to obtain an accurate estimation of the acoustic impedance. The conditions
of symmetry and reciprocity can be written as

A56 = D56 (3.29)

A56D56 −B56C56 = 1 (3.30)

The solution of the previous system (3.25)-(3.30) yields

A56 =
P |x=d U |x=d + P |x=0 U |x=0

P |x=0 U |x=d + P |x=d U |x=0

(3.31)

B56 =
P |2x=0 − P |2x=d

P |x=0 U |x=d + P |x=d U |x=0

(3.32)

C56 =
U |2x=0 − U |2x=d

P |x=0 U |x=d + P |x=d U |x=0

(3.33)

D56 =
P |x=d U |x=d + P |x=0 U |x=0

P |x=0 U |x=d + P |x=d U |x=0

(3.34)

For a homogeneous and isotropic material, the transfer matrix is given according to
its properties by

[
A56 B56

C56 D56

]
=




cos(kmd) jZm sin(kmd)
j sin(kmd)

Zm
cos(kmd)


 (3.35)

from where km and Zm can be obtained as

km =
arccosA56

d
(3.36)

Zm = ρmcm =

√
B56

C56
(3.37)
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3. Extended models for absorbent materials and sintered surfaces

It should be noted that for a surface, the transfer matrix (3.24) can be easily simplified,
since the thickness of the sample tends to zero, leading to the following expression

{
P
U

}

x=0

=

[
1 Zp

0 1

]{
P
U

}

x=d

(3.38)

Then, the acoustic impedance of the sintered surface can be obtained as

Zp =
Px=0 − Px=d

Ux=0
=
Px=0 − Px=d

Ux=d
(3.39)

as long as the sample is symmetric. Nevertheless, the experimentally determined
acoustic velocities Ux=0 and Ux=d at the sintered surface may not be exactly identical
in experiments. Therefore, according to Lee et al. [107], an average of the two
velocities can be used for the calculation of the sintered screen impedance as

Zp =
Px=0 − Px=d

Ux=0 + Ux=d

2

(3.40)

In order to reduce the errors due to the measurement system, the microphones have
to be calibrated previously. Seybert and Ross [162] suggested that the calibration
has to be carried out flushing the microphones in the same plane and placing them
at one end of the propagation duct, in such a way that they remain under the same
pressure wave from the excitation source. The dimensions of the propagation duct
permit considering plane wave propagation at the position where the microphones are
placed, and therefore, the corresponding pressure measurements should have the same
amplitude and phase offset. The discrepancies that appear between the collected data
can be used to achieve a relative calibration with respect to one of the microphones
arbitrarily chosen. In this case, the calibration is made with respect to microphone 1.

Thus, the transfer function between microphones 1 and 2, both excited by random
noise is [154]

H12(f) =

Nmean∑

p=1

S12(f)

S11(f)
(3.41)

S12(f) and S11(f) being the cross spectrum between microphones 1 and 2 and the
autospectrum of microphone 1 respectively, i.e. S12 = FFT (P2)FFT (P1) and S11 =
FFT (P1)FFT (P1), where P1 and P2 are the pressure measurements obtained by
microphones 1 and 2, FFT is the fast Fourier transform and Nmean is the number of
averaged measurements. H12(f) is complex in general, so the gain of the measures of
the microphones and the phase offset can be written as

|H12| (3.42)
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3.4. Sintered surface model

φ12(f) = arctan

(
Im[H12(f)]

Re[H12(f)]

)
(3.43)

The spectra obtained from the pressure time signals achieved during the material or
surface test can be corrected with the frequency response determined at the calibration
test by dividing the non-corrected measurements by H12. It is worth noting that
microphone 1 does not require any correction, since it is the reference microphone.

Microphones 3 and 4 are calibrated following a similar process to the one considered
for the calibration of microphone 2.

3.4.2 Sintered surface acoustic impedance

A metallic sintered material is obtained from compacted spherical powder and heated
to a high temperature (about 20% - 30% below the melting point of the mixture).
During this process, an atomic diffusion between the particles is produced and coales-
cence of the microspheres to the solid state appears, resulting in a chemical link. The
sintering process is carried out in continuous ovens, where the velocity and chemical
composition of the atmosphere are controlled. The temperatures are usually between
750 ◦C and 1300 ◦C depending on the material and the required characteristics. Nev-
ertheless, the samples characterized in the present Thesis have not been compacted
in order to obtain a more porous surface. In this case, the samples characterized at
the acoustic testing bench are circular plates manufactured with bronze (see Figure
3.7), their thickness being 0.001 m, 0.002 m and 0.003 m. Besides, several micro-
sphere sizes of the powder were characterized, the nomenclature being FB12, FB24,
FB40 and FB60, where the numerical code indicates the size of the pores among the
microspherical particles (see also Table 3.1).

Granularity Mean microsphere diameter (µm) Mean pore size (µm)

FB12 65 12
FB24 120 24
FB40 200 40
FB60 300 60

Table 3.1: Filtered normalized granularities of the bronze sintered plates.
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FB12 FB24

FB40 FB60

Figure 3.7: Bronze sintered plates of 0.002 m in thickness.

The estimation of the porosity has been carried out through the computation of the
bulk density of the plate, as

σ(%) = 100(1− ρb
ρsp

) (3.44)

the bulk density being

ρb =
m

V
=

m

πφ2

4
t

(3.45)

φ being the diameter of the plate, t its thickness and ρsp the specific density of
the base material. In this case, the base of the samples is a bronze 90/10 (CDA
C90700 - ASTM B505), with 90% copper and 10% tin, the specific density value
being ρsp = 8770 kg/m3.
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3.4. Sintered surface model

The plate thicknesses have been measured with a calliper, showing quite disperse
values, mainly for the thinner samples. This is due to the uneven geometry of the
plates produced by the material heterogeneity and the manufacturing process, which
contributes to the existence of uncertainty over the porosity value, this being high in
some cases, as can be observed in Table 3.2.

The relative error made when computing the bulk density of the sintered material eρb

has been obtained considering the propagation of uncertainty of the different variables
as

eρb
=

√(em
V

)2
+
(mev
V 2

)2
(3.46)

wherem is the mass, V is the volume, and em and ev are their respective uncertainties.
Therefore, the relative error on the porosity can be computed as

eσ =
eρb

ρsp
100 (3.47)

eσ being the uncertainty on the porosity.

Thickness (m) Granularity Porosity (%) Relative error (%)

0.001 FB12 33.38 5.0
0.001 FB24 41.94 2.7
0.001 FB40 46.24 0.9
0.001 FB60 49.79 2.0
0.002 FB12 32.19 2.5
0.002 FB24 36.95 1.3
0.002 FB40 41.06 1.7
0.002 FB60 43.36 0.8
0.003 FB12 31.76 2.6
0.003 FB24 34.63 2.0
0.003 FB40 39.48 0.9
0.003 FB60 40.34 2.1

Table 3.2: Porosity and relative error (%) of the bronze sintered plates.

Some images of the bronze plates taken with the microscope are shown in Figure
3.8, where the different sizes of the samples, as well as the necks joining the spheric
powder particles can be observed. The neck growth and densification of the particles
is provoked by atomic diffusion during the heating process (when the temperature
exceeds 1/2 of the melting point of the substance) [132].
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FB − 08 FB − 08 Mould

FB − 24 FB − 24 Mould

FB − 60 FB − 60 Mould

Figure 3.8: 500x microscope view of bronze sintered plates of 0.002 m in thickness. Top

layer on the left and bottom layer (mould) on the right: FB08, FB24 and FB60.
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Several tests have been carried out to determine the acoustic impedance of the sintered
plates, the results being depicted in Figures 3.9-3.12. In comparing them, it can be
observed that as the mean pore size decreases, the plate gradually behaves as a more
rigid acoustic element and the acoustic impedance increases. The sound reflections
are stronger, the measurements exhibit relevant irregularities and the acoustic trends
are far from being clear, as can be observed in Figures 3.9 and 3.10, where the
acoustic impedance of samples FB12 and FB24 are depicted, and therefore, their
application as perforated ducts in automotive silencers is not likely to be interesting.
The situation improves for larger pore size, as can be seen in Figures 3.11 and 3.12 for
samples FB40 and FB60. In these two cases, a more consistent and uniform acoustic
behaviour is found. The real part of the acoustic impedance Zp is relatively flat in
the frequency range under investigation, while the imaginary part increases slowly for
higher frequencies, its value being lower than the real one.

For a given thickness, the impedance increases as the sphere and pore size decrease
as can be deduced from Figures 3.13-3.15. In addition, if the design parameters are
combined in a proper way, samples with similar normalized acoustic impedance can
be obtained. Examples where the sphere size and thickness can be combined to obtain
(approximately) similar results are given in Figures 3.16 and 3.17. Finally, it is im-
portant to remark that all the samples present a common characteristic, as indicated
previously: all of them present a real part of the normalized acoustic impedance that
is nearly constant, whereas the imaginary part shows a certain dependence on the
frequency, its value being lower than the real one.

3.4.3 Sintered surface acoustic model

Sintered surfaces can be modelled by means of semi-phenomenological models as
demonstrated by Li et al. [109]. These authors presented an acoustical model of
sintered bronze material based on the work developed by Allard and Atalla [10] for
porous materials, where the absorbent medium was modelled as an equivalent fluid
characterized by its complex effective density ρm and complex bulk modulus Km.
As mentioned in Section 2.6.1, the wave propagation in the equivalent fluid depends
on several parameters such as porosity σ, tortuosity q and steady airflow resistivity
R. In addition, it also depends on microstructural properties such as the viscous
characteristic length Λ and thermal characteristic length Λ′. The first is the ratio of
the volume to the surface area in the pores, weighted by the square of the microscopic
velocity of a non-viscous liquid in the pores, while the second is the ratio of the pore
volume to the surface. It is obvious that the thermal characteristic length will be larger
or equal to the viscous characteristic length [86]. The sintered bronze is composed of
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Figure 3.9: Normalized acoustic impedance for plates FB12 and different thickness: ,

Re(Zp), t = 0.001 m; , Im(Zp), t = 0.001 m; , Re(Zp), t = 0.002 m; ,

Im(Zp), t = 0.002 m; , Re(Zp), t = 0.003 m; , Im(Zp), t = 3 mm.

0 500 1000 1500 2000 2500 3000
−5

0

5

10

15

Frequency (Hz)

Z
p

Figure 3.10: Normalized acoustic impedance for plates FB24 and different thickness:

, Re(Zp), t = 0.001 m; , Im(Zp), t = 0.001 m; , Re(Zp), t = 0.002 m;

, Im(Zp), t = 0.002 m; , Re(Zp), t = 0.003 m; , Im(Zp), t = 0.003 m.
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Figure 3.11: Normalized acoustic impedance for plates FB40 and different thickness:

, Re(Zp), t = 0.001 m; , Im(Zp), t = 0.001 m; , Re(Zp), t = 0.002 m;

, Im(Zp), t = 0.002 m; , Re(Zp), t = 0.003 m; , Im(Zp), t = 0.003 m.
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Figure 3.12: Normalized acoustic impedance for plates FB60 and different thickness:

, Re(Zp), t = 0.001 m; , Im(Zp), t = 0.001 m; , Re(Zp), t = 0.002 m;

, Im(Zp), t = 0.002 m; , Re(Zp), t = 0.003 m; , Im(Zp), t = 0.003 m.
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Figure 3.13: Normalized acoustic impedance for plates of 0.001 m in thickness: ,

Re(Zp), FB24; , Im(Zp), FB24; , Re(Zp), FB40; , Im(Zp), FB40; ,

Re(Zp), FB60; , Im(Zp), FB60.
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Figure 3.14: Normalized acoustic impedance for plates of 0.002 m in thickness: ,

Re(Z), FB40; , Im(Zp), FB40; , Re(Zp), FB60; , Im(Zp), FB60.
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Figure 3.15: Normalized acoustic impedance for plates of 0.003 m in thickness: ,

Re(Zp), FB40; , Im(Zp), FB40; , Re(Zp), FB60; , Im(Zp), FB60.
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Figure 3.16: Normalized acoustic impedance of FB24 and FB40 plates: , Re(Zp),

t = 0.001 m, FB24; , Im(Zp), t = 0.001 m, FB24; , Re(Zp), t = 0.003 m, FB40;

, Im(Zp), t = 0.003 m, FB40.
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Figure 3.17: Normalized acoustic impedance of FB40 and FB60 plates: , Re(Zp),

t = 0.002 m, FB40; , Im(Zp), t = 0.002 m, FB40; , Re(Zp), t = 0.003 m, FB60;

, Im(Zp), t = 0.003 m, FB60.

small particles and can be assumed to be a porous material having a rigid frame [109].
Once the complex density and bulk modulus are known, the characteristic impedance
Zm and wavenumber km of the sintered material can be obtained as

Zm =
√
Kmρm (3.48)

km = ω

√
ρm
Km

(3.49)

while the sound speed in the porous material can be written as

cm =
ω

km
=

√
Km

ρm
(3.50)

Open pores allow considerable sound dissipation via friction because of the significant
increase in air velocity when the air travels by the small channels connecting them [84].
The contribution of the small holes to the sound dissipation is much more significant
than that produced by viscous and thermal losses in the large pores [111].

Umnova et al. [175, 176] developed a cell-based model to assess the acoustic prop-
erties of packings of spheres. In a first approximation [175], these authors derived
expressions for the permeability, tortuosity and characteristic length in terms of the
dynamic drag. In a second work [176], Umnova et al. obtained a new relationship
between the complex compressibility with a high volume of spheres by combining a
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cell model with a coupled phase approach; through its combination with an analyti-
cal expression for complex density inferred a model for the prediction of bulk density
characteristics. As an alternative and in the same work, the previous model was
combined and a semi-empirical approach for the frequency dependence of dynamic
density and its extension to the frequency dependence of dynamic compressibility for
granular materials was proposed. These works [175, 176] were validated by comparing
the theoretical results with experimentally measured data of sintered bronze spheres
and fused glass beds, obtaining good agreement.

In the present Thesis a model based on the works of Umnova et al. [175, 176] and
Li et al. [109] is presented. According to Umnova et al., complex density can be
evaluated as

ρm = ρ0q


1 +

−jµσ
ωρ0c0q

√

1 +
ωρ04q2k2p
−jµΛ2σ2


 (3.51)

ρ0 and c0 being the air density and speed of sound, µ the dynamic viscosity, σ the
porosity, q the tortuosity, kp the steady state thermal permeability and Λ the viscous
characteristic length. Tortuosity can be defined as

q = 1 +
1− σ

2σ
(3.52)

while permeability is

kp =
µ

R
(3.53)

where R is the flow resistivity given by

R =
9µ(1− σ)

2Rpartσ
=

5(1−Θ)

5− 9 3
√
Θ+ 5Θ−Θ2

(3.54)

and finally Λ can be written as

Λ =
4(1−Θ)σqRpart

9(1−Θ)
(3.55)

where Rpart is the particle radius and Θ the cell parameter radius, which can be
estimated as follows

Θ =
3(1− σ)

π
√
2

(3.56)

On the other hand, the complex bulk modulus can be estimated as [109]

Km =
γP0

γ − γ − 1

1 +
8µ

jωρ0PrΛ2

√

1 +
jωρ0PrΛ

′2

16µ

(3.57)
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where γ is the specific heat capacity ratio, P0 the atmospheric pressure, Pr the Prandtl
number (Pr = 0.71), ω the angular frequency, while, as indicated previously, Λ′ is
the characteristic thermal dimension and can be defined, according to Umnova et al.
[176], as

Λ′ =
3Λ

2q(1−Θ)
(3.58)

Once all these parameters are known, the sintered material is fully characterized and
the acoustic impedance of the sintered surface can be modelled as

Zp = jωρmt
1

σ
(3.59)

t being the thickness of the perforated plate.

As an example, some values of the model parameters are provided in Table 3.3 with
a view to having an order of magnitude.

q κp (m2) R (rayl/m) Λ (m) Θ Λ′ (m)

1.7395 9.3638 · 10−11 1.9244 · 105 4.6823 · 10−5 0.4028 6.7616 · 10−5

Table 3.3: Some values of the sintered model parameters for the FB60 plate of 0.001 m in

thickness.

In order to validate the model, a comparison of the theoretical values of the sin-
tered surface impedance with those obtained through experimentally measured data
is carried out in Figures 3.18 and 3.19.

The results predict a nearly constant real part of the sintered plate impedance, show-
ing the same trend observed in the acoustic measurements. However, some discrep-
ancies appear between the curves obtained theoretically and experimentally, except
for the 3 mm plate, where good agreement can be observed. The differences found
between both sets of results can probably be due, among others, to the uncertainty
in the dimensional measurements of the sintered plate, which causes an error when
obtaining the porosity of the samples. Regarding the imaginary part, the theoretical
and experimental results show the same tendency, since both increase with frequency,
but the agreement is improvable. Again, it can be observed that some differences
appear between the model and the curves experimentally obtained, except for the
thickest plate, for which the agreement is good up to 2000 Hz. It is worth noting
that the reactance of this kind of perforated screen is usually smaller than the real
part of the acoustic impedance [20]. From now on, the attenuation computations of
silencers incorporating sintered surfaces will consider only the resistive component of
the impedance for simplicity.
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Figure 3.18: Real part of the normalized acoustic impedance for FB40 and FB60 plates

and different thickness: , Re(Zp), FB60, t = 1 mm, theoretical; , Re(Zp), FB60,

t = 1 mm, experimental; , Re(Zp), FB40, t = 2 mm, theoretical; , Re(Zp),

FB40, t = 2 mm, experimental; , Re(Zp), FB40, t = 3 mm, theoretical; ,

Re(Zp), FB40, t = 3 mm, experimental.
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Figure 3.19: Imaginary part of the normalized acoustic impedance for FB40 and FB60

plates and different thickness: , Im(Zp), FB60, t = 1 mm, theoretical; , Im(Zp),

FB60, t = 1 mm, experimental; , Im(Zp), FB40, t = 2 mm, theoretical; ,

Im(Zp), FB40, t = 2 mm, experimental; , Im(Zp), FB40, t = 3 mm, theoretical;

, Im(Zp), FB40, t = 3 mm, experimental.
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3.5 Applications

In this section, the models developed are applied to several geometries of circular
cross section to study their acoustic attenuation. First, a traditional configuration
of perforated dissipative silencer with variable properties (density and temperature)
is considered and, in addition, an alternative configuration of sintered silencer is
presented. In the latter configuration the central sintered duct acts, in any way,
as a kind of perforated duct, with a nearly constant acoustic impedance. All the
transmission loss computations have been carried out by means of the FEM. More
details of the formulation used will be given in Chapter 4. Thus, the results presented
here have to be considered as a brief introduction to those that will be presented later.

3.5.1 Perforated dissipative silencers

Here, the acoustic attenuation of perforated dissipative silencers with variable proper-
ties is studied. The geometric dimensions of the configuration under study are shown
in Table 3.4 and the characteristics that define the perforated duct are σ = 0.2, dh =
0.0035 m and tp = 0.001 m. The fibre considered in both cases is Owens-Corning
texturized fibreglass [155], whose resistivity is R = 4896 rayl/m for a density of value
ρ = 100 kg/m3.

Air

Absorbent material

Perforated duct
x

r

Li Lch Lo

Ri Ro

Rch

Figure 3.20: Geometry under study.
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Geometry Li/Lo (m) Ri/Ro (m) Lch (m) Rch (m)

1 0.1 0.0268 0.3 0.091875
2 0.1 0.0268 0.3 0.05
3 0.1 0.0268 0.5 0.091875

Table 3.4: Geometry under study: L, length; R, radius; i, inlet section; o, outlet section;

ch, chamber.

I. Variable density distribution

Several density distributions are considered in order to obtain the attenuation achieved
by the silencer in the absence of mean flow. In this case all the computations have
been carried out considering configuration 2 and the density distributions are defined
in Table 3.5 (see also Figure 3.2 for more details). Cases 1, 2 and 3 are uniform, while
4 is variable. It is worth noting that the density value corresponding to case 2 is the
same as the average density of distribution 4.

Case ρr1(Rd) ρr2(Rch) ρr3(Rd) ρr4(Rch) Ravg

1 100 100 100 100 4896
2 200 200 200 200 17378
3 300 300 300 300 36461
4 300 300 100 100 18476

Table 3.5: Density distributions (kg/m3) under study and average resistivity (rayl/m).

From the results depicted in Figure 3.21 it can be deduced that, as density increases,
the transmission loss achieved is higher in general, except some frequency bands
associated with attenuation peaks. This is due to the low resistivity of the fibre,
which is increased with the filling density. Besides, it can be observed that as density
increases the peak of maximum attenuation is shifted to lower frequency values. A
possible explanation for the highest attenuation value achieved with distribution 2
could be found in the appearance of a resonance. On the other hand, when the density
is variable the results obtained are between those obtained with uniform density
distributions. Thus, considering only the average value of the density distribution, the
attenuation would be overestimated. Therefore, the variations of density considerably
affect the attenuation of the silencer and have to be considered in the computations.
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Figure 3.21: Transmission loss of a dissipative silencer with different filling density

distributions of absorbent material: , case 1; , case 2; , case 3; , case 4.

II. Variable temperature field

The configuration studied in this section is the first of those shown in Table 3.4. The
temperatures used to compute the corresponding fields, following the scheme of Figure
3.3, are shown in Table 3.6. Also, an extra computation at 25 ◦C has been included
for illustrative purposes. To study the temperature effect, the attenuation achieved
by the silencer subjected to a simple axially-varying thermal field has been computed
and compared with two uniform fields, whose temperature values are equal to those
at the inlet and outlet sections. The presence of mean flow has been neglected in all
the computations.

Case Tr1
◦C Tr2

◦C Tr3
◦C Tr4

◦C Tr5
◦C Tr6

◦C

1 25 25 25 25 25 25
2 300 300 300 300 300 300
3 500 500 500 500 500 500
4 500 500 500 300 300 300

Table 3.6: Temperature fields under study.

The results obtained for the different computations are depicted in figure 3.22. It can
be observed that, as the temperature increases, the attenuation achieved is higher.
This can be due to the low resistivity of this fibre, since it increases with the tem-
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perature. This effect happens above all at high frequencies, where the performance
of the silencer shows bigger differences in the transmission loss (at low frequencies
no significant changes in the transmission loss appear). It should be noted that high
temperatures notably affect the acoustic behaviour of the silencer, and therefore they
should be included as a design parameter in the computations. Besides, as could
be expected, the axial temperature gradient affects the transmission loss, that lies
between the lines related to fields 2 and 3 (minimum and maximum temperatures of
field 4 respectively).
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Figure 3.22: Transmission loss of a dissipative silencer at different temperatures: ,

case 1; ; , case 2; , case 3; , case 4.

3.5.2 Silencers incorporating sintered ducts

In this section, the configuration under study is composed of a sintered central duct
surrounded by a chamber. The sintered duct is modelled by means of its acoustic
impedance. In this particular case, the value of the impedance is considered constant
and equal to the characteristic impedance of air. The configurations of the silencer
under study are geometries 1 and 3 of those shown in Table 3.4. Two extra compu-
tations have been carried out for comparison purposes considering geometry 1. The
first one has been carried out taking into account a reactive silencer and the second
a perforated dissipative silencer with Owens-Corning texturized fibreglass. The char-
acteristics of the perforated duct are σ = 0.2, dh = 0.0035 m and tp = 0.001 m. A
comparison of the attenuation performance achieved by these configurations is shown
in Figure 3.23, where the silencer with a sintered duct shows a similar behaviour to
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the reactive silencer with domes and pass bands, but its attenuation is higher in the
whole frequency range. Another important characteristic is that the transmission loss
increases with the frequency. On the other hand, when compared to the dissipative
configuration, it can be observed that at very low frequencies the attenuation achieved
by the silencer with a sintered duct is higher. Anyway, in this particular comparison
the dissipative silencer exhibits the best acoustic performance. As it will be shown
later in Chapter 4, silencers incorporating sintered surfaces strongly improve their
sound attenuation if multichamber configurations are considered [8].

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Frequency (Hz)

T
L
(d
B
)

Figure 3.23: Transmission loss comparison of silencer incorporating a central sintered duct

with other configurations: , sintered silencer; , reactive silencer; , perforated

dissipative silencer.

Two sintered silencers with different chamber lengths have been considered to analyse
the influence of this parameter on the attenuation. The results obtained are depicted
in Figure 3.24. It can be observed that as the chamber length increases, the number
of domes increases and the troughs are shifted to lower frequencies [157]. It is also
remarkable that at high frequencies the transmission loss is higher.
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Figure 3.24: Transmission loss of silencer with a central sintered duct: , L = 0.3 m;

, L = 0.5 m.

3.6 Conclusions

In this chapter, a number of models have been presented to include the presence of
thermal gradients, as well as bulk density heterogeneities of the absorbent material,
in the computation of silencer attenuation performance. Mathematical laws for these
variations have been presented and the effects of these spatial heterogeneities have
been included in the perforated duct impedance model through the material resistiv-
ity. Some results have been provided, which show that not considering the variations
of the temperature and filling density variations, in the computations of the attenua-
tion supposes a lack of accuracy in the predictions. Therefore, they should be included
to obtain more realistic and accurate models.

