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Abstract
Automatic brain tumour segmentation has become a key component for the future of brain

tumour treatment. Currently, most of brain tumour segmentation approaches arise from the

supervised learning standpoint, which requires a labelled training dataset from which to

infer the models of the classes. The performance of these models is directly determined by

the size and quality of the training corpus, whose retrieval becomes a tedious and time-con-

suming task. On the other hand, unsupervised approaches avoid these limitations but often

do not reach comparable results than the supervised methods. In this sense, we propose

an automated unsupervised method for brain tumour segmentation based on anatomical

Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped

by their structured or non-structured condition, were evaluated within our pipeline. Consid-

ering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian

Mixture Model (GMM), whereas as structured classification algorithms we evaluated

Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a

statistical approach supported by tissue probability maps is proposed to automatically iden-

tify the tumour classes after the segmentations. We evaluated our brain tumour segmenta-

tion method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and

Leaderboard datasets. Our approach based on the GMMmodel improves the results ob-

tained by most of the supervised methods evaluated with the Leaderboard set and reaches

the second position in the ranking. Our variant based on the GHMRF achieves the first posi-

tion in the Test ranking of the unsupervised approaches and the seventh position in the gen-

eral Test ranking, which confirms the method as a viable alternative for brain

tumour segmentation.
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Introduction
Medical imaging techniques play a key role for brain tumour diagnosis due to the intracranial
location and the unspecificity of clinical symptoms of such lesions [1]. The early identification
and delineation of the different tissues related to the tumour becomes crucial to make decisions
that can improve the patient survivability. The manual analysis and segmentation of these tis-
sues involves a complex, time-consuming and biased task, which caught the attention of the
Pattern Recognition (PR) and Machine Learning (ML) community [2]. Particularly, GlioBlas-
toma Multiforme (GBM) tumour has received most of this attention, as it is the most common
and aggressive malignant tumour of the central nervous system [3, 4]. GBMs are heterogeneous
lesions that present different areas of active tumour, necrosis and edema, all of them exhibiting
a high variability related to the aggressiveness of the tumour. Hence, the automated segmenta-
tion of these lesions becomes a desired solution from the clinical standpoint and an interesting
challenge to address from the ML community.

Recent extensive reviews of brain tumour segmentation have been presented in [2, 5]. Most
of these techniques fall into the supervised learning approach. In [6, 7] Support Vector Ma-
chines (SVM) were applied to multiparametric MR datasets to segment health and pathological
tissues, and additionally subcompartiments inside these areas. Jensen et al. [8] applied several
neural networks to detect brain tumour invasion. Lee et al. [9] used a combination of Condi-
tional Random Fields (CRF) and SVM to perform tumour segmentation. Bauer et al. [10] also
used SVM and Hierarchical CRF to segment both healthy and tumour tissues including sub-
compartments. Recently, Random Forest (RF) [11] techniques have shown high success in the
supervised brain tumour segmentation task. In [12–15] several approaches based on variants
of the RF algorithm were proposed for the Image Segmentation Challenge of Medical Image
Computing and Computer-Assisted Intervention (MICCAI) 2013 Conference, reaching the
first positions in the competition.

However, supervised learning requires an expensive, time-consuming and biased task to re-
trieve a sufficiently large set of labelled samples from which to learn discriminant functions for
the posterior segmentation [5]. Furthermore, the supervised approaches are limited to the size
and quality of the dataset, among other limitations such as the over-fitting to the training cor-
pus [16]. Moreover, spatio-temporal changes in clinical environment such as new MRma-
chines, protocols or centres may distort the data and hence could affect the performance of the
supervised models [17].

Unsupervised learning tackles these limitations in a more straightforward way. Unsuper-
vised learning does not require a training dataset from which to learn the models of the classes,
but directly uses the patient specific data to find natural groupings of observations, called clus-
ters. Hence, unsupervised learning builds an intra-patient segmentation model, which is inde-
pendent from the differences between other patient’s data. By the opposite, the absence of a
previous manual segmentations to guide the learning process makes the segmentation more
challenging and often lead to a worse performance with respect to supervised approaches.