Sintered materials have been experimentally characterized showing a nearly constant
impedance (mainly the most important part, i.e., the real one). In addition, a the-
oretical model of the sintered surface impedance has been presented and compared
with the experimental results, showing a good agreement in some cases of practical
interest. Finally, the attenuation achieved by silencers incorporating sintered ducts
has been compared to other configurations, such as a reactive geometry and a per-
forated dissipative silencer, showing that for some particular applications the former
can be a potential alternative. In this sense, further results confirming this idea will
be presented in the next chapter. In addition, another possible advantage of sintered
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configurations when compared to dissipative devices is related to the reduction of the
silencer weight as well as the pollution associated with the fibres.
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Chapter 4

Advanced numerical techniques

for the acoustic modelling of

dissipative silencers

Summary:

In this chapter, the FEM is applied to the acoustic modelling of silencers with ab-
sorbent material considering several formulations: (1) A 3D pressure-based approach;
(2) A 3D velocity potential-based technique; (3) A hybrid method combining ap-
proaches (1) and (2). The most relevant steps of the method for the three formulations,
such as the weighted residual method and the matrix formulation of its integral form,
are detailed. The wave propagation modelling is included within the absorbent ma-
terials. Also, the coupling between the outer chamber of the silencer and the central
airway by means of plates and perforated ducts is considered in the presence of mean
flow. In addition, non-homogeneous propagation media are taken into account in the
hybrid formulation (variable bulk density of the absorbent material and thermal gra-
dients within the silencer). Finally, the FEM is applied to different configurations of
interest to study the influence on the TL, on the one hand, of the bulk density vari-
ations of the dissipative fibre and on the other hand, of the high temperatures within
the silencer and their associated gradients. The main objective of the numerical tools
proposed in this chapter is to correct and complete the deficiencies and gaps found
in the available commercial programs, since they do not permit the consideration of
variable temperature fields or density distributions within the absorbent materials in
the presence of mean flow.
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4.1 Introduction

The FEM is a numerical tool capable of tackling many problems in engineering, with-
out the usual limitations of the analytical techniques regarding complex geometries,
non-uniform properties or complex boundary conditions. The main drawback of this
method, however, is its high computational cost.

Due to the limitations of the plane wave method (see Section 2.10) application of the
FEM is carried out to study the acoustic behaviour of silencers. In this Thesis, the
FEM is fundamentally used to compute sound attenuation of silencers under more
realistic working conditions. Nevertheless, it is also used as a validation tool of some
methodologies that will be presented later (see Chapter 5).

The first application of the FEM was carried out for the computation of structures
[186], and was later extended to acoustic applications by Gladwell et al. [77–79] and
Craggs [44, 45]. The first works with FEs were limited to the solution of the Helmholtz
wave equation in a non-moving medium and without considering the dissipative phe-
nomena. Young and Crocker [184, 185] applied the FEM to the study of silencers
without a perforated duct in the absence of mean flow. Later, Craggs [46] considered
the inclusion of the dissipative phenomena in a variational-based approach, and solved
it by means of the FEM. The same author considered the existence of a locally react-
ing absorbent material when considering an acoustic impedance boundary condition
without taking into account the presence of mean flow [47], this approach being valid
only for small thicknesses.

The convective effect produced by the mean flow was studied by several authors.
Sigman et al. [163] and Abrahamson [3] included the mean flow in the models, con-
sidering the velocity potential as a variable. The advantage of this formulation is
based on the fact that including the gradients of the mean flow field is quite easy
when compared to pressure formulation, since solving the problem requires only one
variable. Astley and Eversman [19] carried out the analysis of non-uniform ducts
with mean flow using a pressure and velocity formulation and a simplified mean flow
field. Ross [145] presented the application of the FEM for the study of silencers with
perforated regions. However, this author only included the mean flow effect on the
impedance, neglecting the convective effect. Peat [136] applied this method to a con-
vective wave equation formulated in terms of velocity potential and obtained the four
poles of a duct.

On the other hand, it is worth noting that in the analysis of the acoustic behaviour
of silencers at high frequencies, the variation of the pressure field distribution is con-
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siderable over small regions and therefore, a refined FE mesh is required. This fact
supposes an increment of the degrees of freedom, which involves an important increase
of the computation time. Cummings [52] developed a variational method applying the
Rayleigh-Ritz formulation, which can be adapted to geometries with uniform cross
section for the fundamental mode. The point collocation technique was implemented
by Kirby [100, 105] and was also focused on geometries of arbitrary, but axially uni-
form, cross section combining a transversal eigenvalue problem (solved by means of
the FEM) and a modal scheme at discrete points of the geometric discontinuities. The
techniques presented by Cummings [52] and Kirby [100, 105] achieve enough accuracy
for an acoustic analysis till the mid frequency range.

The FEM is one of the most widely used techniques in silencer modelling, mainly
in geometries with a complex cross section. There are two possibilities for the FE
formulation, either starting from a differential formulation or from a variational prin-
ciple. In the first case, the FEM is considered as a weighted residual method, such
as the Galerkin approach, and in the second as a variational technique, such as the
Rayleigh-Ritz method.

Nevertheless, few works in the literature consider the influence of the heterogeneous
properties of the propagation media on the transmission loss computations of silencers
by means of numerical techniques. Peat and Rathi [138] studied the influence of the
absorbent material and the mean flow on the acoustic performance of a silencer,
assessing the steady flow field in the absorbent material induced by the mean flow
of the central duct. Selamet et al. [160] applied the FEM to validate an analytic
method based on a modal analysis to obtain the attenuation of dissipative expansion
chambers lined with two concentric layers of fibrous material. Antebas et al. [17]
applied a pressure FE formulation to obtain the transmission loss of a dissipative
silencer in the presence of mean flow. In these investigations, a linear function was
proposed to model the axial variation of the bulk density, leading to heterogeneous
material properties such as flow resistivity, equivalent complex density and speed of
sound [17]. Some numerical issues were found at very low frequencies in the presence
of a moving propagation medium, that will be later prevented by considering the
aforementioned combination of pressure and velocity potential. Wang et al. [178]
combined a segmentation procedure and the BEM to compute the transmission loss
of reactive expansion chambers with uniform mean flow and a linear temperature
gradient.

The aim of the current chapter is to obtain a suitable formulation that permits as-
sessing the acoustic performance of dissipative silencers in the presence of mean flow
under more realistic working conditions, such as the influence of the heterogeneous
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properties of the different propagation media, due for example to temperature gradi-
ents, thus extending the existing models of FE.

4.2 Application of the finite element method to the

convective wave equation

In this section, the FEM is applied to the convective wave equation. The results are
obtained considering the existence of mean flow, and are also valid for the non-flow
case by just omitting the terms associated with the velocity of the moving medium.
The weighted residual method in combination with the Galerkin approach will be
applied because of its generality. A domain without absorbent material is initially
considered. This will be included in Section 4.4.

4.2.1 Pressure formulation

A simple situation is considered first with the purpose of introducing the numerical
techniques. To achieve this goal, a generic silencer is shown in Figure 4.1. The
acoustic domain is denoted by Ω and its associated boundary by Γ.

Mean flow

Γ

Ω

x

y

z

Figure 4.1: Generic silencer.
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The sound propagation within the silencer is governed, in the presence of uniform
mean flow, by the following equation [140]

∇2p− 1

c20

D2p

Dt2
= 0 (4.1)

Now, considering harmonic waves, p = Pejωt, results in
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(4.2)

The mean flow velocity field ~Umf = Umf
~i + Vmf

~j +Wmf
~k is assumed to be known

and uniform. Also, as it will be shown later, the computations with perforated ducts
will consider the flow field parallel to the x-axis. Equation (4.2) is multiplied by a
weighting function Ψ and integrated over the problem domain Ω. As usual in this kind
of problem, Green’s theorem is applied, reducing the existing degree of derivation in
the unknown function leading to

∫

Ω

(∇Ψ)T [D]∇PdΩ +
2jω

c20

∫

Ω

Ψ~UT
fm∇PdΩ− k20

∫

Ω

ΨPdΩ−
∫

Γ

Ψ
∂P

∂n
~nT [D]~ndΓ = 0

(4.3)
where [D] is the matrix defined as

[
D
]
=




1−
U2
mf

c20
−UmfVmf

c20
−UmfWmf

c20

−VmfUmf

c20
1−

V 2
mf

c20
−VmfWmf

c20

−WmfUmf

c20
−WmfVmf

c20
1−

W 2
mf

c20




(4.4)

~n being the outward unit normal vector to the boundary Γ. If the domain is discretized
in Ne elements of volume Ωe and both P and Ψ present C0 continuity, equation (4.3)
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4.2. Application of the finite element method to the convective wave equation

can be rewritten as
Ne∑

e=1

∫

Ωe

(∇Ψ(e))T [D]∇P (e)dΩ +
2jω

c20

Ne∑

e=1

∫

Ωe

Ψ(e)~UT
fm∇PdΩ

− k20

Ne∑

e=1

∫

Ωe

Ψ(e)P (e)dΩ−
Ne∑

e=1

∫

Γ∩Γe

Ψ(e) ∂P
(e)

∂n
~nT [D]dΓ = 0

(4.5)

The FE nodal interpolation for an element e results in

P (e) = [N ]{P (e)} (4.6)

where [N ] is the vector of shape functions and {P (e)} is the vector that contains the
nodal values of the unknown function, this being the pressure. On the other hand,
using the Galerkin formulation, the weighting function can be expressed as follows

Ψ(e) = [N ]{Ψ(e)} (4.7)

Developing equation (4.5) and taking into account expressions (4.6) and (4.7) yields

Ne∑

e=1

{Ψ(e)}T
∫

Ωe

[B]T [D][B]dΩ{P (e)}+
Ne∑

e=1

{Ψ(e)}T
∫

Ωe

2ωj

c20
[N ]T ~UT

fm[B]dΩ{P (e)}

−
Ne∑

e=1

{Ψ(e)}T
∫

Ωe

k20[N ]T [N ]dΩ{P (e)} −
Ne∑

e=1

{Ψ(e)}T
∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT [D]~ndΓ = 0

(4.8)

[B] being the matrix of the shape function derivatives, expressed as

[
B
]
=




∂N1

∂x

∂N2

∂x
...

∂NNpe

∂x

∂N1

∂y

∂N2

∂y
...

∂NNpe

∂y

∂N1

∂z

∂N2

∂z
...

∂NNpe

∂z




(4.9)

where Npe is the number of nodes per element.

Expression (4.8) can be written in compact form as

Ne∑

e=1

{Ψ(e)}T [k(e)]{P (e)}+ jω

Ne∑

e=1

{Ψ(e)}T [c(e)]{P (e)}

− ω2
Ne∑

e=1

{Ψ(e)}T [m(e)]{P (e)} −
Ne∑

e=1

{Ψ(e)}T {f (e)} = 0

(4.10)
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where the following nomenclature has been introduced for element matrices

[k(e)] =

∫

Ωe

[B]T [D][B]dΩ (4.11)

[c(e)] =
2

c20

∫

Ωe

[N ]T ~UT
fm[B]dΩ (4.12)

[m(e)] =
1

c20

∫

Ωe

[N ]T [N ]dΩ (4.13)

[f (e)] =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT [D]~ndΓ (4.14)

Assembling the element matrices, the global matrices of the problem can be obtained
leading to the following system

{Ψ}T (([K] + jω[C]− ω2[M ]){P} − {F}) = {0} (4.15)

The previous equation is valid for any weighting function, yielding

([K] + jω[C]− ω2[M ]){P} = {F} (4.16)

Now, Dirichlet boundary conditions [138] have to be considered, which involves that
the pressure value is known in part of boundary Γ. These conditions can be easily
imposed in equation (4.16), considering that the value P = P̃ is prescribed in the
nodes belonging to the corresponding boundary.

Then, the pressure nodal values can be obtained solving the system of equations
represented by expression (4.16) together with the Dirichlet conditions. The acoustic
velocity can be obtained in any element e, once the pressure field is solved, by means
of the Euler equations (2.19). If there is no mean flow, it can be expressed as

~U (e) = − 1

jρ0ω
[B]{P (e)} (4.17)

However, in the presence of mean flow the procedure is more laborious. For example,
to obtain the velocity nodal values {U (e)} in the x-axis direction, the corresponding
expression is

− 1

ρ0

[
∂N1/∂x ∂N2/∂x ... ∂NNpe

/∂x
]
{P (e)} = (jω[N ]+ ~UT

mf [B]){U (e)} (4.18)
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4.2. Application of the finite element method to the convective wave equation

Thus, evaluating the previous expression at Npe points, a system of Npe equations
with the same number of unknowns is obtained, which permits the calculation of
{U (e)}. In general, the procedure is quite simple, since it is only necessary to know
the velocity at the inlet and the outlet sections to obtaining the TL or the transfer
matrix of the silencer. For practical applications related to automotive silencers, it
can be considered that in ducts containing those sections, the wave is plane at a
distance enough from the geometric discontinuities associated with contractions and
expansions. Therefore, knowing the pressure at two points of the duct, the velocity
can be computed by means of expressions (2.59) and (2.61) of Chapter 2.

I. Load vector

A vector {F} appears as a consequence of the existence of a pressure gradient in
a part of boundary Γ (Neumann condition) [138]. Therefore, the natural boundary
condition that results when {F} is not taken into account corresponds to a zero
normal velocity (rigid wall). Also, a normal velocity value of Ũ can be imposed at the
inlet and outlet sections of the silencer, although its consideration is not necessary
in a pressure formulation in the presence of mean flow. The implementation of this
condition is significantly simplified in the problems treated in the present Thesis, since
the inlet and the outlet sections of a silencer are usually plane and also perpendicular
to an axis of the reference system. Generally, it can be considered that the inlet and
outlet ducts are long enough and with a uniform cross section, which involves that
the mean flow velocity is parallel to the duct and therefore, in this particular case, to
the x axis. Thus, the velocity condition at the cross section can be written as

{f (e)} =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT [D]~ndΓ

=

∫

Γ∩Γe

[N ]T
∂P (e)

∂n





1
0
0





T 

1− U2

fm/c
2
0 0 0

0 1 0
0 0 1








1
0
0



 dΓ

= −ρ0(1−M2)

∫

Γ∩Γe

[N ]T
(
jωŨ (e) + Umf

∂[N ]

∂x
{Ũ (e)}

)
dΓ

(4.19)

Then, to integrate equation (4.19), the distribution Ũ (e) has to be evaluated. Al-
though, as indicated previously, this boundary condition is not usually considered.

E.M. Sánchez-Orgaz 105



4. Advanced numerical techniques for the acoustic modelling of dissipative silencers

II. Imposition of the impedance condition

If part of the silencer boundary can be characterized by means of an acoustic impedance
Z (for example, an anechoic termination or a locally reacting absorbent material),
then

Z =
P

U
(4.20)

U being the normal velocity to the boundary where the condition is applied. If the
section is perpendicular to the x axis, the normal derivative of the pressure and the
velocity can be related through the following expression

∂P

∂n
=
∂P

∂x
= −ρ0

(
jωU + Ufm

∂U

∂x

)
(4.21)

and substituting expression (4.20) into (4.21), results

∂P

∂n
= −ρ0

(
jω
P

Z
+
Ufm

Z

∂P

∂n

)
(4.22)

Then, solving for the normal derivative of pressure yields

∂P

∂n
= − ρ0jωP

Z + ρ0Ufm
(4.23)

and the load vector is

{f (e)} =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT [D]~ndΓ = (1−M2)

∫

Γ∩Γe

[N ]T
(
− ρ0jωP

Z + ρ0Ufm

)
dΓ

(4.24)

In order to compact the nomenclature, the following matrix is introduced

[c
(e)
Z ] = ρ0

1−M2

Z + ρ0Ufm

∫

Γ∩Γe

[N ]T [N ]dΓ (4.25)

Thus, the load vector can now be written as

{f (e)} = −jω[c(e)Z ]{P (e)} (4.26)

and the system of equations (4.16) yields

([K] + jω([C] + [CZ ])− ω2[M ]){P} = {F} (4.27)
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4.2. Application of the finite element method to the convective wave equation

For an anechoic termination of the silencer, the impedance is given by Z = ρ0c0, while
the matrix [c

(e)
Z ] can be expressed as

[c
(e)
Z ] =

1−M

c0

∫

Γ∩Γe

[N ]T [N ]dΓ (4.28)

III. Computation of the attenuation

Once the system of equations (4.16) is solved, the acoustic behaviour of the silencer
at the frequency range of interest can be immediately evaluated. The TL can be
computed by means of (2.157) considering an anechoic termination in the silencer
outlet. When the inlet and outlet sections are not equal and the Mach numbers are
different, the suitable modifications have to be done according to equation (2.156).

However, it is necessary to carry out two analyses to evaluate the poles of the transfer
matrix (see Section 2.4.1). In this case, expressions (2.74)-(2.77) have to be applied.
These are repeated here for convenience.

A =
P1

P2

∣∣∣∣
U2=0

B =
P1

U2

∣∣∣∣
P2=0

C =
U1

P2

∣∣∣∣
U2=0

D =
U1

U2

∣∣∣∣
P2=0

4.2.2 Velocity potential formulation

Equations (2.38) and (2.40) are deduced from the more general equation [43]

∇2φT − 1

c20

(
∂2φT
∂t2

+
∂((∇φT )T∇φT )

∂t
+

1

2
(∇φT )T∇((∇φT )T∇φT )

)
= 0 (4.29)

where φT is the total velocity potential function, which can be decomposed into a
time-independent potential associated with the mean flow φmf and a small acoustic
potential φ, satisfying

∂φmf

∂x
=Umf

∂φmf

∂y
= Vmf

∂φmf

∂z
=Wmf

∂φ

∂x
= u

∂φ

∂y
= v

∂φ

∂z
= w

(4.30)

Equation (4.29) can be linearized considering that φ << φmf and neglecting the
terms of less influence, related to products of acoustic velocities. This leads to the
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Laplace equation for the mean flow field

∇2φmf = 0 (4.31)

and to the convective wave equation valid for non-uniform mean flow (2.38)

∇2φ− 1

c20

D2φ

Dt2
= 0 (4.32)

Considering harmonic waves, i.e. φ = Φejωt, the latter equation can be rewritten as
(
1−

U2
mf

c20

)
∂2Φ

∂x2
+

(
1−

V 2
mf

c20

)
∂2Φ

∂y2
+

(
1−

W 2
mf

c20

)
∂2Φ

∂z2

− 2
UmfVmf

c20

∂2Φ

∂x∂y
− 2

UmfWmf

c20

∂2Φ

∂x∂z
− 2

VmfWmf

c20

∂2Φ

∂y∂z

−
(
Umf

∂Umf

∂x
+ Vmf

∂Umf

∂y
+Wmf

∂Umf

∂z

)
∂Φ

∂x

−
(
Umf

∂Vmf

∂x
+ Vmf

∂Vmf

∂y
+Wmf

∂Vmf

∂z

)
∂Φ

∂y

−
(
Umf

∂Wmf

∂x
+ Vmf

∂Wmf

∂y
+Wmf

∂Wmf

∂z

)
∂Φ

∂z

− 2jω
Umf

c20

∂Φ

∂x
− 2jω

Vmf

c20

∂Φ

∂y
− 2jω

Wmf

c20

∂Φ

∂z
+ k20Φ = 0

(4.33)

which can be solved once the mean flow velocity field is known. It is worth remarking
that this equation includes terms of the mean flow velocity field gradient, contrarily to
Coyette’s formulation [43], in which they were neglected. However, this simplification
does not seem completely justified because the same procedure could be followed with
a pressure formulation, which is not correct for a non-uniform mean flow field. In the
absence of the mean flow, the well-known Helmholtz equation is obtained

∇2Φ+ k20Φ = 0 (4.34)

I. Laplace equation

The mean flow velocity field can be evaluated by means of a formulation written in
terms of velocity potential through the Laplace equation (4.31). By applying the
weighted residuals method it yields

∫

Ω

Ψ∇2φmfdΩ = 0 (4.35)
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4.2. Application of the finite element method to the convective wave equation

Ψ being the weighting function and Ω the domain considered. Following an analogue
procedure to the pressure formulation case, Green’s theorem is applied leading to

−
∫

Ω

(∇Ψ)T∇φmfdΩ +

∫

Γ

Ψ(∇φmf )
T~ndΓ = 0 (4.36)

where Γ is the boundary of the domain under consideration and ~n is the outward
normal unit vector. Two different parts can be distinguished in this boundary, Γ1

and Γ2, in which the Dirichlet and Neumann conditions are respectively applied.
Thus, Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, and the weighting functions are only different from
zero in Γ2, where the Neumann condition is imposed as a velocity Ũmf normal to the
boundary. Consequently, expression (4.36) can be written as

−
∫

Ω

(∇Ψ)T∇φmfdΩ +

∫

Γ

ΨŨmfdΓ = 0 (4.37)

Now, discretizing the domain into elements and approximating the unknown function
to an element level by means of a nodal interpolation based on the shape functions
[N ], the potential for any element can be expressed as

φ
(e)
mf = [N ]{Φ(e)

mf} (4.38)

{Φ(e)
mf} being the vector of potential nodal values. Following the same approach, the

Galerkin formulation yields
Ψ

(e)
mf = [N ]{Ψ(e)

mf} (4.39)

Then, expression (4.37) can be written as the sum of the weighted residuals of the Ne

elements that compose the discretized domain

−
∫

Ω

(∇Ψ)T∇φmfdΩ +

∫

Γ

ΨŨmfdΓ

= −
Ne∑

e=1

∫

Ωe

(∇Ψ(e))T∇φ(e)mfdΩ +

Ne∑

e=1

∫

Γ2∩Γe

Ψ(e)Ũ
(e)
mfdΓ = 0

(4.40)

and considering expressions (4.38) and (4.39) results in

−
Ne∑

e=1

{Ψ(e)}T
(∫

Ωe

[B]T [B]dΩ

)
{Φ(e)}+

Ne∑

e=1

{Ψ(e)}T
(∫

Γ2∩Γe

[N ]T Ũ
(e)
mfdΓ

)
= 0

(4.41)

E.M. Sánchez-Orgaz 109



4. Advanced numerical techniques for the acoustic modelling of dissipative silencers

where [B] is the derivative matrix of the shape functions defined in Section 4.2.1. If
the following notation is introduced

[k(e)] =

∫

Ωe

[B]T [B]dΩ (4.42)

[f (e)] =

∫

Γ2∩Γe

[N ]T Ũ
(e)
mfdΓ (4.43)

equation (4.41) can be written as

Ne∑

e=1

{Ψ(e)}T [k(e)]{Φ(e)} −
Ne∑

e=1

{Ψ(e)}T [f (e)] = 0 (4.44)

Once the element vectors and matrices are expanded to the global dimensions of the
problem, this yields

{Ψ}T ([K]{Φmf} − {F}) = {0} (4.45)

The Dirichlet conditions Φ̃mf applied at the nodes corresponding to surface Γ1 can
be introduced by removing the linearly dependent rows of matrix [K], leading to the
following system of equations

[K]{Φmf} = {F} (4.46)

Finally, the velocity potential at the nodes can be obtained solving this system, the
velocity field being its gradient (4.30). However, the mean flow velocity field obtained
by solving the Laplace equation can be far from reality. For this reason, it is necessary
for the FE codes to permit importing the solution of the mean flow field computed
with a CFD program (e.g., ANSYS Fluent [13]) and solving the convective wave
equation considering this flow field.