Some attempts for brain tissue segmentation have been made under the unsupervised para-
digm. Fletcher et al. [18] proposed an approach based on fuzzy clustering and domain knowl-
edge for multi-parametric non-enhancing tumour segmentation. Domain knowledge and
parenchymal tissue detection is based on heuristics related to geometric shapes and locations,
which may not be robust when high deformation is presented. Moreover, several assumptions
such as prior knowledge about the number of existing tumours or the minimum required
thickness of the slices introduces several limitations to the method. Nie et al. [19] used Gauss-
ian clustering with a spatial accuracy-weighted Hidden Markov Random Fields (HMRF) that
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allowed them to deal with images at different resolutions without interpolation. Nowadays, ad-
vanced reconstruction techniques such as super-resolution enables to work in a high resolution
voxel space by reconstructing the low resolution images. Moreover, non automated method is
provided to differentiate between tumour classes and normal tissue classes after the unsuper-
vised segmentation ends, so manual identification might be needed. Zhu et al. [20] developed a
software based on the segmentation approach proposed by Zhang et al. [21], which performs
an Expectation-Maximization (EM) Gaussian clustering combined whit HMRFs. Zhu et al. ex-
tended Zhang’s approach through a sequence of additionally morphological and thresholding
operations to refine the segmentation. Such operations are not fully specified and only overall
commented, so the reproducibility of their results is not possible. Vijayakumar et al. [22] pro-
posed a method based on SOMs to segment tumour, necrosis, cysts, edema and normal tissues
using a multi-parametric Magnetic Resonance Imaging (MRI) set. Although the learning pro-
cess of SOMs is performed in an unsupervised manner, the dataset from which to infer the net
structure is selected and determined manually, similar than in a supervised approach. In their
work, 700 pattern observations, corresponding to 7 different tissues, where selected manually,
hence converting the process in a supervised labelling task. Prastawa et al. [23] proposed a sim-
ilar approach than the followed in this study. They performed an unsupervised classification
based on EM algorithm and also used a brain atlas to characterize the normal tissue classes.
However, they made some simplifying assumptions such as tumours should not produce too
much deformation over the brain in order to allow them to use the atlas without registration.
Moreover, they simplify the classification in 2 tumour classes (tumour and edema) and do not
consider other tissues such as necrosis or non-enhancing tumour. Furthermore, all the unsu-
pervised approaches proposed above applied their algorithms on its own datasets, making diffi-
cult a general comparison of the methods. Doyle et al. [24] also proposed an approach based
on the EM clustering and a Markov Random Fields (MRF) prior. They define different penali-
zations between classes in the MRF, regarding to the probability of the tissues of being neigh-
bours. However, they do not clearly specify how they relate the tissues with the classes before
the unsupervised segmentation to set a different penalizations for each one.

In this work, we propose an unsupervised pipeline for GBM segmentation, able to overcome
the limitations of the supervised approaches while addressing the drawbacks associated with
the unsupervised learning. Our contributions concern the assessment of the performance of
several unsupervised segmentation methods, including both structured and non-structured
prediction algorithms, on a real public and reference dataset. We also provide a generalized
method to automatically identify the classes after an unsupervised segmentation that explain
the abnormal tissues in the brain. Finally, we propose a specific feature extraction and prepro-
cessing pipeline to improve and select the relevant information of the images for the tumour
segmentation task.

Our aim is to demonstrate that unsupervised segmentation algorithms can achieve competi-
tive results, comparable to supervised approaches, but avoiding the tedious and time-consum-
ing task of retrieving a manual labelled dataset. We evaluated our unsupervised segmentation
method using the public real BRATS 2013 Leaderboard and Test sets provided for the Interna-
tional Image Segmentation Challenge of MICCAI Conference. The proposed method with the
GMM algorithm improves the results obtained by most of the supervised approaches evaluated
with the Leaderboard BRATS 2013 set, reaching the 2nd position in the rank. Our variant
using the GHMRF improves the results obtained by the best unsupervised segmentation meth-
ods evaluated with the BRATS 2013 Test set, and also reaches the 7th position in the general
Test rank, mainly against supervised approaches.
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Materials
In order to make our results comparable, we have used the public multi-modal BRATS dataset
2013 [25], provided for the international NCI-MICCAI 2013 Grand Challenges in Image Seg-
mentation of MICCAI Conference. We have thoroughly evaluated our method with the Test
set and the Leaderboard set, and we have made a comparison between the best algorithms that
participated in the challenge and our method.

The BRATS 2013 Test set consists of multi-contrast MR scans of 10 high-grade glioma pa-
tients without the manual expert labellings. The Leaderboard set consists of 11+10 multi-con-
trast MR scans of high-grade glioma patients, also without the manual expert labellings. The
first 11 Leaderboard patients come from to the Test set of BRATS 2012 Challenge, while the
next 10 cases refer to the new Leaderboard cases for 2013 Challenge.

For each patient of the datasets, T1-weighted, T2-weighted, T2/FLAIR and post-gadolinium
T1-weighted MR images were provided. All images were linearly co-registered to the post-gad-
olinium T1-weighted sequence, skull stripped, and interpolated to 1 mm3 isotropic resolution.
No inter-patient registration was made to put all the images in a common reference space.

An evaluation web page was provided to upload and assess the quality of the segmentations,
obtaining different metrics such as Dice, PPV, Sensitivity and Kappa indices over the different
sub-compartments of the tumour such as complete tumour, enhancing tumour and
core tumour.

Manual expert annotations comprise five intensity levels: Class 1) non-brain, non-tumour,
necrosis, cyst and haemorrhage; class 2) surrounding edema; class 3) non-enhancing tumour;
class 4) enhancing tumour core; and class 0) for everything else.

Throughout the paper, we will refer to the T1-weighted MRI sequence as T1, T2-weighted
fast spin echo sequence as T2, T2/FLAIR sequence as Flair and post-gadolinium T1-weighted
MRI sequence as T1c.

Methods

MRI preprocessing
MRI preprocessing is an active field of research that attempts to enhance and correct MR im-
ages for posterior analysis. In an unsupervised approach there is no reference or manual label-
ling from which to learn the models of the tissues so common artefacts such as noise or
inhomogeneities may rise as erroneous classes increasing the importance of an effective pre-
process. We propose the following scheme for the BRATS 2013 data: 1) Denoising, 2) Skull
stripping, 3) Bias field correction and 4) Superresolution.

Denoising. Denoising is a standard MRI preprocessing task that aims to reduce or ideally
remove the noise from an MR image. Although MRI noise has been usually modelled as a
Gaussian distribution, by definition MRI noise follows a Rician distribution [26]. Diaz et al.
[27] presented a comprehensive analysis of different denoising methods, discussing their weak-
nesses and strengths. Recent filters such as the Non Local Means (NLM) introduced by Buades
et al. [28] has improved the existing techniques for MR data. Based on this approach, Manjón
et al. [29] introduced a variant of the filter, which does not assume an uniform distribution of
the noise over the image, thereby adapting the strength of the filter depending on a local esti-
mation of the noise. The filter also deals with both correlated Gaussian and Rician noise. We
used the Manjón approach to remove the noise from the BRATS images.

Skull stripping. Skull stripping comprises the process of removing skull, extra-meningeal
and non-brain tissues from the MRI sequences. Although BRATS 2013 dataset is already skull
stripped, we detected several cases including partial areas of the cranium and extra-meningeal
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tissues. In order to improve the preprocessing of the data, we recomputed the skull stripping
masks for all patients using the Brain Suite Software, and removed the non desired tissues of
the MR images. Fig 1 shows an example of a patient of the BRATS 2013 dataset with the origi-
nal skull stripping, the resultant image after our new skull stripping and the
remaining residual.

Bias field correction. Intensity inhomogeneity is another common artefact present in
MRI acquisitions. Magnetic field inhomogeneities are unavoidable effects consisting on low
frequency signals that corrupt the images and affect their intensity levels. Typically, automated
segmentation approaches are based on the assumption that the brain tissues present the same
distribution of intensity among the image. Thus, intensity inhomogeneities should be corrected
to ensure a correct segmentation. The popular non-parametric non-uniform intensity normali-
zation N3 algorithm was proposed in 1998 by Sled et al. [30], becoming a reference technique
for bias field correcting because of no tissue model was needed to perform the correction. Tus-
tison et al. [31] proposed in 2010 a new implementation of N3 called N4, which improves the
N3 algorithm with a better B-spline fitting function and a hierarchical optimization scheme for
the bias field correction. N4 was used in our study to correct MRI inhomogeneities.

Super resolution. In a brain tumour lesion protocol, several MR sequences are commonly
acquired normally at different resolutions, thereby introducing spatial inconsistencies when a
multi-modal MR study is performed. In these cases, an upsampling or interpolation is needed

Fig 1. Example of new skull stripping. From left to right column: original BRATS 2013 patient image,
resultant image after the new skull stripping and the remaining residual.

doi:10.1371/journal.pone.0125143.g001
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to set a common voxel space for all images. Classical interpolations such as linear, cubic or
splines interpolation could rise as a solution, but at the cost of having common artefacts such
as partial volume effects or stair-case artefacts. In contrast, more powerful and sophisticated
methods such as super resolution could improve classical interpolation by reconstructing the
low resolution images recovering its high frequency components. Several super resolution
schemes for MR imaging are available in the literature [32–35].