II. Acoustic problem

Once the Laplace equation is solved and the mean flow velocity field is known, the
previous procedure can be applied to equation (4.33). In order to simplify the nomen-
clature, the following notation is introduced

[D] =



D11 D12 D13

D21 D22 D23

D31 D32 D33


 =




1− U2
mf/c

2
0 −UmfVmf/c

2
0 −UmfWmf/c

2
0

−VmfUmf/c
2
0 1− V 2

mf/c
2
0 −VmfWmf/c

2
0

−WmfUmf/c
2
0 −WmfWmf/c

2
0 1−W 2

mf/c
2
0




(4.47)
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[G] =



∂D11/∂x ∂D12/∂x ∂D13/∂x
∂D21/∂y ∂D22/∂y ∂D23/∂y
∂D31/∂z ∂D32/∂z ∂D33/∂z


 (4.48)

[DU ] =



∂Umf/∂x ∂Vmf/∂x ∂Wmf/∂x
∂Umf/∂y ∂Vmf/∂y ∂Wmf/∂y
∂Umf/∂z ∂Vmf/∂z ∂Wmf/∂z


 (4.49)

Now, multiplying equation (4.33) by a weighting function Ψ, integrating over the
domain Ω and applying the Green’s theorem yields

∫

Ω

(∇Ψ)T [D]∇ΦdΩ +

∫

Ω

Ψ





1
1
1





T

[G]∇ΦdΩ +

∫

Ω

Ψ~UT
mf [DU ]∇ΦdΩ

+
2jω

c20

∫

Ω

Ψ~UT
mf∇ΦdΩ− k20

∫

Ω

ΨΦdΩ−
∫

Γ

Ψ
∂Φ

∂n
~nT [D]~ndΓ = 0

(4.50)

Then, the integration domain can be discretized and, after taking into account inter-
polations similar to those given by equations (4.38) and (4.39), the previous expression
can be rewritten as

Ne∑

e=1

{Ψ(e)}T [k(e)]{Φ(e)}+ jω

Ne∑

e=1

{Ψ(e)}T [c(e)]{Φ(e)}

− ω2
Ne∑

e=1

{Ψ(e)}T [m(e)]{Φ(e)} −
Ne∑

e=1

{Ψ(e)}{f (e)} = 0

(4.51)

where the following nomenclature has been introduced

[k(e)] =

∫

Ωe

[B]T [D][B]dΩ +

∫

Ωe

[N ]T





1
1
1





T

[G][B]dΩ +

∫

Ωe

[N ]T ~UT
mf [DU ][B]dΩ

(4.52)

[c(e)] =
2

c20

∫

Ωe

[N ]T ~UT
mf [B]dΩ (4.53)

[m(e)] =
1

c20

∫

Ωe

[N ]T [N ]dΩ (4.54)

{f (e)} =

∫

Γ∩Γe

[N ]T Ũ (e)~nT [D]~ndΓ (4.55)
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Ũ (e) being the boundary condition of the acoustic velocity (derivative of the potential
normal to the surface). Expanding the matrices and vectors and assembling them,
the final system of equations is obtained

([K] + jω[C]− ω2[M ]) = {Φ} = {F} (4.56)

whose solution gives the nodal values of the acoustic velocity potential. Then, the
velocity of any element e can be calculated as

~U (e) = [B]{Φ(e)} (4.57)

and the pressure can be obtained, neglecting the product of acoustic velocities, as

P (e) = −ρ0
(
jω[N ]{Φ(e)}+ ~UT

mf [B]{Φ(e)}
)

(4.58)

III. Load vector

The load vector {F} can be obtained by means of the integration of equation (4.55)
enforcing a Neumann condition, or which is the same thing, a normal acoustic ve-
locity condition. This condition can be easily implemented, since in this Thesis it is
considered that the inlet and outlet sections of silencers are plane and perpendicu-
lar to an axis of the reference system. In addition, if it is considered that the inlet
and outlet ducts have a uniform section and are long enough, the mean flow velocity
can be assumed to be uniform and one-directional. For ducts whose inlet and outlet
sections, where the acoustic velocity continuity conditions are applied, are parallel to
the x axis, the load vector {f (e)} can be defined as follows

{f (e)} =

∫

Γ∩Γe

[N ]T Ũ (e)





1
0
0





T 

1− U2

mf/c
2
0 0 0

0 1 0
0 0 1








1
0
0



 dΓ

= (1−M2)

∫

Γ∩Γe

[N ]T Ũ (e)dΓ

(4.59)

The diameter of the inlet and outlet ducts is usually small enough to assume plane
wave conditions, leading to

{f (e)} = (1−M2)Ũ (e)

∫

Γ∩Γe

[N ]TdΓ (4.60)

If the previous hypotheses are not verified, the integral (4.55) has to be evaluated.
Finally, it is worth noting that the rigid wall condition (zero normal velocity) is the
natural condition of the problem and its implementation is not necessary.
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IV. Imposition of the pressure condition

One of the main drawbacks of the velocity potential approach is that the field of
interest in acoustics is usually the pressure. This makes the post-processing of the
results necessary by means of expression (4.58), which involves a lower accuracy in
the results. Besides, the application of the pressure condition is carried out through a
Robin condition [121], according to the potential function and its normal derivative,
which supposes that it is affected by a discretization error. Thus, a pressure value P̃
is applied to the boundary, starting from the following relationship

P = −ρ0
(
jωΦ+ ~UT

mf∇Φ
)

(4.61)

and assuming the previous hypotheses, in which at the inlet and outlet sections, the
acoustic velocity Ũ and mean flow velocity Ũmf are perpendicular to the surface,
yielding

P̃ = −ρ0
(
jωΦ+ Ũmf Ũ

)
(4.62)

Solving for Ũ gives

Ũ = − P̃

ρ0Ũmf

− jωΦ

Ũmf

(4.63)

Therefore, the load vector is

{f (e)} =

∫

Γ∩Γe

[N ]T Ũ (e)~nT [D]~ndΓ = (1−M2)

∫

Γ∩Γe

[N ]T

(
− P̃ (e)

ρ0Ũmf

− jωΦ(e)

Ũmf

)
dΓ

(4.64)
which can be expressed as

{f (e)} = −(1−M2)

∫

Γ∩Γe

[N ]T
P̃ (e)

ρ0Ũmf

dΓ

− (1−M2)

∫

Γ∩Γe

[N ]T
jωΦ(e)

Ũmf

dΓ = {f (e)P } − jω[c
(e)
P ]{Φ(e)}

(4.65)

where the following notation has been introduced

{f (e)P } = −1−M2

ρ0Ũmf

∫

Γ∩Γe

[N ]T P̃ (e)dΓ (4.66)

[c
(e)
P ] = −1−M2

Ũmf

∫

Γ∩Γe

[N ]T [N ]dΓ (4.67)
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In addition, the fact of imposing a condition of pressure generates, on the one hand
a load vector {f (e)P } similar to that obtained when imposing velocity conditions, and

on the other hand, a matrix [c
(e)
P ] that multiplies the nodal unknown vector and is

obtained by integrating over the boundary where the pressure condition is enforced.
Then, assembling the system yields

([K] + jω([C] + [CP ])− ω2[M ]){Φ} = {F}+ {FP } (4.68)

Finally, to transform the pressure condition into an equivalent normal velocity condi-
tion, the outward direction of the domain has to be the same as the positive direction
of the reference system. If this does not happen the sign of the equations should be
changed in expressions (4.66) and (4.67).

V. Imposition of the impedance condition

To impose an impedance condition (e.g. an anechoic termination) the procedure is
similar to that followed for pressure. Starting from the definition of impedance (4.20)
and combining it with expression (4.62), the following expression is obtained

Z =
−ρ0(jωΦ+ Ũmf Ũ)

Ũ
(4.69)

where the symbol ∼ denotes the values in the boundary. Thus,

Ũ = − ρ0jωΦ

Z + ρ0Ũmf

(4.70)

the load vector is

{f (e)} =

∫

Γ∩Γe

[N ]T Ũ (e)~nT [D]~ndΓ = (1−M2)

∫

Γ∩Γe

[N ]T

(
− ρ0jωΦ

(e)

Z + ρ0Ũmf

)
dΓ

(4.71)
and it can be written as

{f (e)} = −jω[c(e)Z ]{Φ(e)} (4.72)

where

[c
(e)
Z ] = ρ0

1−M2

Z + ρ0Ũmf

∫

Γ∩Γe

[N ]T [N ]dΓ (4.73)

Therefore, by imposing this boundary condition, a new matrix [c
(e)
Z ] appears. Expand-

ing the matrices and vectors to the global dimension of the problem and assembling
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again, the system (4.68) can be expressed as

([K] + jω([C] + [CP ] + [CZ ])− ω2[M ]){Φ} = {F}+ {FP } (4.74)

where a pressure boundary condition is included. For the particular case of an ane-
choic termination Z = ρ0c0, equation (4.73) is now

[c
(e)
Z ] =

1−M

c0

∫

Γ∩Γe

[N ]T [N ]dΓ (4.75)

this matrix being equal to that obtained through the pressure formulation.

VI. Computation of the attenuation

The acoustic attenuation of the silencer can be assessed through the transmission
loss expression (2.157). The parameters required to compute it are the pressure at
the inlet and outlet sections and the velocity at the inlet section, while assuming an
anechoic termination. The pressures and velocities can be calculated post-processing
the velocity potential solution by means of equations (4.57) and (4.58).

Another way of studying the acoustic behaviour of the silencer is through its four poles
and two different analyses have to be carried out (see Section 2.4.1). The definitions
of the poles are (2.74)-(2.77)

A =
P1

P2

∣∣∣∣
U2=0

B =
P1

U2

∣∣∣∣
P2=0

C =
U1

P2

∣∣∣∣
U2=0

D =
U1

U2

∣∣∣∣
P2=0

that can be rewritten as

A =
jωΦ1 +

∂Φmf1

∂n

∂Φ1

∂n
jωΦ2

∣∣∣∣∣∣∣
∂Φ2
∂n

=0

(4.76)

B =

−ρ0
(
jωΦ1 +

∂Φmf1

∂n

∂Φ1

∂n

)

Φ2

∂n

∣∣∣∣∣∣∣∣
Φ2=−

1
jω

∂Φmf2

∂n

∂Φ2
∂n

(4.77)

C = −
∂Φ1

∂n
ρ0jωΦ2

∣∣∣∣∣∣∣
∂Φ2
∂n

=0

(4.78)
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D =

∂Φ1

∂n
Φ2

∂n

∣∣∣∣∣∣∣
Φ2=−

1
jω

∂Φmf2

∂n

∂Φ2
∂n

(4.79)

where the subscripts 1 and 2 refer to the inlet and outlet sections respectively. The
normal derivatives of the potential function can be easily obtained, because in general
the inlet and outlet sections are perpendicular to an axis of the reference system and
therefore, the derivatives are the components of the velocity in the direction of this
axis. Thus, the TL can be calculated from expression (2.165), which depends on the
poles.

4.3 Coupled subdomains

The coupling between the central duct and the outer chamber is usually carried out,
in the automotive industry, by means of a perforated screen that is modelled through
its acoustic impedance Zp [120, 126].

4.3.1 Pressure formulation

I. Non-moving medium

A silencer containing a perforated surface that connects the central duct with the
chamber is shown in Figure 4.2. These two subdomains are denoted as Ω1 and Ω2,
while Γ1 and Γ2 are their associated boundaries and Γp is the perforated surface
placed between them. No mean flow is assumed in either of the subdomains.

The previous developments can be applied to each subdomain separately. Therefore,
the system of equations (4.16) can be written as

([K1] + jω[C1]− ω2[M1]){P1} = {F1}
([K2] + jω[C2]− ω2[M2]){P2} = {F2}

(4.80)

whereas the load vector at an element level will be

{f (e)} =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT [D]~ndΓ (4.81)
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Ω1

Ω2

Γ1

Γ2

Zp

x

y

z

Figure 4.2: Silencer with two subdomains coupled by means of a perforated screen.

which in the absence of mean flow can be rewritten as

{f (e)} =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
dΓ (4.82)

The acoustic impedance of a surface is defined as

Zp =
P1 − P2

U
(4.83)

where P1 and P2 are the acoustic pressures at each side of the perforated screen and U
the normal acoustic velocity. The latter is assumed continuous when no mean exists
[104]. At each side of the surface, pressure and normal velocity can be related by
means of Euler’s equation (2.19)

U1 =
−1

jρ0ω

∂P1

∂n
U2 =

−1

jρ0ω

∂P2

∂n
(4.84)

When the outward normal velocity is considered to be continuous, it is met that
U1 = −U2. Combining now equations (4.83) and (4.84), the following expressions are
obtained

U = U1 =
−1

jρ0ω

∂P1

∂n
=
P1 − P2

Zp
U = −U2 =

1

jρ0ω

∂P2

∂n
=
P1 − P2

Zp
(4.85)

Then, the load vectors can be evaluated as

{f (e)1 } =

∫

Γ∩Γe

[N ]T

(
−jρ0ω

P
(e)
1 − P

(e)
2

Zp

)
dΓ (4.86)
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{f (e)2 } =

∫

Γ∩Γe

[N ]T

(
jρ0ω

P
(e)
1 − P

(e)
2

Zp

)
dΓ (4.87)

Considering the FE nodal interpolation, yields

{f (e)1 } =
−jρ0ω
Zp

∫

Γ∩Γe

[N ]T
(
[N ]{P (e)

1 } − [N ]{P (e)
2 }

)
dΓ

= −jω[c(e)11Zp
]{P (e)

1 }+ jω[c
(e)
12Zp

]{P (e)
2 }

(4.88)

{f (e)2 } =
jρ0ω

Zp

∫

Γ∩Γe

[N ]T
(
[N ]{P (e)

1 } − [N ]{P (e)
2 }

)
dΓ

= jω[c
(e)
21Zp

]{P (e)
1 } − jω[c

(e)
22Zp

]{P (e)
2 }

(4.89)

As can be observed in expressions (4.88) and (4.89), the perforated surface provides
new FE matrices multiplying the degrees of freedom of the problem. Assembling the
matrices obtained at an element level and including the load vectors of the system,
the following expression is obtained

([
[K1] [0]
[0] [K2]

]
+ jω

[
[C1] + [C11Zp

] −[C12Zp
]

−[C21Zp
] [C2] + [C22Zp

]

]

−ω2

[
[M1] [0]
[0] [M2]

]){
{P1}
{P2}

}
=

{
{F1}
{F2}

} (4.90)

where the matrices generated by the coupling can be clearly observed. In compact
form, the previous equation can be written as

([K] + jω([C] + [CZp
])− ω2[M ]){P} = {F} (4.91)

II. Moving medium

A silencer with a perforated duct is depicted in Figure 4.3. In the central duct a
uniform mean flow is assumed, defined by its Mach number (M = Umf/c0) and
parallel to the perforated screen. The mean flow that penetrates in the chamber is
considered small, which permits neglecting the convective effect within the chamber.
However, the influence of the mean flow on the impedance Zp has to be considered
to obtain accurate results when computing the attenuation performance.

Applying the FEM to the duct and chamber governing equations (see Section 4.3.1),
the following expressions are obtained

([K1] + jω[C1]− ω2[M1]){P1} = {F1}
([K2] + jω[C2]− ω2[M2]){P2} = {F2}

(4.92)
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Ω1

Ω2

Γ1

Γ2

Zp

M
x

y

z

Figure 4.3: Silencer with a perforated pipe and mean flow.

As previously indicated, considering that the mean flow within the chamber is negli-
gible and also that there are no impedance boundary conditions associated with the
outer wall (i.e. a rigid wall is considered), leads to [C2] = [0]. The coupling between
the central airway and the chamber can be carried out through the load vectors {F1}
and {F2}. Then, at an element level and considering a perforated plate yields

{f (e)1 } =

∫

Γp∩Γe

[N ]T
∂P

(e)
1

∂n
~nT [D]~ndΓ =

∫

Γp∩Γe

[N ]T
∂P

(e)
1

∂n
dΓ (4.93)

{f (e)2 } =

∫

Γp∩Γe

[N ]T
∂P

(e)
2

∂n
dΓ (4.94)

where {f (e)1 } does not depend explicitly on M , since the flow is parallel to the duct.
In order to apply the condition associated with the perforated surface, several options
can be taken into account [23, 104]. The first one considers continuity of the normal
acoustic velocity (U1 = −U2) and the second continuity of the normal displacement
with respect to the perforated duct (ξ1 = −ξ2). The velocities are related to the
acoustic pressure by means of the Euler’s equation (2.19)

ρ0

(
jωU1 + Umf

∂U1

∂x

)
= −∂P1

∂n
(4.95)

jρ0ωU2 = −∂P2

∂n
(4.96)

whereas the displacement is related to the pressure through

ρ0

(
−ω2ξ1 + 2jωUmf

∂ξ1
∂x

+ U2
mf

∂2ξ1
∂x2

)
= −∂P1

∂n
(4.97)
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− ρ0ω
2ξ2 = −∂P2

∂n
(4.98)

According to Kirby and Denia [104], good agreement between prediction and ex-
periment was observed using continuity of displacement, whereas the TL tends to be
overpredicted when using continuity of velocity. Continuity of acoustic radial displace-
ment/velocity are commonly found in the literature, and it has been experimentally
demonstrated that a realistic condition is between displacement and velocity [22]. In
view of the good correlation between prediction and experiment observed by Elnady
et al. [72] using continuity of velocity and the numerical advantages of its imple-
mentation, this condition will be retained here for all the silencer transmission loss
calculations.

Also the continuity of the transversal component of the pressure gradient (∂P1/∂n =
−∂P2/∂n) can be considered, this being the term that appears directly in the load
vector. Nevertheless, the results given by this approach are not considered in the
present Thesis, because the predictions underestimate the mean flow effect (according
to some numerical computations not shown here).

Therefore, considering that normal velocity is continuous through the orifices of the
perforated duct, the load vectors related to the acoustic impedance (4.83) through
expressions (4.95) and (4.96) are

{f (e)1 } =

∫

Γp∩Γe

[N ]T


−jρ0ω

P
(e)
1 − P

(e)
2

Zp
− ρ0

Umf

Zp

∂
(
P

(e)
1 − P

(e)
2

)

∂x


 dΓ (4.99)

{f (e)2 } =

∫

Γp∩Γe

[N ]T

(
−jρ0ω

P
(e)
1 − P

(e)
2

Zp

)
dΓ (4.100)

Then, applying a FE interpolation, the following equations are obtained

{f (e)1 } = −jρ0ω
Zp

∫

Γp∩Γe

[N ]T
(
[N ]{P (e)

1 } − [N ]{P (e)
2 }

)
dΓ

− ρ0Umf

Zp

∫

Γp∩Γe

[N ]T
(
∂[N ]

∂x
{P (e)

1 } − ∂[N ]

∂x
{P (e)

2 }
)
dΓ

= −jω[c(e)11Zp
]{P (e)

1 }+ jω[c
(e)
12Zp

]{P (e)
2 } − [k

(e)
11Zp

]{P (e)
1 }+ [k

(e)
12Zp

]{P (e)
2 }
(4.101)

{f (e)2 } =
jρ0ω

Zp

∫

Γp∩Γe

[N ]T
(
[N ]{P (e)

1 } − [N ]{P (e)
2 }

)
dΓ

= jω[c
(e)
21Zp

]{P (e)
1 } − jω[c

(e)
22Zp

]{P (e)
2 }

(4.102)
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and the system of equations (4.92) results in
([

[K1] + [K11Zp
] −[K12Zp

]
[0] [K2]

]
+ jω

[
[C1] + [C11Zp

] −[C12Zp
]

−[C21Zp
] [C2] + [C22Zp

]

]

−ω2

[
[M1] [0]
[0] [M2]

]){
{P1}
{P2}

}
=

{
{F1}
{F2}

} (4.103)

4.3.2 Velocity potential formulation

I. Moving medium

As happened with the pressure formulation, once the FEM is applied to the problem
and considering the same subdomains as in Section 4.3.1, the following equations can
be written according to the velocity potential

([K1] + jω[C1]− ω2[M1]){Φ1} = {Φ1}
([K2] + jω[C2]− ω2[M2]){Φ2} = {Φ2}

(4.104)

where it is assumed that the suitable boundary conditions have been applied, and the
only thing left is to include the perforated duct influence. Thus, the load vectors can
be written from expression (4.55) as

{f (e)1 } =

∫

Γp∩Γe

[N ]T Ũ
(e)
1 dΓ (4.105)

{f (e)2 } =

∫

Γp∩Γe

[N ]T Ũ
(e)
2 dΓ (4.106)

Similarly to the pressure formulation case, several alternatives of continuity can be
considered. As indicated previously, the normal velocity continuity is selected in this
work as boundary condition for the perforated screen. Therefore, this hypothesis
meets U1 = −U2.

Therefore, following a similar approach to the pressure formulation detailed in Section
4.3.1, expressions (4.105) and (4.106) can be expressed as

{f (e)1 } =

∫

Γp∩Γe

[N ]T

(
P

(e)
1 − P

(e)
2

Zp

)
dΓ (4.107)

{f (e)2 } =

∫

Γp∩Γe

[N ]T

(
−P

(e)
1 − P

(e)
2

Zp

)
dΓ (4.108)
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and taking into account expression (4.61) that relates the pressure to the velocity
potential, yields

{f (e)1 } =

∫

Γp∩Γe

[N ]T

(
−jρ0ω

Φ
(e)
1 − Φ

(e)
2

Zp
− ρ0

Umf

Zp

∂Φ
(e)
1

∂x

)
dΓ (4.109)

{f (e)2 } =

∫

Γp∩Γe

[N ]T

(
jρ0ω

Φ
(e)
1 − Φ

(e)
2

Zp
+ ρ0

Umf

Zp

∂Φ
(e)
1

∂x

)
dΓ (4.110)

Now applying FE nodal interpolation gives

{f (e)1 } =
−jρ0ω
Zp

∫

Γp∩Γe

[N ]T
(
[N ]Φ

(e)
1 − [N ]Φ

(e)
2

)
dΓ

− ρ0
Zp

∫

Γp∩Γe

Umf [N ]T
∂[N ]

∂x
{Φ(e)

1 }dΓ

= −jω[c(e)11Zp
]{Φ(e)

1 }+ jω[c
(e)
12Zp

]{Φ(e)
2 } − [k

(e)
11Zp

]{Φ(e)
1 }

(4.111)

{f (e)2 } =
jρ0ω

Zp

∫

Γp∩Γe

[N ]T
(
[N ]Φ

(e)
1 − [N ]Φ

(e)
2

)
dΓ

+
ρ0
Zp

∫

Γp∩Γe

Umf [N ]T
∂[N ]

∂x
{Φ(e)

1 }dΓ

= jω[c
(e)
21Zp

]{Φ(e)
1 } − jω[c

(e)
22Zp

]{Φ(e)
2 }+ [k

(e)
21Zp

]{Φ(e)
1 }

(4.112)

Then, the following system can be obtained
([

[K1] + [K11Zp
] [0]

−[K21Zp
] [K2]

]
+ jω

[
[C1] + [C11Zp

] −[C12Zp
]

−[C21Zp
] [C2] + [C22Zp

]

]

−ω2

[
[M1] [0]
[0] [M2]

]){
{Φ1}
{Φ2}

}
=

{
{F1}
{F2}

} (4.113)

It can be observed that the stiffness submatrix [K21Zp
] changes of place when com-

pared to pressure formulation. It is important to point out that a potential formula-
tion permits considering a non-uniform mean flow field.

4.4 Configurations with absorbent material

The modelling of the sound wave propagation phenomena within an absorbent ma-
terial in the absence of mean flow is relatively simple [120, 156, 160], since the air
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properties (c0 and ρ0) can be replaced by the equivalent acoustic properties of the
fibrous material, as the speed of sound cm and the density ρm [10], so the procedure
is analogous to that previously described in Section 4.3 and will be presented here for
the sake of clarity.

When mean flow exists within the absorbent material, the computation procedure
is more complex [53, 138]. First, the mean flow field (non-uniform in general) has
to be determined. One of the main effects of the flow in the absorbent material is
to cause acoustic anisotropy and non-homogeneity, even if the dissipative material
itself is isotropic and homogeneous. Fortunately, for real applications there exists
a perforated screen separating the mean gas flow from the absorbing material. In
principle, the axial static pressure drop generated at the interface between the airway
and the absorbent material should induce a mean flow in the material itself. It
is unlikely, however, that these effects will be relevant when a perforated screen is
present, as the latter will significantly reduce frictional effects at the interface between
the airway and the material and so reduce the axial static pressure gradient over the
silencer section [104]. Thus, when this hypothesis can be assumed, the modelling of
the wave propagation in dissipative silencers by means of the FEM can be carried out
in a relatively easy way. In this case, as a first approximation, it can be supposed
that the wave propagation in the absorbent material is governed by

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
+ k2mP = 0 (4.114)

where harmonic behaviour has been assumed. In equation (4.114) km is the complex
wavenumber for the dissipative material, related to the equivalent speed of sound by
means of [10]

km =
ω

cm
(4.115)

Now, developing expression (4.114) similarly to the generic reactive silencer case (see
Section 4.2.1), the compact weighted residual equation can be written as

Ne∑

e=1

{Ψ(e)}T [k(e)m ]{P (e)} − ω2
Ne∑

e=1

{Ψ(e)}T [m(e)
m ]{P (e)} −

Ne∑

e=1

{Ψ(e)}T {f (e)m } = 0

(4.116)

where the following nomenclature has been introduced

[k(e)m ] =

∫

Ωe

[B]T [I][B]dΩ (4.117)

[m(e)
m ] =

1

c2m

∫

Ωe

[N ]T [N ]dΩ (4.118)
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[f (e)m ] =

∫

Γ∩Γe

[N ]T
∂P (e)

∂n
~nT~ndΓ (4.119)

Now, assembling the element matrices to obtain the global matrices, yields

([Km]− ω2[Mm]){P} = {Fm} (4.120)

Note that no damping matrix appears explicitly since the dissipative effects associated
with the absorbent material are included in the complex speed of sound [10].

I. Non-moving medium

A perforated dissipative silencer consisting of a perforated central duct surrounded by
a chamber with dissipative fibre is depicted in Figure 4.4. The volumes defining the
silencer and its boundary surfaces are denoted as Ωa, Ωm, Γa and Γm respectively,
whereas the perforated surface is denoted by Γp. In this section no mean flow is
considered in the subdomains.

Ωa

Ωm

Γm

Γa

Z̃p

x

y

z

Figure 4.4: Silencer with a perforated pipe and absorbent material.

The wave equation (4.1) is met in the central duct, in which the total time derivative
can be substituted by a partial derivative since ~Umf = 0. On the other hand, the sound
behaviour in the absorbent material is governed by expression (4.114). Therefore, the
equations corresponding to the duct (4.16) and the dissipative chamber (4.120) are

([Ka] + jω[Ca]− ω2[Ma]) = {P} = {Fa}
([Km] + jω[Cm]− ω2[Mm]) = {P} = {Fm}

(4.121)
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4.4. Configurations with absorbent material

Although no mean flow exists, a matrix [Ca] can appear due to the assumption of an
anechoic termination. Both subdomains are again coupled through the load vectors
{Fa} and {Fm}, which can be written at element level as

[f (e)a ] =

∫

Γp∩Γe

[N ]T
∂P

(e)
a

∂n
dΓ (4.122)

[f (e)m ] =

∫

Γp∩Γe

[N ]T
∂P

(e)
m

∂n
dΓ (4.123)

The normal velocity and the pressure at both sides of the perforated screen can be
related by means of Euler’s equation (2.19)

Ua =
−1

jρ0ω

∂Pa

∂n
Um =

−1

jρmω

∂Pm

∂n
(4.124)

ρm being the equivalent density of the absorbent material.

Following a similar procedure to the one presented at Section (4.3.1) and applying the
normal velocity continuity condition, the following integral equations are obtained

{f (e)a } =

∫

Γp∩Γe

[N ]T

(
−jρ0ω

P
(e)
a − P

(e)
m

Z̃p

)
dΓ (4.125)

{f (e)m } =

∫

Γp∩Γe

[N ]T

(
jρmω

P
(e)
a − P

(e)
m

Z̃p

)
dΓ (4.126)

Then, considering the FE nodal interpolation yields

{f (e)a } =
−jρ0ω
Z̃p

∫

Γ∩Γe

[N ]T
(
[N ]{P (e)

a } − [N ]{P (e)
m }

)
dΓ

= −jω[c(e)aaZp
]{P (e)

a }+ jω[c
(e)
amZp

]{P (e)
m }

(4.127)

{f (e)m } =
jρmω

Z̃p

∫

Γ∩Γe

[N ]T
(
[N ]{P (e)

a } − [N ]{P (e)
m }

)
dΓ

= jω[c
(e)
maZp

]{P (e)
a } − jω[c

(e)
mmZp

]{P (e)
m }

(4.128)

Therefore, at a global level of the problem, the system of equations is
([

[Ka] + [0] −[KamZp
]

[0] [Km]

]
+ jω

[
[Ca] + [CaaZp

] −[CamZp
]

−[CmaZp
] [CmmZp

]

]

−ω2

[
[Ma] [0]
[0] [Mm]

]){
{Pa}
{Pm}

}
=

{
{Fa}
{Fm}

} (4.129)
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and in compact form

([K] + jω([C] + [CZp
])− ω2[M ]){P} = {F} (4.130)

II. Moving medium

The silencer shown in Figure 4.5 is considered, which presents a uniform mean flow
field in the perforated duct. The flow is defined by means of its Mach number M =
Umf/c0 and is assumed to be parallel to the perforated surface. No mean flow exists
within the chamber [104], so the convective effect in the absorbent material can be
neglected.

Ωa

Ωm

Γm

Γa

Z̃p

M
x

y

z

Figure 4.5: Silencer with a perforated pipe and absorbent material.

If the FEM is applied to the governing equations of the acoustic behaviour within the
central duct and the chamber, the following expressions are obtained

([Ka] + jω([Ca])− ω2[Ma]){P} = {Fa}
([Km]− ω2[Mm]){P} = {Fm}

(4.131)

Now, by coupling the air and the absorbent material regions by means of the load
vectors {Fa} and {Fm} related to the perforated surface, this can be written at
element level as

[f (e)a ] =

∫

Γp∩Γe

[N ]T
∂P

(e)
a

∂n
~nT [D]~ndΓ =

∫

Γp∩Γe

[N ]T
∂P

(e)
a

∂n
dΓ (4.132)

[f (e)m ] =

∫

Γp∩Γe

[N ]T
∂P

(e)
m

∂n
dΓ (4.133)
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where {f (e)a } does not explicitly depend on the Mach number M because the flow is
parallel to the duct.

In this case, as in Section 4.3.1, several alternatives can be considered for applying
the condition associated with the perforated surface, such as the displacement or
normal velocity continuity. As previously mentioned, the normal velocity continuity
condition will be considered. Therefore, it is met that Ua = −Um. These velocities
are related through the Euler’s equation (2.19)

ρ0

(
jωUa + Umf

∂Ua

∂x

)
= −∂Pa

∂n
(4.134)

jρmωUm = −∂Pm

∂n
(4.135)

Then, the load vectors can be expressed as

{f (e)a } =
−jρ0ω
Z̃p

∫

Γp∩Γe

[N ]T
(
[N ]{P (e)

a } − [N ]{P (e)
m }

)
dΓ

− ρ0Umf

Z̃p

∫

Γp∩Γe

[N ]T
(
∂[N ]

∂x
{P (e)

a } − ∂[N ]

∂x
{P (e)

m }
)
dΓ

= −jω[c(e)aaZp
]{P (e)

a }+ jω[c
(e)
amZp

]{P (e)
m } − [k

(e)
aaZp

]{P (e)
a }+ jω[k

(e)
amZp

]{P (e)
m }

(4.136)

{f (e)m } =
jρmω

Z̃p

∫

Γ∩Γe

[N ]T
(
[N ]{P (e)

a } − [N ]{P (e)
m }

)
dΓ

= jω[c
(e)
maZp

]{P (e)
a } − jω[c

(e)
mmZp

]{P (e)
m }

(4.137)

Thus, the final system of equations is
([

[Ka] + [KaaZp
] −[KamZp

]
[0] [Km]

]
+ jω

[
[Ca] + [CaaZp

] −[CamZp
]

−[CmaZp
] [CmmZp

]

]

−ω2

[
[Ma] [0]
[0] [Mm]

]){
{Pa}
{Pm}

}
=

{
{Fa}
{Fm}

} (4.138)

4.5 Finite element hybrid formulation. Variable prop-

erties of the propagation media

The wave equation in its usual form is based on several assumptions such as the ho-
mogeneity of the propagation medium, the independence of the time and the absence
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of mean flow [140].

∇2p− 1

c2
∂2p

∂t2
= 0 (4.139)

Therefore, a more general form of the wave equation is required to study the acoustic
performance of a silencer under realistic working conditions. Thus, in order to extend
the existing models, a hybrid formulation has been developed to consider heteroge-
neous propagation media within a perforated dissipative silencer. These variations
can be due to its working conditions (for example, temperature variations or soot
particles [65, 150]), or to the manufacturing process (e.g. heterogeneities in the filling
density of the fibre [16, 17, 149]).

4.5.1 Variable bulk density

Generally, the bulk density of the fibre contained in the chamber is not homogeneous
due to the manufacturing process of perforated dissipative silencers [139, 155, 160].
The presence of material non-homogeneities can considerably affect the acoustic be-
haviour of the silencer [17, 149, 160, 161].

ρ0
c0

ρm(x, y, z)
cm(x, y, z)

Ωa

Ωm

Γm

Γa

Z̃p(x, y, z)

M
x

y

z

Figure 4.6: Silencer with varying density distribution.

A perforated dissipative silencer carrying mean flow can be observed in Figure 4.6.
The volumes of the different subdomains are denoted by Ωa and Ωm and represent
the air and absorbent material subregions respectively, whereas their boundaries are
denoted as Γa and Γm and the perforated surface is Γp. The distribution of the fibre
is represented through its bulk density (associated with a particular filling process
during manufacturing) that is coordinate-dependent, so ρb(x, y, z) = ρb(x). This
implies that the equivalent complex density and the equivalent speed of sound will
be affected resulting in ρm(x, y, z) = ρm(x) and cm(x, y, z) = cm(x), respectively,

128 E.M. Sánchez-Orgaz



4.5. Finite element hybrid formulation. Variable properties of the propagation media

leading to a spatially variable perforated duct acoustic impedance Z̃p(x) (see Section
3.2.1).

In the central airway carrying mean flow, the wave equation can be written in terms
of acoustic velocity potential (see also expression (2.35)) as [43, 149]

∆Φa −
1

c20
D2

tΦa = 0 (4.140)

∆ being the Laplacian operator, c0 the speed of sound in the air and Φa the acoustic
velocity potential. Besides, the acoustic velocity is related to the potential as

~Ua = {Ua Va Wa}T = ∇Φa (4.141)

and Dt is the total time derivative

Dt =
∂

∂t
+ UT

mf∇ (4.142)

where ~Umf = {Umf Vmf Wmf}T = {Umf 0 0}T , assuming that the mean flow is
parallel to the x axis and therefore, to the perforated central duct. The acoustic
pressure can be related to the velocity potential through the following expression (see
also equation 2.39)

Pa = −ρ0DtΦa (4.143)

Assuming harmonic sound waves yields

(
1−

U2
mf

c20

)
∂2Φa

∂x2
+
∂2Φa

∂y2
+
∂2Φa

∂z2
− 2jωUmf

c20

∂Φa

∂x
+
ω2

c20
Φa = 0 (4.144)

where ω is the angular frequency and j is the imaginary unit.

Regarding the dissipative chamber, the equivalent acoustic properties present a spatial
dependence due to the heterogeneity of the absorbent material bulk density. There-
fore, a suitable form of the wave equation, also assuming harmonic sound waves, is
required [16, 65, 128, 140] and can be expressed in terms of pressure as

∇
(

1

ρm
∇Pm

)
+

ω2

ρmc2m
Pm = 0 (4.145)

where the terms corresponding to the equivalent density and speed of sound explicitly
appear.
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Applying the FEM to equation (4.144) results in

Ne
a∑

e=1

(∫

Ωe

(∇[N ])T [D]∇[N ]dΩ +
2jωUmf

c20

∫

Ωe

[N ]T
∂[N ]

∂x
dΩ

−ω
2

c20

∫

Ωe

[N ]T [N ]dΩ

)
{Φa

e} =

Ne
a∑

e=1

(∫

Γe

[N ]T~nT [M ]∇ΦadΓ

) (4.146)

~n being the outward normal unit vector and [D] a matrix defined as

[D] =



1−

U2
mf

c20
0 0

0 1 0
0 0 1


 (4.147)

Expression (4.146) can be written in compact form as

([Ka] + jω[Ca]− ω2[Ma]{Φa} = {Fa} (4.148)

where the following nomenclature has been introduced

[Ka] =

Ne
a∑

e=1

(∫

Ωe

(∇[N ])T [D]∇[N ]dΩ

)
(4.149)

[Ma] =

Ne
a∑

e=1

(
1

c20

∫

Ωe

[N ]T [N ]dΩ

)
(4.150)

[Ca] =

Ne
a∑

e=1

(
2Umf

c20

∫

Ωe

[N ]T
∂[N ]

∂x
dΩ

)
(4.151)

{Fa} =

Ne
a∑

e=1

(∫

Γe

[N ]T~nT [D]∇ΦadΓ

)
(4.152)

The integral associated with the load term {Fa} is calculated only over the inlet/outlet
sections and the perforated duct. In addition, a rigid wall condition is assumed for
the rest of surfaces.
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If the FEM is now applied to expression (4.145), it yields

Ne
m∑

e=1

(∫

Ωe
m

1

ρm
(∇[N ])T∇[N ]dΩ− ω2

∫

Ωe
m

1

ρmcm
[N ]T [N ]dΩ

)
{Pm

e}

=

Ne
m∑

e=1

(∫

Γe
m

1

ρm
[N ]T

∂Pm

∂n
dΓ

) (4.153)

and compacting the nomenclature leads to

([Km]− ω2[Mm]){Pm} = {Fm} (4.154)

where the following matrices have been defined

[Km] =

Ne
m∑

e=1

(∫

Ωe
m

1

ρm
(∇[N ])T∇[N ]dΩ

)
(4.155)

[Mm] =

Ne
m∑

e=1

(∫

Ωe
m

1

ρmcm
[N ]T [N ]dΩ

)
(4.156)

{Fm} =

Ne
m∑

e=1

(∫

Γe
m

1

ρm
[N ]T

∂Pm

∂n
dΓ

)
(4.157)

In this case, the integral of the previous expression (4.157) over Γm is carried out only
over the perforated surface, since the chamber walls are considered rigid.

By combining equations (4.148) and (4.154) and taking into account the definition of
the acoustic impedance of the perforated duct, the following expression is obtained

Z̃p =
Pa − Pm

U
=

−ρ0DtΦa − Pm

U
(4.158)

U being the normal acoustic velocity.

If continuity of the normal acoustic velocity is considered in the orifices of the perfo-
rated screen, the load vector corresponding to equation (4.152) is

{Fa} =

Ne
a∑

e=1

(∫

Γe
a∩Γp

[N ]T
∂Φa

∂n
dΓ

)
=

Ne
a∑

e=1

(∫

Γe
a∩Γp

[N ]T
Pa − Pm

Z̃p

dΓ

)

=

Ne
a∑

e=1

(∫

Γe
a∩Γp

[N ]T

(
−ρ0jωΦa − ρ0Umf∂Φa/∂x

Z̃p

− Pm

Z̃p

)
dΓ

) (4.159)
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and compacting the notation after applying the FE discretization and nodal interpo-
lation yields

{Fa} = −[KaaZp
]{Φa} − [KamZp

]{Pm} − jω[CaaZp
]{Φa} (4.160)

where the following submatrices have been defined

[KaaZp
] =

Ne
a∑

e=1

(
ρ0Umf

∫

Γe
a∩Γp

[N ]T

Z̃p

∂[N ]

∂x
dΓ

)
(4.161)

[KamZp
] =

Ne
a∑

e=1

(∫

Γe
a∩Γp

[N ]T [N ]

Z̃p

Γ

)
(4.162)

[CaaZp
] = ρ0

Ne
a∑

e=1

(∫

Γe
a∩Γp

[N ]T [N ]

Z̃p

Γ

)
(4.163)

On the other hand, the corresponding expression to equation (4.157) can be written
as

{Fm} =

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T

ρm

∂Pm

∂n
dΓ

)
=

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T

ρm

ρmjω(Pa − Pm)

Z̃p

dΓ

)

=

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T

(
ρ0ω

2Φa − ρ0jωUmf∂Φa/∂x

Z̃p

− jωPm

Z̃p

)
dΓ

)

(4.164)

that after applying a FE nodal interpolation can be expressed in compact form as

{Fm} = −jω[CmmZp
]{Pm} − jω[CmaZp

]{Φa}+ ω2[MmaZp
]{Φa} (4.165)

where the submatrices defined are now

[CmmZp
] =

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T [N ]

Z̃p

Γ

)
(4.166)

[CmaZp
] = ρ0Umf

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T [N ]

Z̃p

Γ

)
(4.167)

[MmaZp
] = ρ0

Ne
m∑

e=1

(∫

Γe
m∩Γp

[N ]T [N ]

Z̃p

Γ

)
(4.168)
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Finally, expressions (4.148), (4.154), (4.160) and (4.165) are combined. Considering
a velocity potential boundary condition, as well as an anechoic termination with a
view to obtaining the TL, the final system of equations in compact form is

([
[Ka] + [KaaZp

] [KamZp
]

[0] [Km]

]
+ jω

[
[Ca] + [CaaZp

] [0]
[CmaZp

] [CmmZp
]

]

−ω2

[
[Ma] [0]

[MmaZp
] [Mm]

]){
{Φa}
{Pm}

}
=

{
{Fa}
{0}

}

(4.169)

4.5.2 Non-uniform temperature field

A scheme of a perforated dissipative silencer carrying mean flow is presented in Fig-
ure 4.7. The silencer can be divided into two different regions, depending on the
propagation media, i.e. air and absorbent material, which are denoted as Ωa and
Ωm respectively, while their associated boundaries are represented by Γa and Γm, the
perforated surface being Γp. In the duct, because of its dimensions, the temperature
variation is considered only one-dimensional, as in references [65, 68, 97, 99, 178]. The
temperature is maximum at the inlet section of the silencer and decreases along the
flow path. However, a multidimensional temperature variation, which contemplates
both axial and radial gradients, is considered within the chamber. As mentioned in
Section 3.3, the temperature variations lead to heterogeneous properties of the differ-
ent propagation media, and therefore, to a coordinate-dependent acoustic impedance
of the perforated duct [65]. Also, the mean flow contained in the central airway is
variable. The acoustic properties (air density and speed of sound) that characterize
the propagation media are ρ0(x) and c0(x) for the air, and ρm(x, y, z) and cm(x, y, z)
for the dissipative fibre (see Section 3.3).

For a continuously varying temperature field, a suitable version of the wave equation is
required to account for the heterogeneous properties of the wave propagation medium
[65]. For flow velocity fields varying with position, a pressure-based equation will
include spatial derivatives of the acoustic velocity and several dependent variables
will be involved [140]. Therefore, a velocity potential formulation is proposed for the
duct in order to avoid the above-mentioned drawback. Thus, the governing equation
of the sound behaviour in the central airway is

∇(ρ0∇Φa)− ρ0Dt

(
1

c20
DtΦa

)
= 0 (4.170)
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ρ0(x)
c0(x)

ρm(x, y, z)
cm(x, y, z)
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M(x)
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Figure 4.7: Silencer with a varying temperature field.

where the speed of sound c0 and the air density ρ0, as well as the flow, are non-
homogeneous. In equation (4.170) Φa is the acoustic velocity potential so that

~Ua = {Ua Va Wa}T = ∇Φa (4.171)

and Dt is the total time derivative defined as

Dt =
∂

∂t
+ ~UT

mf∇ (4.172)

where ~Umf = {Umf Vmf Wmf}T . Besides, the relation between the acoustic pres-
sure and the velocity potential is (see equation (2.39))

Pa = −ρ0DtΦa (4.173)

Assuming a one-directional mean flow as in earlier studies [101, 104, 126], parallel
to the x axis and transversally uniform, the velocity can be expressed as ~Umf =
{Umf 0 0}T . Thus, the total derivative can be rewritten as

Dt =
∂

∂t
+ Umf

∂

∂x
= jω + Umf

∂

∂x
(4.174)

where harmonic waves have been assumed, their angular frequency being ω.

Thus, the combination of the total derivative with equation (4.170) leads to [65]

∇(ρ0∇Φa)−
ρ0U

2
mf

c20

∂2Φa

∂x2
− 2ρ0jωUmf

c20

∂Φa

∂x
− ρ0U

2
mf

∂
(
1/c20

)

∂x

∂Φa

∂x

−ρ0Umf

c20

∂Umf

∂x

∂Φa

∂x
− ρ0jωUmf

∂
(
1/c20

)

∂x
Φa +

ρ0ω
2

c20
Φa = 0

(4.175)
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Now, applying the weighted residuals method and the divergence theorem to expres-
sion (4.175) yields

−
∫

Ωa

ρ0∇TΨ[D]∇ΦadΩ

+

∫

Ωa

Ψ

(
U2
mf

c20

∂ρ0
∂x

+
ρ0Umf

c20

∂Umf

∂x
− 2ρ0jωUmf

c20

)
∂Φa

∂x
dΩ

+

∫

Ωa

Ψ

(
−ρ0jωUmf

∂
(
1/c20

)

∂x
+
ρ0ω

2

c20

)
ΦadΩ +

∫

Γa

ρ0Ψ~n
T [D]∇ΦadΓ = 0

(4.176)

where, as indicated previously, the characteristic properties of air, c0 and ρ0, and the
mean flow Umf are variable. The normal unit vector to the surface Γ is ~n, while the
matrix [D] is defined as

[D] =



1−

U2
mf

c20
0 0

0 1 0
0 0 1


 (4.177)

Comparing equations (4.175) and (4.176), it is found that the product of the spatial
derivatives of both the inverse of the squared speed of sound and the acoustic velocity
potential cancels during the mathematical procedure. Also, it is important to point
out that the relation ρ0UmfS = constant is satisfied, and since the cross section S of
the central duct is uniform, the following expression can be deduced

Umf
∂ρ0
∂x

+ ρ0
∂Umf

∂x
= 0 (4.178)

Then, equation (4.176) can be rewritten in such a way that the two first terms of the
second integral vanish leading to

−
∫

Ωa

ρ0∇TΨ[D]∇ΦadΩ +

∫

Ωa

Ψ

(
−2ρ0jωUmf

c20

)
∂Φa

∂x
dΩ

+

∫

Ωa

Ψ

(
−ρ0jωUmf

∂
(
1/c20

)

∂x
+
ρ0ω

2

c20

)
ΦadΩ

+

∫

Γa

ρ0Ψ~n
T [D]∇ΦadΓ = 0

(4.179)
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Applying now the FEM and considering the Galerkin approach yields

Ne
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∫
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∫
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[N ]T [N ]dΩ

)
{Φe

a}

=

Ne
a∑
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∫

Γe
a

−ρ0[N ]T~nT [D]∇ΦadΓ

(4.180)

which in compact form and changing the sign of the equation for more clarity can be
expressed as

([Ka] + jω([Ca1
] + [Ca2

])− ω2[Ma]){Φa} = {Fa} (4.181)

where the following nomenclature has been used

[Ka] =

Ne
a∑

e=1

∫

Ωe
a

ρ0(∇[N ])T [D]∇[N ]dΩ (4.182)

[Ma] =

Ne
a∑

e=1

∫

Ωe
a

ρ0
c20

[N ]T [N ]dΩ (4.183)

[Ca1
] =

Ne
a∑

e=1

∫

Ωe
a

2ρ0Umf

c20
[N ]T

∂[N ]

∂x
dΩ (4.184)

[Ca2
] =
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e=1

∫
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ρ0ωUmf

∂
(
1/c20

)
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dΩ (4.185)

{Fa} =
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∫

Γe
a

ρ0[N ]T~nT [D]∇ΦadΓ

=

Ne
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(
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U2
mf

c20

∂Φa

∂n

)
dΓ +

∫

Γe
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ρ0[N ]T
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)
dΓ

(4.186)

Γbc = Γi ∪ Γo being the surface where the suitable inlet/outlet boundary conditions
are applied.

The computation of the axial mean flow velocity is carried out considering the mass
conservation law for a given Mach number Mi at the inlet section. The density ρ0
and the speed of sound c0 can be evaluated at each integration point by means of the
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ideal gas law, as detailed in Section 3.3. The spatial derivative of c0 can be calculated
analytically or numerically, depending on the complexity of the temperature field. As
can be inferred from the definition of [Ca2

], the influence of this latter matrix on the
silencer transmission loss is small when compared to the contributions from the rest
of finite element matrices (this is also supported by additional calculations carried
out with a number of parameters and temperature gradients).

On the other hand, the governing equation of the acoustic behaviour within the
dissipative chamber in terms of pressure can be written as shown in the previous
expression (4.145)

∇
(

1

ρm
∇Pm

)
+

ω2

ρmc2m
Pm = 0 (4.187)

The compact form of equation (4.187) after applying a FE interpolation, and following
a similar procedure to that used for the variable density case (see equations (4.153)-
(4.157)), can be expressed as

([Km]− ω2[Mm]){Pm} = {Fm} (4.188)

To obtain the final system of equations, equations (4.181) and (4.188) have to be
assembled. This assembly is carried out by means of the perforated duct impedance
that is defined as

Z̃p =
Pa − Pm

U
(4.189)

which depends on several parameters such as the porosity, diameter of the orifices,
thickness of the perforated screen, frequency and the mean flow. As discussed pre-
viously, different continuity conditions through the perforated surface such as the
displacement or the normal acoustic velocity conditions can be considered, the latter
being considered in the current formulation. Therefore, the load vector equation in
the air domain is

{Fa} =

Ne
a∑

e=1

∫

Γe
a∩Γp

ρ0[N ]T
∂Φa

∂n
dΓ =

Ne
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∫

Γe
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ρ0[N ]T
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dΓ

=

Ne
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∫

Γe
a∩Γp

ρ0[N ]T

(
−ρ0jωΦa − ρ0Umf∂Φa/∂x

Z̃p

− Pm

Z̃p

)
dΓ

(4.190)

Now, comparing equation (4.159) with the previous expression (4.190), it can be
observed that in the latter the air density ρ0 explicitly appears in the integral due
to the formulation. This property is coordinate-dependent here, due to the thermal
gradients under consideration, which lead to a heterogeneous air density within the
central duct.
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On the other hand, after considering a FE interpolation, equation (4.190) can be
written in compact form as

{Fa} = −[KaaZp
]{Φa} − [KamZp

]{Pm} − jω[CaaZp
]{Φa} (4.191)

The following matrices have been defined

[KaaZp
] =

Ne
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∫
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dΓ (4.192)
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whereas the load vector associated with the absorbent material formulation yields
again equation (4.164)
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(4.195)

The latter equation can be rewritten after applying a FE nodal interpolation as

{Fm} = −jω[CmmZp
]{Pm} − jω[CmaZp

]{Φa}+ ω2[MmaZp
]{Φa} (4.196)

where the following notation has been considered
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] =

Ne
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dΓ (4.197)
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[MmaZp
] =

Ne
m∑

e=1

∫

Γe
m∩Γp
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138 E.M. Sánchez-Orgaz



4.6. Shape optimization based on genetic algorithms

Then, the final system of equations can be written as

([
[Ka] + [KaaZp

] [KamZp
]
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]
+ jω

[
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[
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]){
{Φa}
{Pm}

}
=

{
{Fabc

}
{0}

} (4.200)

where {Fabc
} corresponds to the part of the load vector {Fa} in equation (4.186)

calculated over the inlet/outlet sections with their corresponding boundary conditions,
i.e. a velocity potential boundary condition and an anechoic termination respectively,
while a rigid wall condition has been assumed for the remaining surfaces [126].

Several differences are found comparing the hybrid formulation for the cases of variable
bulk density and the presence of thermal gradients. These differences are mainly due
to the variation of the air density and speed of sound, as well as to a heterogeneous
mean flow produced by the variation of temperature within the central duct of silencer,
providing new submatrices (e.g. damping submatrices) and terms including these
variations.

Finally, in order to solve the system of equations, a velocity potential boundary
condition and an anechoic termination have been considered at the inlet and outlet
sections respectively.

4.6 Shape optimization based on genetic algorithms

In shape optimization, making a decision that maximizes or minimizes a given cri-
terion is required [40, 133, 165]. This decision is usually conditioned by several con-
straints.

The sequence of steps to follow in order to solve an optimization problem is:

1. Taking n points belonging to the search space, so that m new points are gener-
ated at each iteration (also called generation or population in some algorithms).
Each one of these points represents a possible solution to the problem. In this
step of generation of solutions, the algorithm has to be able to achieve any local
improvement.

2. Evaluating if the restrictions and the objective function to maximize each one
of the solutions are met.
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3. Accepting the new solutions that in meeting the restrictions assume an improve-
ment and can be reused as a new starting point. The rest of the solutions are
rejected.

4. Repeating the previous steps till the stop criteria are met. These criteria are
usually related to the maximum condition to reach or to the number of iterations
previously determined by the user.

In order to assess the solutions obtained, an evaluation function has to be defined; in
general, this is called the objective function. In this case, the main target is to obtain
a silencer configuration that achieves the best acoustic characteristics, i.e. a TL as
high as possible in a frequency range(s) prescribed by the user .

There are many algorithms that can guide the optimization process. For example,
the genetic algorithms, which are going to be considered in the present Thesis due
to their robustness, and the fact that are highly efficient for the solution of complex
problems [37, 56, 110, 130, 148]. These algorithms are stochastic, which supposes
that a certain degree of randomness can be introduced during the search process.
This means that two different runs of the same algorithm will not necessarily obtain
the same result. The main advantage of this kind of method lies in the fact that it
can escape from local optima and make a wider search within the design space than
deterministic methods. Also, they are not as affected as deterministic methods by
the pollution generated during the process. Their main drawback is the high number
of iterations required sometimes to obtain acceptable solutions [110, 133, 148].

The optimization processes based on genetic algorithms are composed of an upper and
a lower level governed by the optimization algorithm and the numerical method used
to analyse each one of the multiple solutions, respectively. In this case, the upper level
used is the commercial program modeFRONTIERr, while the lower level is an in-
house FE program [64] to compute the TL of multichamber silencers in the presence
of mean flow. The latter parameter permits the quantification of the attenuation
achieved by the silencer and can be used as an objective function [4, 24, 37, 56]. It
is important to point out that the accuracy of the computation methods used has a
notable influence on the solutions obtained by the optimization program [129, 148].

4.6.1 MOGA-II description

The commercial program modeFRONTIERr uses its own version of the Multi-Objective
Genetic Algorithm, called MOGA-II [141]. It is an efficient version that uses a multi-
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search smart elitism. This elitism operator is able to preserve some of the best so-
lutions, without remaining stuck in a premature convergence at some local optima.
The total number of evaluations carried out by the algorithm MOGA-II [141] is equal
to the number of experimental designs defined (first generation randomly generated)
multiplied by the generation number. The size of each analysis is defined, in general,
by the computation resources available.

The parameters to specify by the user for the utilization of the mentioned algorithm
are [141]:

• Number of generations: This value defines the maximum size of the simula-
tion.

• Probability of directional cross-over: The cross-over operator is a recombi-
nation method in which the fathers produce offsprings by sharing information.
The objective of this operator is to obtain individuals with better characteris-
tics, while retaining the population diversity. The cross-over is considered as
the main search operator in the genetic algorithms. This specific cross-over is
an operator which gives efficiency to the algorithm. If this parameter is set to
1, only this operator is used. The search is efficient, but when highly non-linear
problems are considered, the optimizer can remain stuck at the local optima so-
lutions. The values 0 and 1 are not recommendable. The predetermined value is
0.5, although this value has to be increased when a problem is relatively smooth
and decreased in the rest of the cases.

• Probability of selection: This value is the probability that design configu-
rations are not changed during the evolution. Therefore, this parameter should
be kept small in order to maintain the good diversity between points. If the
value is one, no computation after the initial population will be carried out.

• Probability of mutation: This value shows the probability of a design con-
figuration of being randomly changed. When the value is 1, the algorithm turns
into a purely random search.

• DNA string mutation ratio: This value provides the percentage of the in-
dividual DNA that is perturbed by the mutation operator. The DNA of each
individual is coded in a binary string; the mutation ratio defines the number of
bits that mutate.

• Elitism: The elitism will ensure that the best solutions are preserved during
the evolution.

On the other hand, the treatments for the constraints are:
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• Assuring that a feasible solution is always better than a non-feasible solution
and taking into account the intensity of the constraint violation. This can be
done using fuzzy constraints for which a tolerance of violation is specified at a
project level.

• By means of the addition of an objective for the problem equal to the number of
violated constraints. This option is only relevant for over-constrained problems
where a feasible solution does not exist and there are several constraints of
relatively equivalent importance.

4.6.2 Variables, constraints and objective function of the prob-
lem

The definition of the variables and the objective function of the optimization problem
is an important step, since the solution obtained depends on their definition. In this
case, the problem to solve consists of obtaining the most suitable configuration of
a multichamber silencer. In this case, the parameters defined as variables are the
lengths of the different chambers, as well as their radii and the distances between two
consecutive chambers (the thickness of the dividing plates). Also the properties defin-
ing the surface that separates the central duct from the outer chamber are considered
as a variable. The different surfaces under consideration are:

• Microperforated central duct.

• Sintered central duct with nearly constant acoustic impedance.

These variables will be randomly generated by the program modeFRONTIERr that
will send the information to a FE program fully developed in Matlabr. The cou-
pling between the upper and lower levels is done through a macro that adapts the
variables in such a way that the FE program can read them. In addition, the geo-
metric constraints of the problem will be imposed in this macro. The total length of
the multichamber silencer is considered constant, which seems reasonable because in
many instances the space available in an car is limited. However, the lengths of the
chambers could be variable, except for the last one, whose dimension will be imposed
by the total dimensions of the configuration, which means that this will be calculated
as the total length of the silencer minus the lengths of the different chambers and the
distances between them.

On the other hand, modeFRONTIERr is a multi-objective program that can obtain
a Pareto optimal frontier composed of the different optimal solutions computed; it is
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then decision of the user to determine which is the most suitable for the purposes of
the acoustic device because in many occasions the objectives are counterposed. In the
present problem the main objective is to obtain the configuration of a multichamber
silencer that achieves a higher sound attenuation in the frequency ranges of interest.
The attenuation, in this case, has been quantified by means of the average TL ob-
tained at the different frequencies. Nevertheless, when the average transmission loss
is considered, the higher peaks of attenuation can be equilibrated with the troughs,
and this is clearly a situation to avoid, since an attenuation as uniform and as high
as possible is required in the frequency range under consideration for each particular
design problem. Therefore, it should be pointed out that the maximization of the
attenuation does not necessarily involve the minimization of the dispersion in the TL
results and the deviation of the results has to be considered as another objective.
This fact can reduce the convergence speed of the optimization procedure. Thus, it
seems reasonable to combine both objectives and convert them into one. The new
global objective function to maximize can be defined as the sum of the average of the
obtained attenuations for each one of the frequencies belonging to the range under
study plus the inverse of the standard deviation belonging to those results.

A scheme of the optimization procedure followed to obtain the suitable multichamber
configuration is presented in Figure 4.8.

Figure 4.8: Scheme of the optimization procedure.

The values of the parameters belonging to MOGA-II, as well as the treatment of the
constraints are listed below:
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• Number of generations: 100

• Probability of cross-over: 0.5

• Probability of selection: 0.05

• Probability of mutation: 0.1

• Elitism: Enabled

• Treat constraints: Penalising objectives

• Random generator seed: 1

The above-defined figures are the default values of the program. These have been
chosen because good results have been reported in a previous work for different kinds
of problems [148].

4.7 Applications

In this section, the FEM is applied to a perforated dissipative configuration, in which
the properties of the different propagation media are variable in order to study the
acoustic performance of a silencer under more realistic conditions. Thus, the models
developed in Chapter 3 have been included in the hybrid FE formulation (see Section
4.5) to consider on the one hand, the presence of a heterogeneous bulk density of
absorbent material and on the other hand, the presence of thermal gradients, as
well as the influence of high temperatures, on the attenuation. Also, a process of
shape optimization of a multichamber silencer has been carried out to find the most
suitable design for the configuration under study considering a FE standard pressure
formulation (see Section 4.4).

4.7.1 Perforated dissipative silencer with variable bulk density
of the absorbent material

As demonstrated in Section 3.5.1, the bulk density heterogeneities clearly modify the
behaviour of a dissipative silencer. In the next sections, the axial and transversal
density variations are studied separately in order to isolate the impact of each one of
them. In addition, some calculations have been carried out to see the influence of a
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more realistic and complex density distribution, including both kinds of variations.
All the following results have been published in reference [149].

The silencer under study is an axisymmetric perforated dissipative configuration,
whose geometric characteristics are defined in Table 4.1. The mesh considered to
compute the silencer TL consists of eight-noded quadratic quadrilateral elements
whose approximate size is 0.01 m to obtain an accurate solution. The characteristics
of the perforated surface are σ = 0.2, tp = 0.001 m, and dh = 0.0035 m.

Geometry Li/Lo (m) Rd (m) Lch (m) Rch (m)

1 0.1 0.0268 0.3 0.05

Table 4.1: Geometry under study: L, length; R, radius; i, inlet; o, outlet; d, duct; ch,

chamber.

The fibre used in all the calculations is E fibreglass, whose characteristic impedance
and wavenumber are defined as

Zm(x) = Za

(
1 + 0.095 (ρ0f/R(x))

−0.669 − j0.169 (ρ0f/R(x))
−0.571

)
(4.201)

km(x) = ka

(
1 + 0.201 (ρ0f/R(x))

−0.583 − j0.220 (ρ0f/R(x))
−0.585

)
(4.202)

and the presence of a M=0.2 mean flow is considered as well.

I. Effect of an axially-varying density on the attenuation

To study the influence of a linear axial variation of the bulk density on the silencer
performance, several computations have been carried out. The corresponding values
for the calculation of the axially-varying density distribution are listed in Table 4.2
(for further information see Figure 3.2). It should be noted that all the configurations
present the same average density of value ρavg = 200 kg/m3, which will be taken as a
reference, and therefore an additional computation is included considering a uniform
distribution with the aforementioned value for comparison purposes. In order to
validate the hybrid formulation, the reference computation has been done twice to
compare the results obtained with a calculation done with an in-house program based
on a traditional pressure formulation.
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Case ρr1(Rd) kg/m
3 ρr2(Rch) kg/m

3 ρr3(Rd) kg/m
3 ρr4(Rch) kg/m

3

1 210 210 190 190
2 250 250 150 150
3 300 300 100 100

Table 4.2: Density values for the computation of the axially-varying density distributions.

The transmission loss predictions for the axially-varying densities are shown in Figure
4.9, as well as the results obtained for the uniform density. As can be observed,
good agreement is shown between the TL predictions carried out for the uniform
distribution computed by the hybrid formulation and the pressure FE formulation,
since both curves are overlapped (circle blue line and solid blue line). In addition, the
TL curves provided by case 1 and the uniform distribution are practically overlapped,
due to the small bulk density variation considered in the former. It is also remarkable
that increasing axial variations of the bulk density lead to higher transmission loss
values in the mid frequency range, while at high frequencies an intersection point
appears (at approximately 3200 Hz in Figure 4.9), where the trend seems to be the
opposite and the attenuation values would be higher with larger axial variations.
On the other hand, at low frequencies the influence of density variations on the
attenuation seems to be not very relevant.
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Figure 4.9: Transmission loss of a dissipative silencer with axially-varying density

distributions (same average density of 200 kg/m3): , 200 kg/m3, hybrid formulation;

ooo, 200 kg/m3, pressure formulation; , case 1, hybrid formulation; , case 2,

hybrid formulation; , case 3, hybrid formulation.
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II. Effect of a radially-varying density on the attenuation

To evaluate the acoustic performance of dissipative silencers incorporating a material
with a linear radial variation of the bulk density, two kinds of function are considered,
depending on whether the density increases (case a) or decreases (case b) with the
radial coordinate. In both cases, three configurations are studied. The values for
the calculation of the radial density distribution are listed in Table 4.3 (for further
information see Figure 3.2), where all the configurations present the same average
ρavg = 200 kg/m3 as in Section 4.7.1. Also, an extra computation with uniform
density considering this value is included. In all the calculations a mean flow of
M = 0.2 has been considered.

Case ρr1(Rd) kg/m
3 ρr2(Rch) kg/m

3 ρr3(Rd) kg/m
3 ρr4(Rch) kg/m

3

1a 164 230 164 230
2a 140 250 140 250
3a 103 280 103 280
1b 215 188 215 188
2b 240 168 240 168
3b 290 127 290 127

Table 4.3: Density values for the computation of the radially-varying density distributions.

Comparing Figures 4.9 and 4.10, it seems clear that the influence on the attenua-
tion of radial variations is much higher than the influence of axial non-homogeneities.
The uniform density distribution sets a frontier between cases a and b, the former
(radially-varying) providing higher transmission loss. When considering the configu-
rations belonging to case a, it can be observed that a higher attenuation is achieved
for larger density variations from approximately 500 Hz to 3200 Hz (below 500 Hz the
differences in the attenuation are not relevant). However, for configurations belonging
to case b the opposite trend is found. Smaller density variations deliver higher atten-
uation values. This could be due to the fact that in case a, the density increases with
the radius, which supposes that the material resistivity is lower near the perforated
surface and the absorption of the sound energy is gradual as the acoustic wave pene-
trates the dissipative chamber, while in case b a higher resistivity near the perforated
duct hinders the penetration of the sound wave in the outer chamber. This effect is
considerable for the material considered here due to the high resistivity values that
are presented by E fibreglass. For example, a bulk density of ρb = 100 kg/m3 yields
a resistivity of R = 22155 rayl/m, while a bulk density of ρb = 300 kg/m3 gives
R = 158664 rayl/m, which supposes that an increment of three times the density
involves an increment in the resistivity of approximately seven times. Although in

E.M. Sánchez-Orgaz 147



4. Advanced numerical techniques for the acoustic modelling of dissipative silencers

principle, for less resistive materials, lower discrepancies are expected, the density
variations should be included in the computations to achieve more accuracy in the
transmission loss computations.
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Figure 4.10: Transmission loss of a dissipative silencer with radially-varying density

distributions (same average density of 200 kg/m3): , 200 kg/m3; , case 1a; ,

case 2a; , case 3a; , case 1b; , case 2b; , case 3b.

III. Influence of a density distribution with axial and radial variations on

the attenuation

In this section, more complex density distributions, including axial and radial vari-
ations, are studied. The values of density that define the distributions are detailed
in Table 4.4 (for further information see Figure 3.2). In configuration 1c, the density
increases from the radius of the perforated surface to the radius of the outer cham-
ber, while an axial reduction appears from the inlet to the outlet section. On the
other hand, in configuration 2c the density decreases in both the radial and the axial
directions.

Case ρr1(Rd) kg/m
3 ρr2(Rch) kg/m

3 ρr3(Rd) kg/m
3 ρr4(Rch) kg/m

3

1c 200 310 80 90
2c 330 258 150 78

Table 4.4: Density values for the computation of complex density distributions.
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The results associated with the configurations listed in Table 4.4 are depicted in
Figure 4.11. In all the density distributions under consideration, the average density
is ρavg = 200 kg/m3. Therefore, a computation with uniform density ρb = 200 kg/m3

is also included for comparison purposes, as well as configurations 2a and 2b shown
in Table 4.3, where only a radial variation of the bulk density is considered. Again, a
value of M = 0.2 has been assigned for the mean flow Mach number.
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Figure 4.11: Transmission loss of a dissipative silencer with axial and radial variation of

the bulk density (same average density of 200 kg/m3): , 200 kg/m3; , case 1c;

, case 2c; , case 2a; , case 2b.

Configuration 1c provides higher attenuation than the uniform density case, as was
expected according to previous results (see Section 4.7.1) and it also provides slightly
larger transmission loss values than configuration 2a. The explanation can be found in
the fact that configuration 2a does not consider the axial density variation (see Figure
4.9). Besides, configuration 2c provides lower transmission loss when compared to the
uniform bulk density case, which is consistent with the results of radially decreasing
density distributions (see Figure 4.10), but it yields larger TL than configuration 2b,
since the latter does not include any axial variation. Finally, it is worth emphasizing
that radial density variations have more influence on the attenuation than the axial
ones. Thus, when both are simultaneously considered with a similar magnitude in the
FE model, the prediction of the silencer behaviour is mainly dictated by the radial
density distribution.
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4.7.2 Perforated dissipative silencer subjected to thermal gra-
dients

As shown in Section 3.5.1, thermal gradients significantly affect the behaviour of
perforated dissipative silencers. In the next sections, the effects of high temperatures,
as well as the influence of axial and radial gradients will be studied. All the results
presented have been published in reference [65].

The geometry under study is an axisymmetric perforated dissipative silencer, whose
characteristics are detailed in Table 4.5. The mesh considered to compute the silencer
TL consists of eight-noded quadratic quadrilateral elements whose approximate size
is 0.0075 m to obtain an accurate solution (this provides more than 10 quadratic
elements per wavelength for the maximum frequency fmax = 3200 Hz considered
in the simulations). The parameters defining the perforated surface are σ = 0.2,
tp = 0.001 m, and dh = 0.0035 m.

Geometry Li/Lo (m) Rd (m) Lch (m) Rch (m)

1 0.1 0.0268 0.3 0.091875

Table 4.5: Geometry under study: L, length; R, radius; i, inlet; o, outlet; d, duct; ch,

chamber.

The materials used in the computations are E fibreglass, basalt wool and Owens-
Corning texturized fibreglass, their properties being detailed in Table 4.6 (for further
details see Section 2.6.2).

Material E fibreglass Basalt wool Texturized fibreglass

a1 0.220 0.218 0.189
a2 -0.585 -0.605 -0.595
a3 0.201 0.128 0.160
a4 -0.583 -0.675 -0.577
a5 0.095 0.060 0.095
a6 -0.669 -0.766 -0.754
a7 0.169 0.138 0.085
a8 -0.571 -0.628 -0.0732

Table 4.6: Coefficients and exponents for the calculation of the equivalent acoustic

properties for the absorbent materials under study.
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The mean flow is defined by the Mach number at the inlet section Mi and the local
value M(x) is obtained considering continuity of mass flow.

I. Influence of axial temperature gradients on the attenuation

To assess the influence of axial gradients on the acoustic performance of dissipative
silencers, the distributions detailed in Table 4.7 are studied (for further information
see Figure 3.3). All these gradients have the same average value of temperature, given
by Tavg = 250 ◦C. The inlet mean flow Mach number is given by Mi = 0.1.

Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

1a 300 300 300 200 200 200 250
2a 350 350 350 150 150 150 250
3a 400 400 400 100 100 100 250

Table 4.7: Temperatures (◦C) for the definition of axial thermal gradients, cases 1a-3a.

The results obtained for the temperature fields detailed in Table 4.7 are depicted in
Figure 4.12. Also a calculation with a uniform temperature field of value Tavg = 250
◦C is included for comparison.
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Figure 4.12: Transmission loss of a dissipative silencer containing basalt wool with

axially-varying temperature distributions (same average temperature of 250 ◦C): , 250
◦C, uniform; , case 1a; , case 2a; , case 3a.
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As can be observed in Figure 4.12, higher axial thermal gradients lead to a reduction
in the transmission loss at high frequencies, while no significant differences are found
at low and mid frequencies, even for considerable gradients. For the cases under study,
not taking into consideration the thermal gradients leads to a slight overestimation of
the attenuation. The maximum discrepancy appears in case 3a at 3200 Hz, its value
being approximately 5%. Therefore, it seems that including axial gradients and their
associated thermal effects is only necessary if accurate predictions are required in the
high frequency range, while an average temperature provides a reasonable accuracy
at lower frequencies.

Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

4a 400 400 400 200 200 200 300
5a 500 500 500 200 200 200 350

Table 4.8: Temperatures (◦C) for the definition of axial thermal gradients, cases 4a and 5a.

Further transmission loss results appear in Figure 4.13, considering cases 1a and 4a-
5a (see Table 4.8) for both E fibreglass and Owens-Corning texturized fibres. In the
computations a value of Mi = 0.1 has been considered.
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Figure 4.13: Transmission loss of a dissipative silencer with axially-varying temperature

distributions: , case 1a, Owens-Corning texturized fibreglass; , case 4a,

Owens-Corning texturized fibreglass; , case 5a, Owens-Corning texturized fibreglass;

, case 1a, E fibreglass; , case 4a, E fibreglass; , case 5a, E fibreglass.

Comparing the attenuation results delivered by both fibres it can be observed that E fi-
breglass achieves a lower transmission loss value in almost all the frequency range. For
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this material of high resistivity the acoustic performance deteriorates as the axial gra-
dient and average temperature increase. However, in the case of the Owens-Corning
texturized fibreglass, it is worth emphasizing that the influence of the average tem-
perature and its associated gradient is less relevant than in the E fibreglass case. For
this less resistive material, a small difference in the silencer performance is observed
initially when changing from case 1a to case 5a up to approximately 1250 Hz, where
a transition point appears. Beyond this transition point, the previous trend changes
and the acoustic behaviour shows a slight improvement when the temperature and the
associated gradient increases, since the silencer seems more effective at attenuating
sound in case 5a. Further computations show that the aforementioned transition fre-
quency also appears for higher material resistivity (E fibreglass and basalt wool), but
the associated frequencies are beyond the frequency limits considered in this Thesis.

As can be deduced from the previous results, material resistivity seems to be a very
influential property when modelling thermal effects. The resistivity values detailed in
Table 4.9 show that there are big differences between the different materials. From
equation (3.10) it can be deduced that an increase in the average resistivity of the
absorbent material is obtained for higher mean temperatures, in this case for config-
uration 5a.

Case Ravg (rayl/m) Ravg (rayl/m) Ravg (rayl/m) Tavg ( ◦C)
E fibreglass Basalt wool Texturized fibreglass

1a 43025 19348 6858 250
4a 45408 20420 7238 300
5a 47691 21447 7602 350

Table 4.9: Average resistivity and temperature for the absorbent materials.

Now, for isolating the impact of axial gradients corresponding to the E fibreglass
and the Owens-Corning texturized fibres, several computations have been carried out
and the results are shown in Figure 4.14. All the configurations present the same
average value and in addition, a computation with uniform temperature is included
for comparison.

For both materials, higher axial gradients lead to a slight reduction of the attenuation,
mainly in the high frequency range. If the axial temperature is neglected, overestima-
tions can reach 5%. This value is similar to that obtained for basalt wool in Figure
4.12.

Therefore, the average temperature has a great impact on the acoustic performance
for very resistive materials (see Figure 4.13), while this effect is smaller for less resistive
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Figure 4.14: Transmission loss of a dissipative silencer with axially-varying temperature

distributions (same average temperature of 250 ◦C): , 250 ◦C, uniform,

Owens-Corning texturized fibreglass; , case 1a, Owens-Corning texturized fibreglass;

, case 2a, Owens-Corning texturized fibreglass; , case 3a, Owens-Corning

texturized fibreglass; , 250 ◦C, uniform, E fibreglass; , case 1a, E fibreglass;

, case 2a, E fibreglass; , case 3a, E fibreglass.

materials. When the axial gradient has been studied separately (see Figures 4.12 and
4.14), lower influence is found in general, more concentrated in the high frequency
range, and the resistivity does not seem to play such an important role.

II. Impact of radial temperature gradients

The values that define the radial temperature fields used in the transmission loss
predictions are provided in Table 4.10 (for further information see Figure 3.3). The
results of these calculations are shown in Figure 4.15. All of them present the same
average value of 231 ◦C. In addition, an attenuation curve provided by a computation
with uniform temperature field (T = 231 ◦C) has been included. Also a mean flow of
Mi = 0.1 is considered in all the computations.

Figure 4.15 shows that considerable differences appear between the attenuation curves
when considering radial gradients. Thus, it is clear that neglecting these tempera-
ture variations can lead to a systematic overestimation of the transmission loss, the
effect being stronger as the gradients increase. Taking as reference the configuration
with uniform temperature, the maximum difference for case 1b is 9% at 1980 Hz, for
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Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

1b 300 235 200 300 235 200 231
2b 410 242 150 410 242 150 231
3b 520 249 100 520 249 100 231

Table 4.10: Temperatures (◦C) for the definition of radial thermal gradients, cases 1b-3b.

case 2b is given by 20% at 2060 Hz and finally, for case 3b the difference is 28% at
2160 Hz. Therefore, using an average value does not necessarily provide an accurate
computation of the acoustic performance. Note that, although the particular values
of radial temperature gradient used for 2b and 3b cases have been exaggerated delib-
erately, the heat transfer through the outer shell can be considerable, which justifies
the need to include transverse temperature variations in the silencer noise attenuation
calculations [65].
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Figure 4.15: Transmission loss of a dissipative silencer containing E fibreglass with

radially-varying temperature distributions (same average temperature of 231 ◦C): ,

231 ◦C, uniform; , case 1b; , case 2b; , case 3b.

Two distributions with different radial gradients and mean temperatures are listed
in Table 4.11 (see Figure 3.3), while the transmission loss results calculated for E
fibreglass are depicted in Figure 4.16. Case 1b has also been included, as well as a
computation considering a uniform field of 200 ◦C. As can be observed in the figure,
the impact on the attenuation of high temperature and the associated radial gradient
is relevant. The silencer attenuation drops as the temperature and thermal gradient
are higher. A possible reason may be associated with a saturation effect due to
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the high resistivity of E glass, which increases as the average temperature rises, and
partially prevents the sound energy from penetrating the material for the frequency
range under analysis.

Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

4b 250 218 200 250 218 200 216
5b 350 253 200 350 253 200 247

Table 4.11: Temperatures (◦C) for the definition of radial thermal gradients, cases 4b and

5b.
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Figure 4.16: Transmission loss of a dissipative silencer containing E fibreglass with

radially-varying temperature distributions: , 200 ◦C, uniform; , case 4b; ,

case 1b; , case 5b.

In Figure 4.17, a comparison between predictions for cases 1b, 2b and 3b is carried out
considering Owens-Corning texturized fibreglass. Also a configuration with a uniform
temperature value of 231 ◦C is included. The transmission loss curves appear to
be quite similar in the frequency range depicted, with only some relevant differences
close to 1500 Hz. At low frequencies, higher gradients lead to a systematic reduction
of the attenuation performance, while an irregular influence is found in the mid and
high frequency range. Thus, previous conclusions obtained from Figure 4.15 for the
combination of radial gradient and E fibreglass no longer hold for materials with
lower resistivity values, since only a slight influence of the radial gradient is found in
general.
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Figure 4.17: Transmission loss of a dissipative silencer containing Owens-Corning

fibreglass with radially-varying temperature distributions (same average temperature of

231 ◦C): , 231 ◦C, uniform; , case 1b; , case 2b; , case 3b.

III. General thermal gradients and TL computations with average value

More general temperature fields are studied in this section, where both axial and
radial gradients are considered simultaneously. The temperature values to compute
the temperature field are detailed in Table 4.12 (for further information see Figure
3.3). All the configurations under study present the same average temperature given
by Tavg = 185 ◦C. Previous results show that axial gradients do not have a relevant
influence on the acoustic performance, while the radial thermal variations present a
more significant influence for materials with a mid and high material airflow resistivity.
Therefore, it is expected that the simultaneous presence of both gradients will modify
the silencer attenuation performance for basalt wool and E fibreglass, while Owens-
Corning texturized fibreglass will show a smaller effect.

Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

1c 300 210 160 200 168 150 185
2c 400 254 175 200 129 90 185

Table 4.12: Temperatures (◦C) for the definition of temperature fields, cases 1c and 2c.

The acoustic behaviour of a silencer considering general thermal gradients is depicted
in Figure 4.18. The transmission loss associated with a uniform field defined by
a value of 185 ◦C is also considered for comparison. The inlet mean flow Mach
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number in the computations is Mi = 0.1. As expected, depending on the material,
different trends are found. For the texturized fibreglass the maximum difference
between the different predictions is approximately 2 dB, thus confirming the limited
impact of the thermal gradient and justifying the use of a simplified approach with
an average temperature value. For the E fibreglass, whose resistivity is high, it is
worth emphasizing that, even when the average temperature is quite similar for all
the calculations, the attenuation overprediction assuming a uniform temperature field
can be significant. This effect becomes stronger as the thermal gradients are higher.
The maximum TL difference between the uniform temperature field and case 1c is
about 3 dB, while a higher discrepancy of about 5 dB is found at 1920 Hz between
the uniform temperature predictions and case 2c. These results seem to indicate
that, for general temperature fields including radial gradients in relatively resistive
materials, an accurate and reliable prediction of the attenuation performance cannot
be guaranteed if an average temperature value is considered.
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Figure 4.18: Transmission loss of a dissipative silencer with general temperature fields

(same average temperature of 185 ◦C): , uniform, Owens-Corning fibreglass; ,

case 1c, Owens-Corning fibreglass; , case 2c, Owens-Corning fibreglass; ,

uniform, E fibreglass; , case 1c, E fibreglass; , case 2c, E fibreglass.

IV. Considerations about mean flow

In order to study the influence of mean flow, several computations have been carried
out considering the temperature fields detailed in Table 4.13 (for further information
see Figure 3.3) and different Mach numbers: Mi = 0, 0.1 and 0.2. It should be
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noted here that the two configurations under study present the same temperature
distribution at the outlet section.

Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch) Tavg

1d 400 335 300 300 235 200 281
2d 500 435 400 300 235 200 331

Table 4.13: Temperatures (◦C) for the definition of radial thermal gradients, cases 1d and

2d.

The results for basalt wool and the temperature distributions corresponding to cases
1d and 2d are shown in Figure 4.19.
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Figure 4.19: Transmission loss of a dissipative silencer containing basalt wool with general

temperature fields and mean flow: , Mi = 0, case 1d; , Mi = 0, case 2d; ,

Mi = 0.1, case 1d; , Mi = 0.1, case 2d; , Mi = 0.2, case 1d; , Mi = 0.2,

case 2d.

In general, increasing the inlet Mach number while keeping the same temperature
field yields a detrimental influence of the mean flow in almost all the frequency range
under consideration, except in the highest part of the interval depicted in the figure.
This is consistent with other results found in the literature [104] in the presence
of mean flow at room temperature, where an increment in the mean flow velocity
supposes a reduction in transmission loss. For a given inlet mean flow, higher average
temperature and thermal gradients lead to lower attenuation in the frequency interval
considered. However, the transition frequency for the case with Mi = 0 has shifted to
lower frequencies and it is slightly higher than 3200 Hz (the intersection between the
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solid blue line and dash blue line can be inferred from the figure 4.19). This transition
shifts towards higher frequencies beyond the figure limits as the mean flow velocity
rises. Note that, for a given thermal field, as the temperature decreases along the
central passage, opposite density and speed of sound variations take place, resulting
in a small reduction between the inlet and outlet Mach numbers.

4.7.3 Shape optimization in multichamber silencers

There are many geometric parameters that can have an influence over the acoustic
performance of multichamber silencers such as the number of chambers, their lengths
and radii and the thickness of dividing baffles. The characteristics of the central sur-
faces are also very influential, as well as the fibre in the particular case of a dissipative
silencer. Therefore, in order to determine the optimal configuration of a multichamber
silencer, a shape optimization procedure is a useful tool to obtain the most suitable
design parameters for the case under study.

I. Optimization of a multichamber silencer with a sintered central duct of

constant impedance

A three-chamber silencer is shown in Figure 4.20, where its main dimensions (see
Table 4.14), as well as its different subdomains are defined. This silencer has been
optimized, keeping the external geometry (the total length of the silencer Ltot =
Lch1

+ tch12
+ Lch2

+ tch23
+ Lch3

and the chamber radii) and considering that the
impedance of the sintered duct is a variable of the problem. In this case, the acoustic
impedance of the sintered passage has been defined as Z = AZ0, where A is a constant
parameter, whose value is different for each individual of the population, and Z0 is
the characteristic impedance of air. The constant is defined in the interval between
0.05 and 4 with a step of 0.05. For this particular example, the frequency range of
interest for carrying out the optimization process is 0 Hz - 1200 Hz.

Geometry Li/Lo Rd Lch1−3
Rch1−3

tch12−23
Ltot

1 0.1 0.0268 0.183 0.0886 0.001 0.551

Table 4.14: Dimensions (m) of the three-chamber silencer with sintered duct.

The transmission loss achieved by some of the configurations obtained during the
optimization process have been represented in Figure 4.21. As can be appreciated
from the figure, in the frequency range of interest the most suitable configurations are
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Figure 4.20: Three-chamber silencer with a central perforated duct.

those with impedances of value Z = Z0 and Z = 1.5Z0. In this case, the discrepancies
between them in transmission loss are not very relevant in the frequencies under study
(0 Hz - 1200 Hz). However, the configuration with Z = 1.5Z0 provides better results
in the frequency range between 1860 Hz and 2780 Hz approximately. Finally, at
very high frequencies the best configuration is the one with an impedance given by
Z = 2Z0, from approximately 2780 Hz until 3200 Hz.
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Figure 4.21: Transmission loss of a silencer with a sintered duct considering several

impedance values: , A=0.5; , A=1; , A=1.5; , A=2; , A=4.
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Note that TL values up to 100 dB could be unrealistic in practice due to viscosity of
the air and the corresponding dissipative mechanisms.

II. Multichamber silencer optimization with a microperforated duct

Figure 4.23 depicts the TL of two three-chamber silencers (see Figure 4.22) including
microperforated ducts with the same characteristics: σ = 0.02, dh = 0.001 m and
tp = 0.001 m. The total length of the silencer is 0.551 m (the inlet and the outlet
ducts are not included). The radius of the chamber is constant, while the length of
the chambers and the thickness of the separating plates between them are variable.
For this particular example, the frequency range in which the optimization process
has been carried out is again 0 Hz - 1200 Hz. Thus, by optimizing the length of the
chambers, the attenuation achieved at low frequencies increases, since the TL pass-
band at approximately 1000 Hz (the chamber length equals half the wavelength) can
be eliminated due to the acoustic effects produced when the chambers have different
lengths. The dimensions of the silencer after the optimization procedure are detailed
in Table 4.15.
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Figure 4.22: Three-chamber silencer with a central microperforated duct.

Geometry Li/Lo Rd Lch1
tch12

Lch2
tch23

Lch3
Rch1−3

Before 0.1 0.0268 0.0183 0.001 0.183 0.001 0.183 0.0886
After 0.1 0.0268 0.245 0.017 0.13 0.025 0.133 0.0886

Table 4.15: Dimensions (m) of the three-chamber silencer with microperforated duct.
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Figure 4.23: Transmission loss of multichamber silencer with a microperforated duct:

, before optimization procedure; , after optimization procedure.

4.7.4 Comparison of surfaces

Figure 4.24 presents the comparison of the transmission loss associated with two
multichamber silencers (both composed of three chambers). The first configuration
has been computed twice. First considering a sintered central duct with an impedance
of value Z = 1.5Z0 and the second, with an impedance Z = 2Z0. On the other
hand, the second configuration under consideration is a perforated dissipative silencer
containing Owens-Corning texturized fibreglass with R = 4896 rayl/m. The geometric
characteristics of the silencers are detailed in Table 4.14. The characteristics of the
perforated surface are σ = 0.1, tp = 0.001 m, and dh = 0.0035 m. As pointed out
in Section 3.5.2, a sintered configuration improving the attenuation achieved at high
frequencies by a perforated dissipative silencer can be found.

In addition, a four-chamber silencer is compared to a single chamber silencer consid-
ering different configurations according to their inner components, such as sintered
ducts, microperforated surfaces and/or perforated ducts with absorbent material.
The characteristics of the silencers are listed in Table 4.16. The total length is kept
constant (0.3 m, not including inlet/outlet lengths) for all the silencers during the
computations. For the four-chamber geometry, equal length is considered for all the
subchambers within the silencer. The characteristics of the microperforated duct are
σ = 0.02, tp = 0.001 m, and dh = 0.001 m, while the perforated duct is defined by
σ = 0.11, tp = 0.001 m, and dh = 0.003 m.
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Figure 4.24: TL comparison of a silencer with a sintered duct and a perforated dissipative

silencer: , sintered duct, Z = 1.5Z0; , sintered duct, Z = 2Z0; , perforated

dissipative silencer.

Geometry Li/Lo (m) Rd (m) Lch (m) Rch (m) tch (m)

1 chamber 0.1 0.0268 0.3 0.0886 -
4 chambers 0.1 0.0268 0.07425 0.0886 0.001

Table 4.16: Dimensions of the multichamber silencers.

Figure 4.25 shows that higher attenuation is obtained in general as the number of
chambers increases [8], except in the low frequency range (from 20 Hz until 280 Hz
approximately), where the single chamber configuration achieve higher TL values.
Comparing the performance of the three different surfaces for the four-chamber si-
lencer, at low frequencies the microperforated one reaches the highest TL value in the
360 Hz - 720 Hz frequency range, showing a peak at 540 Hz where the maximum at-
tenuation value is achieved. On the other hand, the dissipative silencer provides more
attenuation from 720 Hz until 1240 Hz than the other configurations, while from 1240
Hz until 2640 Hz, the multichamber geometry with sintered ducts shows higher TL
than the other two configurations (except for a small range between 2240 Hz and 2320
Hz, where the dissipative silencer provides a better attenuation). Finally, in the 2640
Hz - 3200 Hz frequency range, the transmission loss obtained by the silencer contain-
ing absorbent material is again higher, but very close to the sintered configuration.
Therefore, these results show that microperforated and sintered surfaces can be good
alternatives to dissipative silencers, depending on the frequency range of interest for
each particular application.
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Figure 4.25: Comparison of transmission loss: , perforated dissipative silencer, 1

chamber; , microperforated duct, 1 chamber; , sintered duct, 1 chamber; ,

perforated dissipative silencer, 4 chambers; , microperforated duct, 4 chambers;

, sintered duct, 4 chambers.

Different surfaces can also be combined within a multichamber silencer. A comparison
of the results obtained by combining microperforated ducts with sintered surfaces is
shown in Figure 4.26. For the geometrical information, see Table 4.17.

Geometry Li/Lo (m) Rd (m) Lch1−4
(m) Rch1−4

(m) tch1−3
(m)

4 chambers 0.1 0.0268 0.12425 0.075 0.001

Table 4.17: Dimensions of a long multichamber silencer(total length Ltot = 0.5 m).

The results obtained show that combining surfaces can improve the behaviour of
the silencer in those frequencies where other alternatives are better. The dominant
surface can be, for example, the one present in a higher number of chambers or the
type of the duct associated with the longest chamber, depending on the particular
configuration under study. This surface combination is intended to improve the levels
of attenuation in the frequency range where the effect of the dominant surface is
worse, at the expense of decreasing the maximum attenuation achieved for this kind
of screen.
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Figure 4.26: TL comparison of several configurations: , four chambers with absorbent

material and perforated duct; , four chambers with sintered duct; , four chambers

with microperforated duct; , three chambers with microperforated duct and one

chamber with sintered duct; , three chambers with sintered duct and one chamber

with microperforated duct.

4.8 Conclusions

In this chapter, a multidimensional FE formulation has been developed to study the
acoustic performance of perforated dissipative silencers, in which the propagation
media are not homogeneous. The application of this method can be justified due
to the lack of accuracy of the plane wave models and other techniques for complex
geometries and silencers with non-uniform properties. The aim of this formulation is
to bridge some existing deficiencies found in commercial programs when perforated
dissipative configurations under more realistic working conditions are considered, such
as the presence of high temperature, thermal-induced heterogeneities, non-uniform
mean flow as well as other variable properties of the propagation media.

The formulation developed considers a hybrid approach, based on the combination
of a velocity potential-based wave equation and a pressure formulation. This permits
taking into account a heterogeneous bulk density of the absorbent material, as well as
thermal gradients inside the silencer. For that, a suitable form of the wave equation for
a moving medium written in terms of velocity potential is required in the central duct
to simplify the computations. On the other hand, the corresponding wave equation
for the absorbent material domain can be expressed in terms of acoustic pressure
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when considering a stationary (non-moving) medium. The coupling between both
formulations has been carried out by means of the perforated duct impedance, which
also permits the introduction of the absorbent material property variations through
the resistivity. The effect of a non-uniform mean flow caused by the presence of
thermal gradients within the silencer is also included in the acoustic impedance of the
perforated screen. These heterogeneities lead to a spatial variation of the coupling
and also to additional convective terms in the wave equations. The main limitations
of the method can be, among others: the high computational requirements required
by a FE formulation in comparison with analytical and semi-analytical methods on
the one hand, and on the other, that the flow noise is not considered due to the low
Mach numbers usually found in the exhaust systems (lower than 0.3).

The acoustic behaviour of a dissipative silencer has been studied in the presence
of a heterogeneous absorbent material in the outer chamber. In order to validate
this approach, several computations have been carried out in the absence of flow to
compare the corresponding predictions, with results calculated using a pressure-based
wave equation, showing a good agreement. The influence of a number of bulk density
distributions on the silencer performance has then been analysed in the presence
of mean flow. It has been shown that the density distribution plays an important
role in the FE acoustic predictions. Thus, in order to obtain more accurate results,
it is reasonable to consider the density distribution instead of an average value if
possible. The acoustic impact of the radial density variations has been shown to be
more relevant than in the axial case. In addition, if density radially increases, higher
transmission loss is obtained, while lower attenuation is achieved for decreasing bulk
density in the radial direction.

Also, the acoustic performance of a dissipative silencer subjected to high tempera-
ture and thermal gradients has been considered. A detailed analysis of the silencer
behaviour has shown that, for an accurate prediction, it is necessary to include the
temperature effects when modelling the sound propagation. For high resistivity mate-
rials, increasing the mean temperature has been shown to deliver a general reduction
in the sound attenuation. Similar conclusions have been found for axial and radial
thermal gradients, although axial temperature variations have exhibited a reduced
impact. Therefore, a suitable representation of the thermal effects is required to
avoid an overestimation of the silencer performance. For less resistive materials, an
increase in temperature and/or thermal gradient has led to a slight drop in the si-
lencer performance in the low to mid frequency range but the opposite trend has been
found at higher frequencies, the transition point shifting to higher frequencies as the
temperature gradient and/or mean flow rise. In general, for some silencer configura-
tions it may be relatively accurate to approximate the temperature field by using a
uniform profile considering an average value. It has been shown, however, that this
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is not always possible, the model implemented here being primarily intended for use
with bulk materials having medium to high airflow resistivities. In this latter case,
attenuation overestimation is likely to be predicted if the temperature distribution is
not taken into account, justifying the current numerical implementation. In addition,
the influence of the mean flow on the transmission loss is consistent with earlier re-
sults obtained at room temperature, with higher Mach numbers leading to a drop in
the silencer performance.

Finally, an optimization procedure has been carried out to obtain the most suitable
configuration of a multichamber silencer in a given frequency range, depending on
the particular characteristics of the geometry and the type of surface in the central
duct. Silencers incorporating sintered passages have shown to be a good alternative
when compared to geometries with microperforated ducts and perforated dissipative
configurations in some particular cases. It should be noted that combining several
kinds of surfaces, such as microperforated and sintered screens, can be useful from
a practical point of view to obtain the suitable configuration for a particular design
application.
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Chapter 5

Efficient numerical approaches.

Point collocation technique

and mode-matching method

Summary:

In this chapter, the mode matching method (MM) and the point collocation technique
(PC) are applied with the objective of accelerating the traditional FE computations
for silencers with high temperature and thermal gradients based on a 3D formulation.
Benefit is taken of the fact that, in general, automotive silencers have an arbitrary, but
axially uniform, cross section. Under certain assumptions of axial uniformity, several
techniques have been developed with a view to reduce the computational effort of a
full three-dimensional FE analysis for dissipative silencers with temperature gradients
and a central perforated passage carrying mean flow. These approaches are based
on a suitable decomposition of the acoustic field into a set of transversal and axial
modes within each silencer subdomain, and a matching procedure of the corresponding
modal expansions at the silencer geometrical discontinuities through the continuity
conditions of the acoustic pressure and axial velocity. The relative computational
efficiency and accuracy of predictions for two matching schemes are reviewed here,
including point collocation (at nodes and Gauss points) and also mode matching with
weighted integration. Both techniques are applied to silencers with variable properties
in the cross section and are compared among them, as well as with a general FE
formulation, in terms of accuracy and computational cost.
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5.1 Introduction

As observed in Chapter 4, the FEM is a very versatile technique, since it permits
computing the acoustic performance of a silencer under more realistic working con-
ditions, such as the presence of thermal gradients and the existence of mean flow. In
addition, it permits analysing complex geometries. The main drawback of a 3D FE
formulation is the high computational cost required to study the acoustic behaviour
of a silencer when the number of degrees of freedom (nodal unknowns) increases,
which implies certain limitations in design and optimization problems [110, 133, 148].
Kirby [100, 101] took benefit of the fact that most silencers in the automotive industry
have an arbitrary, but axially uniform, cross section to set out a quadratic eigenvalue
problem associated with the transversal section and to compute the corresponding
wavenumbers (eigenvalues) and pressure modes (eigenvectors) using a 2D FE formu-
lation. A suitable decomposition of the solution into transversal and axial modes was
combined with the PC technique [100] and the MM method [101] to obtain the com-
plete acoustic fields in all the silencer subdomains considering the continuity of the
pressure and axial velocity at the geometric discontinuities. These approaches suppose
an important reduction of the computation time; however, as Kirby [100, 101, 105]
and Glav [80, 81] noticed, some numerical issues appear, such as those found in the
PC technique, where predictions show a high sensitivity to the silencer geometry and
the collocation grid.

In this chapter, an extension of the works developed by Kirby [100, 101, 105] is pre-
sented to provide some alternatives that are computationally efficient in comparison
with a full 3D FE formulation. Thus, the PC technique and MM method are applied
considering the existence of transversal temperature gradients and mean flow. The
fact of simplifying the temperature field and not considering the axial temperature
gradient seems reasonable in a number of practical applications because, as seen in
Section 4.7.2, the influence of these gradients on the acoustic behaviour is considerably
lower than the transversal ones.

The above-mentioned methods have a common starting point: in both it is necessary
to obtain the eigenvalue problem associated with the transversal section of all the
silencer subdomains to compute both the wavenumbers and their associated pressure
modes. Following this step, how to apply and deal with the continuity conditions of
the acoustic fields for both methods is detailed, this being the main difference between
the different approaches regarding the algebraic equations required for computing the
modal amplitudes of the waves in the involved silencer components. Finally, the
silencer TL can be computed after solving the system of equations obtained previ-
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ously. In addition, a comparison between these techniques and the 3D FE formulation
developed in Section 4.5.2 is presented.

5.2 Quadratic eigenvalue problem associated with

the cross section of the silencer

The longitudinal and transversal sections of a perforated dissipative silencer with an
arbitrary, but axially uniform, cross section are shown in Figure 5.1. As is usual for
this kind of silencers, they are composed of a central perforated duct carrying mean
flow and an outer chamber containing dissipative fibre. The geometry is divided into
four subdomains: the inlet/outlet pipes and a perforated central airway, denoted as
Ωi, Ωa and Ωo, respectively, and an outer chamber Ωm containing absorbent material.
In addition, the perforated surface is denoted as Γp. The air (Ωi ∪ Ωa ∪ Ωo) is
characterized by means of its density ρ0 and speed of sound c0, while the absorbent
material is defined by its equivalent density ρm(x, y) and speed of sound cm(x, y),
both being complex, frequency-dependent and function of the coordinates because
of the transversal variation of the temperature. In principle, no axial temperature
variations exist or, if present, they are considered small enough to have a relevant
impact on the results. For higher thermal variations along the axis of the silencer, as
a first approximation, the transversal thermal gradients could be considered axially
uniform with temperature values given by the average of the temperatures at the inlet
and outlet sections.

ρ0
c0

ρm(x, y)
cm(x, y)

Ωi

Γp

Ωa

Ωm

Tch(x, y)

Tch(x, y)

Z̃p

M =
Umf

c0
SoSi

I+n

I−n

C+
n

C−

n

O+
n

y

O−

n

Ωo

x

y z

x

Sa

Sm

Γm

Figure 5.1: Geometry with an arbitrary cross section.

At this point, it should be noted that only the eigenvalue problem associated with
the chamber and the perforated duct is detailed for illustration purposes, since once
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this procedure is known, obtaining the eigenvalue problem associated with rigid wall
pipes such as the inlet and outlet ducts is straightforward. Thus, considering now
a pressure formulation, the governing equation of the sound propagation in the air
(central duct) can be written as [126]

∂2pa
∂x2

+
∂2pa
∂y2

+ (1−M2)
∂2pa
∂z2

− 2jMk0
∂pa
∂z

+ k20pa = 0 (5.1)

where pa is the acoustic pressure, k0 the wavenumber and M the Mach number. In
the absorbent material region, the governing wave equation is [16, 63, 149]

∇
(

1

ρm
∇pm

)
+
k2m
ρm

pm = 0 (5.2)

where pm is the acoustic pressure, km is the equivalent wavenumber and ρm the
equivalent density of the absorbent material.

The transversal section is axially uniform and therefore, separation of variables can
be applied as

p(x, y, z) = Ψxy(x, y)e−jkzz (5.3)

Ψxy(x, y) =

{
Ψxy

a (x, y), (x, y) ∈ Sa

Ψxy
m (x, y), (x, y) ∈ Sm

(5.4)

where Ψxy is the transversal pressure mode and kz the axial wavenumber. Then,
substituting expressions (5.3) and (5.4) into (5.1) and (5.2) yields

∇2Ψxy
a + (k20 − 2Mk0kz − (1−M2)k2z)Ψ

xy
a = 0 (5.5)

∇
(

1

ρm
∇Ψxy

m

)
+

1

ρm
(k2m − k2z)Ψ

xy
m = 0 (5.6)

Then, a FE discretization of the silencer cross section is applied, together with the
Green’s theorem and the weighted residuals method to equations (5.5) and (5.6)
leading to

Ne
a∑

e=1

(∫

Sa

(∇[N ])T∇[N ]dS +

∫

Sa

(−k20 + 2Mk0kz + (1−M2)k2z)[N ]T [N ]dS

)
{Ψa}

=

Ne
a∑

e=1

(∫

Γp

[N ]T
∂Ψa

∂n
dΓ

)

(5.7)
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Ne
m∑

e=1

(∫

Sm

1

ρm
(∇[N ])T∇[N ]dS +

∫

Sm

1

ρm
(k2z − k2m)[N ]T [N ]dS

)
{Ψm}

=

Ne
m∑

e=1

(∫

Γm∪Γp

1

ρm
[N ]T

∂Ψm

∂n
dΓ

) (5.8)

where [N ] is the shape functions vector, and {Ψa} and {Ψm} are the vectors containing
the nodal unknowns related to the air and the absorbent material subdomains. In
addition, Ne

a and Ne
m are the number of elements belonging to sections Sa and Sm

respectively.

The outer wall of the chamber is rigid and impervious [126], that is

∇Ψm~nm = 0, (x, y) ∈ Γm (5.9)

where ~nm is the outward normal unit vector. Therefore, applying equation (5.9), the
integrals corresponding to the load terms of the equations (5.7) and (5.8) are evaluated
only over the perforated screen. The coupling of the air and the absorbent material
subdomains can be carried out by means of the perforated duct impedance, consid-
ering the continuity of the normal acoustic velocity [104, 126]. Thus, the kinematic
condition can be written as

~ua~na = una
= −~um~nm = −unm

= un (5.10)

un being the normal acoustic velocity that can be obtained from the perforated
impedance equation as

un =
Ψa −Ψm

Z̃p

(5.11)

Thereby taking into account the previous expressions and the relation between the
normal acoustic velocity and the normal gradient of the pressure results in

∂Ψa

∂n
= −ρ0(jωun −Mc0jkzun) = −ρ0jω

(
1−Mc0

kz
ω

)
Ψa −Ψm

Z̃p

(5.12)

∂Ψm

∂n
= −ρmjωunm

= ρmjωun = ρmjω
Ψa −Ψm

Z̃p

(5.13)

and substituting equations (5.12) and (5.13) in expressions (5.7) and (5.8) respectively,
the integral equations defined in (5.14) and (5.15) are obtained.
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Ne
a∑

e=1

(∫

Sa

(∇[N ])T∇[N ]dS

+

∫

Sa

(−k20 + 2Mk0kz + (1−M2)k2z)[N ]T [N ]dS

)
{Ψa}

=

Ne
a∑

e=1

(∫

Γp

(
−jωρ0 + jMc0ρ0kz

Z̃p

)
[N ]T [N ]dΓ

)
{Ψa}

+

Ne
a∑

e=1

(∫

Γp

(
jωρ0 − jMc0ρ0kz

Z̃p

)
[N ]T [N ]dΓ

)
{Ψm}

(5.14)

Ne
m∑

e=1

(∫

Sm

1

ρm
(∇[N ])T∇[N ]dS +

∫

Sm

1

ρm
(k2z − k2m)[N ]T [N ]dS

)
{Ψm}

=

Ne
m∑

e=1

(∫

Γp

jω

Z̃p

[N ]T [N ]dΓ

)
{Ψa} −

Ne
m∑

e=1

(∫

Γp

jω

Z̃p

[N ]T [N ]dΓ

)
{Ψm}

(5.15)

Thus, after assembling the element matrices related to the air subdomain, equation
(5.14) can be written in compact form as

([Kaa] + kz[Daa] + k2z [Maa]){Ψa}+ ([Kam] + kz[Dam]){Ψm} = {0} (5.16)

where the following global matrices have be defined

[Kaa] =

Ne
a∑

e=1

(∫

Sa

(∇[N ])T∇[N ]dS − k20

∫

Sa

[N ]T [N ]dS +

∫

Γa

ρ0jω

Z̃p

[N ]T [N ]dΓ

)

(5.17)

[Daa] = 2Mk0

Ne
a∑

e=1

(∫

Sa

[N ]T [N ]dS

)
−

Ne
a∑

e=1

(
ρ0jMc0

Z̃p

∫

Γp

[N ]T [N ]dΓ

)
(5.18)

[Maa] = (1−M2)

Ne
a∑

e=1

(∫

Sa

[N ]T [N ]dS

)
(5.19)

[Kam] = −
Ne

a∑

e=1

(∫

Γp

ρ0jω

Z̃p

[N ]T [N ]dΓ

)
(5.20)

[Dam] =

Ne
a∑

e=1

(∫

Γp

ρ0jMc0

Z̃p

[N ]T [N ]dΓ

)
(5.21)
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After assembling the element matrices related to the absorbent material subdomain,
equation (5.15) can be represented in compact form as

([Kmm] + k2z [Mmm]){Ψm}+ [Kma]{Ψa} = {0} (5.22)

the global matrices being

[Kmm] =

Ne
m∑

e=1

(∫

Sm

1

ρm
(∇[N ])T∇[N ]dS −

∫

Sm

k2m
ρm

[N ]T [N ]dS

+

∫

Γp

jω

Z̃p

[N ]T [N ]dΓ

) (5.23)

[Mmm] =

Ne
m∑

e=1

(∫

Sm

1

ρm
[N ]T [N ]dS

)
(5.24)

[Kma] = −
Ne

m∑

e=1

(∫

Γp

jω

Z̃p

[N ]T [N ]dΓ

)
(5.25)

Then, the final system of equations yields

([
[Kaa] [Kam]
[Kma] [Kmm]

]
+ kz

[
[Daa] [Dam]
[0] [0]

]

+k2z

[
[Maa] [0]
[0] [Mmm]

]){
{Ψa}
{Ψm}

}
=

{
{0}
{0}

} (5.26)

that can be rewritten as

([K] + kz[D] + k2z [M ]){Ψ} = {0} (5.27)

where the following nomenclature has been considered

[K] =

[
[Kaa] [Kam]
[Kma] [Kmm]

]
(5.28)

[D] =

[
[Daa] [Dam]
[0] [0]

]
(5.29)

[M ] =

[
[Maa] [0]
[0] [Mmm]

]
(5.30)

{Ψ} =

{
{Ψa}
{Ψm}

}
(5.31)
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Then, the system of equations can be expressed as follows to solve the eigenvalue
problem (

[0] [I]
−[M ]−1[K] −[M ]−1[D]

){
{Ψ}
kz{Ψ}

}
= kz

{
{Ψ}
kz{Ψ}

}
(5.32)

where [I] is an identity matrix.

Finally, once the eigenvalue problem is solved and the corresponding wavenumbers
are obtained, the MM and PC techniques can be applied. According to the imaginary
part of the wavenumber kz, the attenuated waves can be classified as progressive and
regressive. In the first, the imaginary part is negative, whereas in the second it is
positive to guarantee an attenuated behaviour as the wave propagates. At this point,
it should be pointed out that it is necessary to sort the eigenvalues and their associated
wavenumbers before applying the above-mentioned methods [100]. This can be done
by sorting the eigenvalues of the progressive and regressive waves by the modulus of
the imaginary part.

5.3 Continuity of the acoustic fields

In this section, it is detailed how to obtain the full 3D acoustic pressure field, depend-
ing on the technique. First, the PC method is described, where the applied continuity
conditions at the geometric discontinuities are enforced in a discrete number of points
[100], whereas the MM technique considers the continuity conditions weighted and in-
tegrated along the sections corresponding to the geometric discontinuities [101]. Both
methods consider the continuity of the same acoustic fields: (1) Acoustic pressure;
(2) Axial acoustic velocity.

5.3.1 Point collocation technique

The continuity of the acoustic fields is applied pointwise at the area changes between
the inlet/outlet ducts and the chamber. The solution of the eigenvalue problem pro-
vides information at the nodal level, which permits applying the continuity conditions
at the nodes of the FE mesh. However, the number of degrees of freedom and the com-
putational cost associated with the calculations considerably increase as the element
size is refined. A possible alternative to reduce the number of collocation points and
the computation time is to impose the continuity conditions at a single Gauss point
[186] per element. In Section 5.5 the results obtained by using these two approaches
are compared.
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Compatibility conditions are provided by the physical requirements that acoustic
pressure and axial velocity be equal at the expansion/contraction and that axial
velocity normal to the rigid endplates be zero [100, 126]. Therefore, at the expansion of
the silencer placed between the inlet duct and the chamber, the continuity conditions
are

pi(x, y, 0) = pa(x, y, 0), (x, y) ∈ Sa (or Si) (5.33)

uzi(x, y, 0) = uza(x, y, 0), (x, y) ∈ Sa (or Si) (5.34)

uzm(x, y, 0) = 0, (x, y) ∈ Sm (5.35)

while at the contraction between the chamber and the outlet yields

pa(x, y, Lm) = po(x, y, 0), (x, y) ∈ Sa (or So) (5.36)

uza(x, y, Lm) = uzo(x, y, 0), (x, y) ∈ Sa (or So) (5.37)

uzm(x, y, Lm) = 0, (x, y) ∈ Sm (5.38)

where uz is the axial velocity of the particle and Lm is the length of the outer cham-
ber. The acoustic pressure and the axial velocity can be written in terms of modal
expansions [80, 81, 100, 101, 104], in such a way that for the inlet duct, the sound
pressure can be expressed as [100, 126]

pi(x, y, z) =

∞∑

n=1

(I+n Ψ+
n (x, y)e

−jkI+

n z + I−n Ψ−

n (x, y)e
−jkI−

n z) (5.39)

whereas the velocity is defined as

uzi(x, y, z) =
1

ρ0c0

∞∑

n=1

(
kI

+

n I+n Ψ+
n (x, y)e

−jkI+

n z

k0 −MkI+

n

+
kI

−

n I−n Ψ−
n (x, y)e

−jkI−

n z

k0 −MkI−

n

)
(5.40)

kI
±

n being the axial wavenumber, I±n the modal amplitude and ΨI±

n (x, y) the n-th
transversal pressure mode. The symbols + and − make reference to the progressive
and the regressive wave, respectively.

For the outlet duct, the acoustic fields are

po(x, y, z) =
∞∑

n=1

(O+
nΨ

+
n (x, y)e

−jkO+

n z +O−

nΨ
−

n (x, y)e
−jkO−

n z) (5.41)

uzo(x, y, z) =
1

ρ0c0

∞∑

n=1

(
kO

+

n O+
nΨ

+
n (x, y)e

−jkO+

n z

k0 −MkO+

n

+
kO

−

n O−
nΨ

−
n (x, y)e

−jkO−

n z

k0 −MkO−

n

)

(5.42)
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It is important to note that progressive and regressive modes are equal when ducts
are rigid (even when mean flow exists), and therefore, Ψ+

n (x, y) = Ψ−
n (x, y) [126].

The fundamental mode consists of a plane wave, whose associated wavenumber can
be expressed as

kI
±

1 =
±k0

1±M
(5.43)

As is usual in the computation of the transmission loss, the inlet duct is assumed to
contain a incident plane wave only. Thus, equations (5.39) and (5.40) can be written
as

pi(x, y, z) = I+1 ΨI+

1 e−jkI+

1 z +

∞∑

n=1

I−n Ψ−

n (x, y)e
−jkI−

n z (5.44)

uzi(x, y, z) =
1

ρ0c0

(
I+1 ΨI+

1 e−jkI+

1 z +

∞∑

n=1

kI
−

n I−n Ψ−
n (x, y)e

−jkI−

n z

k0 −MkI−

n

)
(5.45)

where it can be assumed for simplicity that I+1 ΨI+

1 = 1.

Regarding the acoustic fields within the chamber, the acoustic pressure can be ex-
pressed as

pc(x, y, z) =

∞∑

n=1

(C+
n Ψ+

n (x, y)e
−jk+

z,nz + C−

n Ψ−

n (x, y)e
−jk−

z,nz) (5.46)

where subscript c makes reference to the cross section that includes the chamber and
the central duct, so pc = pa in Sa and pc = pm in Sm. Therefore, the axial acoustic
velocity field is [100, 126]

uzc(x, y, z) =





uza(x, y, z) =
1

ρ0c0

∞∑

n=1

(
k+z,nC

+
n ΨA+

n (x, y)e−jk+
z,nz

k0 −Mk+z,n

+
k−z,nC

−
n ΨA−

n (x, y)e−jk−
z,nz

k0 −Mk−z,n

)
(x, y, z) ∈ Ωa

uzm(x, y, z) =
1

ρmcm

∞∑

n=1

(
k+z,nC

+
n ΨM+

n (x, y)e−jk+
z,nz

km

+
k−z,nC

−
n ΨM−

n (x, y)e−jk−
z,nz

km

)
(x, y, z) ∈ Ωm

(5.47)

If the acoustic pressure and axial velocity in equations (5.33)-(5.35) are substituted
by the corresponding modal expansions defined by equations (5.39) and (5.40), as
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well as (5.46) and (5.47), the following expressions are obtained

1 +
∞∑

n=1

I−n ΨI−

n (x, y) =
∞∑

n=1

(C+
n ΨA+

n (x, y) + C−

n ΨA−

n (x, y)) (x, y) ∈ Sa (5.48)

1

ρ0c0

(
1 +

∞∑

n=1

kI
−

n I−n ΨI−

n (x, y)

k0 −MkI−

n

)

=
1

ρ0c0

∞∑

n=1

(
k

+

z,nC
+
n ΨA+

n (x, y)

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n (x, y)

k0 −Mk−z,n

)
(x, y) ∈ Sa

(5.49)

1

ρmcm

∞∑

n=1

(
k

+

z,nC
+
n ΨM+

n (x, y)

km
+
k

−

z,nC
−
n ΨM−

n (x, y)

km

)
= 0 (x, y) ∈ Sm (5.50)

Equation (5.48) is enforced pointwise at Na collocation points that will coincide with
the nodes of the FE mesh or the Gauss points, depending on the case, in section
Si ≡ Sa. Similarly, equations (5.49) and (5.50) are applied at Na and Nm collocation
points belonging to sections Sa and Sm respectively. Besides, the modal expansions
are truncated to a suitable number of terms to guarantee the solution of the problem.
Then, Na equations are obtained for the acoustic pressure field continuity condition.
Thus, equation (5.48) can be written as follows

1 +

Na∑

n=1

I−n ΨI−

n,q =

Na+Nm∑

n=1

(C+
n ΨA+

n,q + C−

n ΨA−

n,q ) (5.51)

where the subscript q = 1, ..., Na and ΨI−

n,q and ΨA±

n,q refer to the q-th component of the
n-th modal pressure eigenvector for the inlet pipe and central passage respectively,
while I−n and C±

n are the corresponding modal amplitudes. In the same way, equation
(5.49) can be written as

1 +

Na∑

n=1

kI
−

n I−n ΨI−

n,q

k0 −MkI−

n

=

Na+Nm∑

n=1

(
k

+

z,nC
+
n ΨA+

n,q

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n,q

k0 −Mk−z,n

)
(5.52)

with q = 1, ..., Na. Similarly, the modal summations in the axial acoustic velocity con-
tinuity equation (5.50) are truncated and enforced at the collocation points, obtaining
Nm equations.

Nm∑

n=1

(
k

+

z,nC
+
n ΨM+

n,q + k
−

z,nC
−

n ΨM−

n,q

)
= 0 (5.53)
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where q = 1, ..., Nm is related to the q-th value of the transversal pressure mode
associated with the dissipative chamber.

Following a similar approach with equations (5.36)-(5.38) and considering an anechoic
termination (O−

n = 0 ∀n), yields
∞∑

n=1

(
C+

n ΨA+

n (x, y)e−jk+
z,nLm + C−

n ΨA−

n (x, y)e−jk−
z,nLm

)

=

∞∑

n=1

O+
nΨ

O+

n (x, y) (x, y) ∈ Sa

(5.54)

1

ρ0c0

∞∑

n=1

(
k

+

z,nC
+
n ΨA+

n (x, y)e−jk+
z,nLm

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n (x, y)e−jk−
z,nLm

k0 −Mk−z,n

)

=
1

ρ0c0

(
∞∑

n=1

kO
+

n O+
nΨ

O+

n (x, y)

k0 −MkO+

n

)
(x, y) ∈ Sa

(5.55)

1

ρmcm

∞∑

n=1

(
k

+

z,nC
+
n ΨM+

n (x, y)e−jk+
z,nLm

km
+
k

−

z,nC
−
n ΨM−

n (x, y)e−jk−
z,nLm

km

)
= 0

(x, y) ∈ Sm

(5.56)

Following the previous truncation criteria, the equations at the collocations points
are

Na+Nm∑

n=1

(C+
n ΨA+

n,qe
−jk+

z,nLm + C+
n ΨA−

n,q e
−jk−

z,nLm) =

Na∑

n=1

O+
nΨ

O+

n,q (5.57)

Na+Nm∑

n=1

(
k

+

z,nC
+
n ΨA+

n,qe
−jk+

z,nLm

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n,q e
−jk−

z,nLm

k0 −Mk−z,n

)
=

Na∑

n=1

kO
+

n O+
nΨ

O+

n,q

k0 −MkO+

n

(5.58)

1

ρmcm

Na+Nm∑

n=1

(
k

+

z,nC
+
n ΨM+

n e−jk+
z,nLm

km
+
k

−

z,nC
−
n ΨM−

n e−jk−
z,nLm

km

)
= 0 (5.59)
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where q = 1, ..., Na in equations (5.57) and (5.58), and q = 1, ..., Nm in expression
(5.59).

Thus, the resulting algebraic system is composed of 4Na + 2Nm equations, equal
to the number of unknowns. This is readily solved for each excitation frequency to
obtain the unknown pressure amplitudes I−n , C+

n , C−
n and O+

n . Once the amplitudes
are known, the attenuation can be determined by means of the transmission loss as
[126]

TL = −20 log
∣∣∣O+

1 Ψ
O+

1

∣∣∣ (5.60)

assuming that the outlet duct is long enough to guarantee the rapid decay of higher
order evanescent modes.

5.3.2 Mode-matching method

The continuity condition of the pressure and the acoustic velocity fields is enforced at
geometric discontinuities along the whole transversal section by means of a weighted
integral approach, the weighting functions being the transversal pressure modes or
eigenfunctions [104]. This clearly differs from the PC method, where the continuity
conditions were enforced pointwise over the collocation points (nodes of the FE mesh
or Gauss points). When mean flow is neglected, there exist orthogonality relations
between the eigenfunctions that guarantee a convergent system of equations. When
mean flow is present, however, the silencer eigenfunctions are not orthogonal; any-
way, in the absence of a true orthogonality relation for flow, a convergent system of
equations can be established so that its solution reflects the physics of the problem
[104].

Therefore, the first condition is given by the continuity of pressure, the weighting
function being the eigenfunction associated with the incident wave, which leads to
the following expressions

∫

Si

piΨ
I+

n (x, y)dS =

∫

Sa

paΨ
I+

n (x, y)dS (5.61)

∫

Sa

paΨ
I+

n (x, y)dS =

∫

So

poΨ
I+

n (x, y)dS (5.62)

where equations 5.61 and 5.62 are related to the expansion and contraction respec-
tively, n = 1, ..., Nmax referring to the n-th transversal pressure mode. It is worth
noting that in equation (5.62), in general, the weighting function chosen should be the
eigenfunction associated with the progressive wave of the outlet duct [157]. However,

in this case, ΨI+

n (x, y) = ΨO+

n (x, y) and therefore, the result is not affected.
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The second condition is a kinematic relationship that considers the continuity of
the axial acoustic velocity and the condition of rigid lateral wall. In this case, the
eigenfunctions associated with the incident wave at the chamber have been chosen as
weighting function, obtaining [101, 104]

∫

Si

uziΨ
+
n (x, y)dS =

∫

Sa∪Sm

uzcΨ
+
n (x, y)dS (5.63)

∫

Sa∪Sm

uzcΨ
+
n (x, y)dS =

∫

So

uzoΨ
+
n (x, y)dS (5.64)

where expressions (5.63) and (5.64) are related to the expansion and the contraction,
respectively, with n = 1, ..., Nmax.

Then, developing equations (5.61)-(5.64) and considering the corresponding modal
expansions (5.39)-(5.42) and (5.46)-(5.47) developed in Section 5.3, it yields

∫

Si

ΨI+

n dS +

∞∑

n=1

∫

Si

I−n ΨI−

n ΨI+

n dS =

∞∑

n=1

∫

Sa

(C+
n ΨA+

n + C−

n ΨA−

n )ΨI+

n dS (5.65)

∞∑

n=1

∫

Sa

(
C+

n ΨA+

n e−jk+
z,nLm + C−

n ΨA−

n e−jk−
z,nLm

)
ΨI+

n dS =

∞∑

n=1

∫

So

O+
nΨ

O+

n ΨI+

n dS

(5.66)

∫

Si

1

ρ0c0
Ψ+

n dS +

∞∑

n=1

∫

Si

1

ρ0c0

kI
−

n I−n ΨI−

n

k0 −MkI−

n

Ψ+
n dS

=

∞∑

n=1

∫

Sa

1

ρ0c0

(
k

+

z,nC
+
n ΨA+

n

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n

k0 −Mk−z,n

)
Ψ+

n dS

+

∞∑

n=1

∫

Sm

1

ρmcm

(
k

+

z,nC
+
n ΨM+

n

km
+
k

−

z,nC
−
n ΨM−

n

km

)
Ψ+

n dS

(5.67)
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∞∑

n=1

∫

Sa

1

ρ0c0

(
k

+

z,nC
+
n ΨA+

n e−jk+
z,nLm

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n e−jk−
z,nLm

k0 −Mk−z,n

)
Ψ+

n dS

+

∞∑

n=1

∫

Sm

1

ρmcm

(
k

+

z,nC
+
n ΨM+

n e−jk+
z,nLm

km
+
k

−

z,nC
−
n ΨM−

n e−jk−
z,nLm

km

)
Ψ+

n dS

=
∞∑

n=1

∫

So

1

ρ0c0

(
kO

+

n O+
nΨ

O+

n

k0 −MkO+

n

)
Ψ+

n dS

(5.68)

Now, the modal expansions (5.65)-(5.68) are truncated at suitable number of terms
Nmax to guarantee the convergence of the solution and the same number of equations
and unknowns. This leads to the following expressions

∫

Si

ΨI+

n dS +

Nmax∑

n=1

∫

Si

I−n ΨI−

n ΨI+

n dS =

Nmax∑

n=1

∫

Sa

(C+
n ΨA+

n + C−

n ΨA−

n )ΨI+

n dS (5.69)

Nmax∑

n=1

∫

Sa

(
C+

n ΨA+

n e−jk+
z,nLm + C−

n ΨA−

n e−jk−
z,nLm

)
ΨI+

n dS =

Nmax∑

n=1

∫

So

O+
nΨ

O+

n ΨI+

n dS

(5.70)

∫

Si

1

ρ0c0
Ψ+

n dS +

Nmax∑

n=1

∫

Si

1

ρ0c0

kI
−

n I−n ΨI−

n

k0 −MkI−

n

Ψ+
n dS

=

Nmax∑

n=1

∫

Sa

1

ρ0c0

(
k

+

z,nC
+
n ΨA+

n

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n

k0 −Mk−z,n

)
Ψ+

n dS

+

Nmax∑

n=1

∫

Sm

1

ρmcm

(
k

+

z,nC
+
n ΨM+

n

km
+
k

−

z,nC
−
n ΨM−

n

km

)
Ψ+

n dS

(5.71)
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Nmax∑

n=1

∫
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1

ρ0c0

(
k

+

z,nC
+
n ΨA+

n e−jk+
z,nLm

k0 −Mk+z,n
+
k

−

z,nC
−
n ΨA−

n e−jk−
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k0 −Mk−z,n

)
Ψ+

n dS

+

Nmax∑
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∫
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1

ρmcm

(
k

+

z,nC
+
n ΨM+

n e−jk+
z,nLm

km
+
k

−

z,nC
−
n ΨM−

n e−jk−
z,nLm
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)
Ψ+

n dS

=

Nmax∑

n=1

∫

So

1

ρ0c0

(
kO

+

n O+
nΨ

O+

n

k0 −MkO+

n

)
Ψ+

n dS

(5.72)

Finally, the weighted integrals (5.69)-(5.72) are numerically evaluated after the afore-
mentioned truncation at Nmax modal terms. These modes have to guarantee a suit-
able representation of the acoustic fields [1]. In addition, the consideration of an
anechoic termination (O−

n = 0 ∀n) and an incident wave amplitude I+1 = 1, I+n = 0
∀n 6= 0 leads to a system composed of 4Nmax equations and unknowns, which permits
obtaining the pressure modal amplitudes. Once these wave amplitudes are obtained,
the transmission loss can be computed as [101]

TL = −20 log
∣∣O+

1

∣∣ (5.73)

5.4 Temperature variation

In this chapter, a simplified temperature field is considered in order to apply the PC
technique and the MM method. Transversal thermal gradients are retained while the
temperature is assumed to be axially uniform, its value being the average between the
inlet and the outlet sections. This assumption seems plausible, since radial thermal
gradients can considerably affect the acoustic performance of the silencer, the influence
of axial gradients being small enough to have a relevant impact on the results in a
number of interesting situations (see Section 4.7.2).

5.4.1 Absorbent material

As previously shown [10], an absorbent material can be defined by its equivalent
acoustic properties, e.g. the characteristic impedance Zm and wavenumber km. These
parameters are coordinate-dependent, since they are affected by temperature. Thus,
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similarly to the procedure detailed in Section 3.3.1, the empirical law of Delany and
Bazley [57] can be modified to obtain

Zm(x, y) = Z0

(
1 + a5

(
fρ0

R(x, y)

)a6

− ja7

(
fρ0

R(x, y)

)a8
)

(5.74)

km(x, y) = k0

(
1 + a3

(
fρ0

R(x, y)

)a4

− ja1

(
fρ0
Rx, y)

)a2
)

(5.75)

The coefficients and exponents a1, ..., a8, are obtained by fitting a curve to the
experimental data. Also, they are considered constant at high temperatures (see
Section 3.3 for further details) and resistivity R = R(x, y) can be updated at each
integration point by means of the Christie’s expression [41]

R(T (x, y)) = R(T0)

(
T (x, y) + 273.15

T0 + 273.15

)0.6

(5.76)

R(T0) being the resistivity at the reference temperature T0 and T (x, y) the temper-
ature at the corresponding integration point. For a given point, the corresponding
temperature can be obtained, for example, from the simplified thermal field under con-
sideration, the latter being computed from the one detailed in Section 3.3.1, assuming
that axial variations are negligible. Thus, the temperature is considered axially uni-
form in the current analysis and equal to the average value at the inlet and the outlet
sections, whereas the radial variations can be modelled as T (r) = c0 + c1r + c2r

2,
r being the radius of the integration point that can be obtained from the x and y
coordinates as r =

√
x2 + y2, and c0, c1 and c2 are the coefficients defining the tem-

perature field. These coefficients are obtained from the temperature values at the
central duct radius, and the mid and outer radii of the chamber. This latter defini-
tion fits satisfactorily the logarithmic function that characterizes the heat transfer in
a cylindrical duct [90].

Once the above-mentioned two material properties Zm and km are obtained, the
equivalent acoustic density and speed of sound can be computed. These values are
introduced in equations of Section 5.3.1 associated with the PC method and of Sec-
tion 5.3.2 related to the MM scheme for obtaining the corresponding final system of
equations in each case.

5.4.2 Impedance of the perforated duct

In this Thesis, the model developed by Lee and Ih [108] is used to calculate the charac-
teristic impedance of the perforated surface. Therefore, the dimensionless impedance
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of the perforated duct in the presence of a tangential mean flow can be expressed by
the expression (2.149), which is repeated here for convenience.

Z̃p(x, y) = ρ0c0


ξ

′

p +

j0.425k0dh

(
ρm(x, y)

ρ0
− 1

)
F (σ)

σ




In this case, the acoustic impedance of the perforated duct does not explicitly depend
on the axial coordinate z, since the duct is parallel to the z axis and any possible
axial variation of the temperature has been substituted by a constant value obtained
as the average between the temperatures at the inlet and outlet sections.

5.5 Application to axisymmetric perforated dissi-

pative silencers

In this section, the PC and the MM techniques are applied to perforated dissipative
silencers subjected to transversal thermal gradients. The geometry of the configura-
tion under study is detailed in Table 5.1. In addition, the perforated duct is defined by
σ = 0.1, dh = 0.0035 m and tp = 0.001 m. In all the cases the mean flow Mach num-
ber is M = 0.1 and the dissipative fibre considered is E fibreglass, whose resistivity
is R = 30716 rayl/m at 25◦C.

Geometry Li/Lo (m) Rd (m) Lch (m) Rch (m)

1 0.1 0.0268 0.3 0.091875

Table 5.1: Geometry under study: L, length; R, radius; i, inlet; o, outlet; d, duct; ch,

chamber.

All the temperature distributions considered in the computations are listed in Table
5.2 (for further information see Figure 3.3). Simplified equivalent temperature dis-
tributions are denoted by a, while b is used for the corresponding temperature fields
including radial and axial thermal gradients.

Some of the results presented hereafter have been published in reference [151]. In
addition, further details of the PC technique applied at nodes can be found in [63].
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Case Tr1(Rd) Tr2(Rm) Tr3(Rch) Tr4(Rd) Tr5(Rm) Tr6(Rch)

1a 250 185.48 150 250 185.48 150
2a 325 228.22 175 325 228.22 175
3a 400 270.96 200 400 270.96 200
1b 300 235.48 200 200 135.48 100
2b 400 303.22 250 250 153.22 100
3b 500 370.96 300 300 170.96 100

Table 5.2: Temperatures (◦C) for the definition of temperature fields.

5.5.1 Point collocation in nodes and Gauss points

In order to validate the PC approach presented in this Thesis, several analyses have
been carried out considering the simplified temperature distributions detailed in Table
5.2. The numerical test problem has been computed three times for each temperature
field, including the PC technique at nodes and Gauss points, and a full FE formulation
(see Section 4.5.2). For the latter, two possibilities are taken into account: (1) The
in-house hybrid formulation developed in Section 4.5.2; and (2) the commercial FE
software COMSOL MultiphysicsR©. The hybrid formulation allows the consideration
of both axial and radial thermal gradients, as well as the variations of the mean flow
due to these gradients, while the commercial program has only been used to validate
the PC technique when a uniform temperature field of 200 ◦C is considered in the
whole silencer, in the absence of mean flow. In the rest of the cases a mean flow Mach
number of M = 0.1 is taken into account.

The results obtained, according to Figure 5.2, show that good agreement is found
between the results predicted by the full FE formulation and the PC approach for both
nodes and Gauss points. It can be observed that increasing temperature gradients
and mean flow lead to lower attenuation in almost all the frequency range, shifting
the maximum value of transmission loss to higher frequencies, which agrees with the
results obtained in Section 4.7.1.

Figure 5.3 depicts the comparison of the transmission loss achieved considering a
full FE approach for configurations b detailed in Table 5.2, with axial and radial
thermal gradients, and the PC technique (using the FE nodes of the transversal
mesh) for configurations a with only radial temperature variations. From a practical
point of view, these discrepancies are not very relevant. It can be observed that
considering only the radial gradient produces a slight overestimation of the TL. Also,
the differences between the attenuation curves computed with a complex temperature
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Figure 5.2: Transmission loss of a dissipative silencer with radial thermal gradients: ,

uniform, 200 ◦C, COMSOL; ×××, uniform, 200 ◦C, PC, nodes; +++, uniform, 200 ◦C,

PC, Gauss points; , 1a, full FE formulation; ×××, 1a, PC, nodes; +++, 1a, PC,

Gauss points; , 2a, full FE formulation; ×××, 2a, PC, nodes; +++, 2a, PC, Gauss

points; , 3a, full FE formulation; ×××, 3a, PC, nodes; +++, 3a, PC, Gauss points.

field and those obtained with a simplified variation increase as the thermal gradients
are higher. For example, the maximum discrepancy between cases 1a and 1b is
0.56 dB, whereas in cases 2a and 2b the difference is approximately 0.66 dB, and in
cases 3a and 3b is about 0.78 dB. Thus, the slight influence of substituting the axial
temperature gradient by its average value is clearly compensated by the benefits of an
important reduction of the computational cost associated with PC approach. More
details about the computation time will be provided in Section 5.5.3.

5.5.2 Mode-matching

In this section, the attenuation curves obtained with the MM method are compared
with the transmission loss results computed by means of the full FE hybrid formu-
lation in Figure 5.4, where it can be observed that good agreement appears between
both methods. In order to obtain higher accuracy, six modes have been considered in
the computations (further details about the number of modes and the error associated
with the FE discretization are given later). The temperature fields under study are
defined in Table 5.2, and the value of mean flow considered is given by M = 0.1. In
addition, it can be observed that the main conclusions related to the TL in Figure
5.3, are repeated here.
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Figure 5.3: Transmission loss comparison for a dissipative silencer with axial/radial and

only radial temperature gradients: , 1a, simplified field, PC; , 1b, full FE

formulation; , 2a, simplified field, PC; , 2b, full FE formulation; , 3a,

simplified field, PC; , 3b, full FE formulation.
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Figure 5.4: Transmission loss of a dissipative silencer with radial thermal gradients: ,

1a, full FE formulation; ooo, 1a, MM; , 2a, full FE formulation; ooo, 2a, MM; ,

3a, full FE formulation; ooo, 3a, MM.

190 E.M. Sánchez-Orgaz



5.5. Application to axisymmetric perforated dissipative silencers

5.5.3 Study and comparison of the error convergence between
the PC technique and the MM approach

To study the convergence of the PC and the MM approaches, several analyses have
been carried out with an increasing refinement of the 2D transversal FE mesh as-
sociated with the silencer cross section. As the element size is refined, the number
of nodes included in the calculations is higher, which improves the accuracy of the
solution of the eigenvalue problem leading to a better computation of the silencer
transmission loss.

Both methods obtain good agreement when compared with the full FE hybrid for-
mulation. However, a study of convergence is required to compare the PC technique
with the MM method. The impact of the element size is studied refining the FE mesh
and computing the associated relative error. This can be achieved comparing the
transmission loss obtained through the PC and the MM techniques with a reference
solution computed via the hybrid formulation presented in this Thesis (see Section
4.5.2). The mesh used in this reference computation is composed of 8-node quadratic
quadrilateral elements, their size being 0.001 m, which permits obtaining an accu-
rate solution. This provides about 100 elements per wavelength for the maximum
frequency fmax = 3200 Hz considered in the computations [75]. The time required
to calculate the acoustic performance can be usually more than an hour due to the
considerable number of nodes (101688). The meshes associated with the transversal
discretizations of the PC and the MM approaches are composed of 3-node quadratic
one-dimensional elements, since the geometry under analysis is axisymmetric and,
therefore, the silencer cross section can be represented by a line. The relative error
of the transmission loss associated with these FE discretizations for both approaches
can be computed as

Error(%) = 100

√√√√
nfreq∑

i=1

(TLi − TLref
i )2

/ nfreq∑

i=1

(TLref
i )2 (5.77)

TLi being the value of the transmission loss obtained by the PC and the MM methods
and TLref

i the corresponding value given by the full FE formulation with the afore-
mentioned reference mesh. All the computations have been done considering case 1a
(see Table 5.2) and a mean flow Mach number M = 0.1.

Figure 5.5 represents the average relative error (%) previously defined versus the
number of nodes for the meshes under study, considering case 1a. The parameters
related to the meshes are listed in Table 5.3.
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Element size (m) Number of nodes

0.002 96
0.003 64
0.004 50
0.005 42
0.006 34
0.007 30
0.008 28
0.009 24
0.01 22
0.0125 20
0.015 16
0.02 14
0.032 8
0.065 6

Table 5.3: Number of nodes of each finite element mesh.
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Figure 5.5: Average relative error (%) versus number of nodes for different meshes

considering case 1a: , MM, 1 mode; , MM, 2 modes; , MM, 3 modes; ,

MM, 4 modes; , MM, 5 modes; , MM, 6 modes; , PC, nodes; , PC,

Gauss points.

From figure 5.5 it can be deduced that, from a practical point of view, the average
error is negligible if a reasonable number of nodes (more than 10) is used, since its
value does not exceed the 0.2% in any case for both the PC and the MM approaches
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when a mesh of more than fourteen nodes is used. Therefore, it can be concluded that
the good agreement shown before between these techniques and a full finite element
formulation is confirmed. Nevertheless, it is worth noting that as the number of
degrees of freedom increases, the algebraic system of equations is worse conditioned,
which can generate numerical problems. For example, when applying the MMmethod,
the error decreases as the number of modes increases, except for the case of four and
five modes. This can be due to the fact that the problem starts to be ill-conditioned for
five modes and the error consequently increases at this point, decreasing again for six
modes. It is also observed that for a given number of modes, as the number of nodes
increases the error tends to an asymptotic value. On the other hand, when applying
the nodal PC technique for meshes with an element size of 0.003 m or lower, it has
been impossible to obtain values of transmission loss because of the ill-conditioning
of the problem. However, considering the same FE mesh, the number of Gauss points
is lower than the number of nodes, which makes possible to solve the problem. In
addition, when considering solvable problems for both nodal and gaussian PC, the
discretization error for a given FE mesh is lower for the former, since the dimension
of the system of equations is larger.

Figure 5.6 shows some curves related to the computational effort. As the number of
modes considered in the MM technique is higher, the error decreases at the expense of
increasing the computation time. It should be noted that the PC and the MM errors
are comparable if six modes are considered in the latter technique, but the collocation
techniques have a certain advantage in terms of computational expenditure. The
errors obtained using the nodes of the finite element mesh as collocation points are
slightly lower than those obtained with one Gauss point per element. The most time-
consuming operation of these methods is related to the assembly of the final system of
equations when a standard matrix process is followed. In this case, the PC method at
Gauss points requires a lower computational cost. To improve the computation time,
the MATLABR© function bsxfun has been used to avoid some time-consuming loops
in the code when assembling the final system of equations in all the methodologies
presented here. This fact supposes that the computation times are quite similar if the
MM approach with one mode and the PC approaches (nodes and Gauss points) are
compared, although the error of the former is considerably higher (see Figure 5.5).
The computation cost increases with a higher number of degrees of freedom, as well
as with a larger number of weighting functions in the case of the MM method. As can
be seen, the error is higher when using this latter method for a given computational
expenditure.
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Figure 5.6: Computation time (s) versus number of nodes for different meshes considering

case 1a: , MM, 1 mode; , MM, 2 modes; , MM, 3 modes; , MM, 4

modes; , MM, 5 modes; , MM, 6 modes; , PC, nodes; , PC, Gauss

points.

The relative error calculated at 320 Hz and 3200 Hz is depicted in Figures 5.7 and
5.8, respectively. The tendencies shown at each one of these frequencies are relatively
similar to the behaviour presented by the average relative error (see also Figure 5.5).
Nevertheless, there is an important oscillation in the relative error for the gaussian
point collocation at 320 Hz, while at 3200 Hz the trend shown by the error is smoother
and no relevant oscillations appear. If the error obtained at 3200 Hz using the nodes
as collocation points is compared with the error associated with Gauss points, it is
found that the error is slightly higher for the latter approach. When the PC and
the MM techniques are compared, the error observed at 3200 Hz for the nodal PC is
similar to the one shown by the MMmethod when six modes are considered. However,
the relative error at 320 Hz is higher for the latter approach. In spite of the fact that
it is difficult to extract general conclusions from single frequencies, it seems that at
low frequencies the PC technique shows more accuracy, while at high frequencies both
the nodal PC and the MM methods exhibit a similar behaviour.
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Figure 5.7: Relative error (%) at 320 Hz versus number of nodes for different meshes

considering case 1a: , MM, 1 mode; , MM, 2 modes; , MM, 3 modes; ,
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Figure 5.8: Relative error (%) at 3200 Hz versus number of nodes for different meshes

considering case 1a: , MM, 1 mode; , MM, 2 modes; , MM, 3 modes; ,

MM, 4 modes; , MM, 5 modes; , MM, 6 modes; , PC, nodes; , PC,

Gauss points.
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5.6 Conclusions

Two computationally efficient numerical approaches, based on the MM method and
the PC technique, have been applied to study the acoustic behaviour of perforated
dissipative silencers of arbitrary, but axially uniform, cross sections with thermal
gradients in the absorbent material. Also, the presence of mean flow in the central
perforated duct has been considered in the model. The main advantage of the pro-
posed methodologies is that they reduce the computational effort when compared to
a full FE formulation. Both approaches combine axial and transversal solutions of the
wave equation in the different regions of the silencer. The transversal pressure modes
and their corresponding wavenumbers are obtained by means of a transversal finite
element analysis of the eigenvalue problem associated with the cross section. Since the
presence of temperature gradients leads to a non-homogeneous absorbent material,
an adapted version of the wave equation has been considered. In the numerical cases
under study, it is supposed that the transversal thermal gradients have more influence
on the acoustic behaviour of the silencer than the axial ones. Thus, the transversal
gradient has been retained in the formulation, while the axial temperature variations
have been substituted by a uniform temperature field, its value being the average
between the inlet and outlet sections. Considering the compatibility equations of the
acoustic pressure and the axial velocity at the geometric discontinuities, and applying
the MM/PC methods, the modal pressure amplitudes are obtained at the chamber
as well as at the inlet/outlet ducts. Although more accuracy is expected with the
mode-matching method, the computational cost required rapidly increases with the
number of modes. For a given computational effort, the most precise approach seems
to be the nodal PC technique, which has a slight advantage over Gauss collocation.
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Chapter 6

Conclusions and future works

Summary:

In this chapter, the main conclusions extracted from this work are detailed, highlighting
those related to the objectives of the Thesis. The more relevant contributions are
pointed out and possible future works are proposed in order to continue the research
line presented here.
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6.1 Conclusions

The conclusions obtained in the present Thesis, related to the development and im-
plementation of general and efficient methods for the design and acoustic modelling
of automotive silencers are presented here.

• It has been shown that plane wave models are not valid for silencers in the usual
working range of frequencies for reciprocating internal combustion engines. This
justifies the need to use more general and accurate models based on numerical
techniques, such as the FEM and other numerical approaches that combine the
mode-matching method and the point collocation technique with the FEM, to
efficiently study the acoustic behaviour of silencers.

• Perforated dissipative silencers present a good acoustic performance in the mid
and high frequency range. However, the absorbent materials can be swept by
the exhaust gases from the engine, which can have harmful effects on human
health. This justifies the need to find new materials and design solutions as an
alternative to perforated dissipative silencers.

• The characterization of the acoustic impedance of sintered surfaces has been
carried out as a possible alternative to the traditional perforated dissipative
silencers. A possible additional advantage can be related to the reduction of the
weight associated with dissipative configurations. The results obtained show
a nearly constant normalized acoustic resistance of the sintered screen, while
the imaginary part of the acoustic impedance shows a slight dependence on the
frequency and its numerical value is lower than the real one up to relatively
high frequencies. Therefore, as a first approximation, it can be modelled by a
real-valued constant impedance. In addition, several analyses have been done to
study the acoustic behaviour of these sintered plates, showing good attenuation
properties. Thus, it seems a potential alternative to dissipative configurations
in some practical applications.

• In order to simulate the 3D acoustic behaviour of perforated dissipative silencers
under more realistic conditions such as the existence of high temperature, ther-
mal gradients, variations of the absorbent material properties and the presence
of mean flow, a hybrid FE model has been presented.

• For the consideration of an absorbent material with variable bulk density, two
different formulations have been applied and combined. In the central duct a
suitable equation for a moving medium in terms of velocity potential is consid-
ered, while in the outer chamber, the suitable form of the wave equation for a
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non-moving medium in terms of pressure is taken into account. The coupling
between both subdomains has been carried out by means of the perforated duct
impedance, considering the continuity of the velocity. The acoustic impedance
is variable due to the variation of the absorbent material density that modifies
the steady airflow resistivity of the fibre. Therefore, the usual definition of the
acoustic impedance has been modified to include the spatial variation of the
properties.

• Once the previous model has been implemented in an in-house code, the acoustic
behaviour of perforated dissipative silencers carrying an absorbent material with
heterogeneous bulk density has been studied. The results show that the radial
variation of the bulk density has a higher influence on the attenuation achieved
by the silencer than the axial distribution. When radial variations are considered
and the fibre density is higher near the perforated surface, the transmission loss
is dramatically reduced. However, if the density is higher near the outer radius
of the chamber, the transmission loss considerably increases. It is also worth
noting that the influence of a variable density distribution seems to have more
impact on the acoustic performance as the fibre considered is more resistive.

• High temperature and thermal gradients can appear within a silencer provoking
spatial variations of the propagation media properties, as well as of the mean
flow. As in the previous case, two different formulations have been combined.
In the central duct a suitable equation for a moving medium in terms of velocity
potential is required. The potential formulation permits including the flow vari-
ations due to the temperature gradients and reducing the number of variables.
A pressure-based wave equation for stationary medium is applied in the dissipa-
tive outer chamber. Both subdomains have been coupled through the perforated
duct acoustic impedance; this depends on the thermal-induced material hetero-
geneities and mean flow. The resistivity plays a key role in the model, and it
is computed pointwise via Christie’s power law, once the temperature field has
been defined.

• The effect of temperature and associated gradients on the acoustic behaviour
of dissipative silencers has been studied. The analysis shows that high tem-
peratures have a great influence on the acoustic performance. In addition,
transversal gradients seem to have a higher impact on the transmission loss
than axial variations. It is worth noting that thermal gradients have more im-
pact on the transmission loss as the material resistivity increases. Therefore,
for less resistive materials, an increase in temperature and/or thermal gradient
has led to a slight drop in the silencer performance in the low to mid frequency
range but the opposite trend has been found at higher frequencies, the tran-
sition point shifting to higher frequencies as the temperature gradient and/or
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mean flow rise. This involves that, for some silencer configurations containing
low resistivity materials, the temperature field can be approximated by using
a uniform profile considering an average value. On the contrary, for absorbent
materials having medium to high airflow resistivities the consideration of the full
temperature field is required to obtain accurate and reliable computations. In
this latter case, attenuation overestimation is likely to be predicted if the tem-
perature distribution is not taken into account, thus justifying the numerical
implementation presented in this Thesis.

• An optimization procedure has been applied to multichamber silencers in order
to find a useful design tool with a view to obtaining the most suitable configu-
ration for each application. Also the acoustic performance of different surfaces
has been assessed, showing that microperforated and sintered surfaces can be
good alternatives to dissipative silencers, depending on the frequency range of
interest. The most important aspects for silencer optimization depend on each
particular application. Nevertheless, parameters as the transversal and axial
dimensions are important factors. Also, the geometrical characteristics of the
perforated/sintered plates and the parameters defining the absorbent material
play a key role in the corresponding computational procedure.

• Two numerical techniques have been developed and implemented in the cor-
responding in-house code with the objective of accelerating the finite element
computations (based on a 3D full formulation) for perforated dissipative si-
lencers with high temperature and thermal gradients. These techniques take
benefit from the fact that, in general, the silencers have an arbitrary, but ax-
ially uniform, cross-section. The methods developed are based on the point
collocation technique (at nodes of the finite element mesh and also at Gauss
points) and the mode-matching method. In these approaches the computation
of the pressure modes and the wavenumbers of the different cross sections that
compose the silencer is carried out by means of a transversal finite element
eigenvalue problem. Then, the transversal solutions corresponding to the dif-
ferent subdomains are coupled at the silencer geometric discontinuities through
the above-mentioned techniques. These numerically efficient approaches have
been compared, showing that the mode-matching method is more accurate if a
reasonable number of modes is considered. However, its computational cost is
higher when the number of nodes increases, which implies that the point col-
location technique is a little faster. When comparison is carried out between
nodal and Gaussian collocation, it can be observed that the former are slightly
more accurate. Finally, it is worth noting that the relative error is below 1% in
all the computations carried out for both methods (mode-matching and point
collocation), and therefore the two techniques are suitable from a practical point
of view.
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6.2 Future works

Two different parts can be distinguished in this Thesis. On the one hand, modelling
and experimental work has been carried out to characterize new materials and sur-
faces to avoid the main drawbacks of perforated dissipative silencers. On the other
hand, several numerical models have been developed and implemented for silencer op-
timization purposes and also to study the acoustic performance of perforated dissipa-
tive silencers in the presence of propagation media with variable properties. Following
the previous ideas, some possible future works could be, among others:

• More accurate and detailed characterization of sintered surfaces, including the
presence of mean flow and high pressure levels.

• Search and characterization of new materials as an alternative to the traditional
fibrous silencer configurations, e.g. open cell metallic foams.

• Study of the coupling between sintered surfaces and absorbent materials.

• Development and extension of the existing numerical models for other exhaust
devices, such as catalytic converters and diesel particulate filters, to include
thermal gradients and variable properties of ceramic monoliths, as well as the
effects of wall vibrations and non-potential flows.

• Development of accurate and efficient numerical methods, based on the mode-
matching method and the point collocation technique, to model the acoustic
behaviour of catalytic converters and diesel particulate filters.

• Extension of some numerical techniques, developed by the research group, to
the acoustic problem in exhaust devices: FEM with non-conforming meshes,
Cartesian grids, error estimation of the FE solution, exact integration over the
boundary (which permits the use of CAD silencer models), etc.
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tores de combustión. Aplicación a silenciadores y catalizadores. PhD thesis,
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en Ingenieŕıa, 30(3):155–165, 2014.

[131] B. Nennig, E. Perrey-Debain, and M.B. Tahar. A mode matching method for
modeling dissipative silencers lined with poroelastic materials and containing
mean flow. Journal of the Acoustical Society of America, 128(6):3308–3320,
2010.

[132] The Ceramic Society of Japan. Advanced Ceramic Technologies & Products.
Springer Science & Business Media, 2012.

[133] E. Pahl. Optimization, an attempt at describing the state of the art. Inter-
national Center for Numerical Methods in Engineering (CIMNE), Barcelona,
2004.

E.M. Sánchez-Orgaz 213



Bibliography

[134] F. Payri, A. Broatch, J.M. Salavert, and D. Moreno. Acoustic response of fibrous
absorbent materials to impulsive transient excitations. Journal of Sound and
Vibration, 329(7):880–892, 2010.

[135] F. Payri, A.J. Torregrosa, and R. Payri. Evaluation through pressure and mass
velocity distributions of the linear acoustical description of IC engine exhaust
systems. Applied Acoustics, 60(4):489–504, 2000.

[136] K.S. Peat. Evaluation of four-pole parameters for ducts with flow by the finite
element method. Journal of Sound and Vibration, 84(3):389–395, 1982.

[137] K.S. Peat. The acoustical impedance at discontinuities of ducts in the presence
of a mean flow. Journal of Sound and Vibration, 127(1):123–132, 1988.

[138] K.S. Peat and K.L. Rathi. A finite element analysis of the convected acous-
tic wave motion in dissipative silencers. Journal of Sound and Vibration,
184(3):529–545, 1995.

[139] A.M. Pedrosa. Desarrollo de herramientas experimentales para la caracteri-
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Mecánica, Castellón, 2012.

E.M. Sánchez-Orgaz 221


	Title
	Tribunal
	Abstract
	Resumen
	Resum
	Acknowledgments
	Contents
	Introduction
	Motivation and background
	Objectives
	Organization and development of the Thesis

	Fundamentals: wave equation and acoustic characterization
	Introduction
	Models for the acoustic calculation

	Wave equation
	Non-moving medium
	Moving medium

	One-dimensional acoustics of ducts
	Non-moving medium
	Moving medium

	Plane wave models. Matrix representation
	Generalities
	Transfer matrix of a duct
	Transfer matrix at expansions and contractions

	Perforated plates and ducts
	Characteristic impedance of a perforated surface
	Characteristic impedance of microperforated surfaces

	Absorbent materials
	Introduction
	Material characterization
	Additional considerations

	Silencers
	Reactive configurations
	Dissipative configurations

	Sound attenuation in silencers
	Energetic considerations
	Sound attenuation parameters in silencers

	Applications
	TL of a simple expansion chamber
	TL of perforated dissipative silencer

	Limitations
	Conclusions

	Extended models for absorbent materials and sintered surfaces
	Introduction
	Models for the absorbent material with  variable properties
	Absorbent material with heterogeneous bulk density

	Absorbent material with thermal-induced  heterogeneity
	Variation of the properties

	Sintered surface model
	Material characterization
	Sintered surface acoustic impedance
	Sintered surface acoustic model

	Applications
	Perforated dissipative silencers
	Silencers incorporating sintered ducts

	Conclusions

	Advanced numerical techniques for the acoustic modelling of dissipative silencers
	Introduction
	Application of the finite element method to the convective wave equation
	Pressure formulation
	Velocity potential formulation

	Coupled subdomains
	Pressure formulation
	Velocity potential formulation

	Configurations with absorbent material
	Finite element hybrid formulation. Variable properties of the propagation media
	Variable bulk density
	Non-uniform temperature field

	Shape optimization based on genetic algorithms
	MOGA-II description
	Variables, constraints and objective function of the problem

	Applications
	Perforated dissipative silencer with variable bulk density of the absorbent material
	Perforated dissipative silencer subjected to thermal gradients
	Shape optimization in multichamber silencers
	Comparison of surfaces

	Conclusions

	Efficient numerical approaches. Point collocation technique  and mode-matching method
	Introduction
	Quadratic eigenvalue problem associated with the cross section of the silencer
	Continuity of the acoustic fields
	Point collocation technique
	Mode-matching method

	Temperature variation
	Absorbent material
	Impedance of the perforated duct

	Application to axisymmetric perforated dissipative silencers
	Point collocation in nodes and Gauss points
	Mode-matching
	Study and comparison of the error convergence between the PC technique and the MM approach

	Conclusions

	Conclusions and future works
	Conclusions
	Future works

	Bibliography
	List of publications
	International journals
	International congresses
	National congresses