BRATS 2013 dataset comes with a 1mm3 isotropic voxel size resolution achieved through
classic interpolation. In order to improve the resolution of these images, we employed the
super resolution algorithm proposed by Manjón et al. [36], which exploits the self-similarity
present in MR images through a patch-based non-local reconstruction process. Such method
iteratively reconstructs a high resolution image by applying a Non-Local Means filter with dif-
ferent filter strengths, aimed to increase image regularity while constraining the image intensi-
ties to be coherent among scales through a local back-projection approach. Fig 2 shows an
example of a super resolved Flair sequence of a patient of the BRATS 2013 dataset with a de-
tailed zoom of the axial slice.

Feature Extraction and Dimensionality Reduction
Feature extraction comprises the process of obtaining new features from the MR images to im-
prove the discriminative power between different tissues in the brain. Although MRI intensities
are the most common used features to differentiate between the brain tissues, it has been
shown that including texture features in combination with MR intensities increases the perfor-
mance of the segmentation algorithms [37, 38]. In this sense, we have implemented the first
order statistical texture features, often called histogram derived metrics or first order
central moments.

For each patient we initially obtained a derived image, named T1d, which consists on the ab-
solute difference between the T1c and the T1 images [23]. This image highlights the contrast
enhanced areas of the patient, such as the active tumour, helping in their discrimination. Next,
for each image of the patients (T1, T1c, T2, Flair and T1d), we computed its first order texture
features. Such features consist on the computation of the histograms in local 3D neighbour-
hoods centred at each voxel of the image, and calculate the mean, skewness and kurtosis of
these histograms. We used a local 3D neighbourhood of 5 × 5 × 5 voxels.

Fig 2. Example of super resolution using Non-local Upsampling of a Flair sequence of the BRATS
2013 dataset.

doi:10.1371/journal.pone.0125143.g002
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Thus, a set X of 20 images is obtained for each patient, consisting on the following images:

X ¼ ðT1;T1c;T2; Flair;T1d; mT1; :::; gT1; :::; kT1dÞ
where μ, γ, and κ prefixes refers to the mean, skewness and kurtosis features of the
corresponding images.

In order to reduce the complexity and the number of parameters to estimate to the models,
a dimensionality reduction was carried out. Dimensionality reduction seeks for an efficient re-
presentation of the original high dimensional data into a lower dimensional space, but retain-
ing or increasing its most relevant information. In our study, we used Principal Component
Analysis (PCA) for dimensionality reduction. We run PCA on the X set and selected those
principal components, whose together explained at least the 99% of the variance of the data, re-
ducing in most cases from 20 dimensions to 5 dimensions. These images comprise the final
stack of discriminant images used for the posterior segmentation.

An slice example of the feature extraction and PCA dimensionality reduction process of a
patient is shown in Fig 3.

Unsupervised voxel classification
The BRATS 2013 dataset comprises 5 classes to be segmented, which in some cases a single
class encloses several types of tissues (for example 0 class). This intra-class heterogeneity se-
verely affects the performance of the unsupervised methods given that in an unsupervised seg-
mentation scheme, the heterogeneities are usually explained by splitting the class in different
clusters. Hence, in order to provide more expressibility to the unsupervised models we mod-
elled each tissue through a mixture of 2 Gaussian distributions. Such assumption provided us a
balance between the number of parameters to estimate to the models and the degrees of

Fig 3. Example of feature extraction and dimensionality reduction from a patient of the BRATS 2013
dataset.

doi:10.1371/journal.pone.0125143.g003
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freedom required to explain the heterogeneity of the tissues. Therefore, we initially assumed
that 7 tissues existed in the brain, which were the 1, 2, 3 and 4 classes proposed in BRATS 2013
Challenge (see Materials section), plus Gray Matter (GM), White Matter (WM) and Cerebro-
Spinal Fluid (CSF), each one explained with a mixture of 2 Gaussians.

We evaluated the most popular unsupervised classification algorithms to segment the brain
tissues. We divided the algorithm comparison in two groups: structured and non-structured
methods. Non-structured algorithms classify data assuming an independence and identically
distributed (i.i.d) condition between the voxels of the images. Structured prediction covers the
range of algorithms that involve the classification of data with a specific structure, such as an
image. Under the non-structured paradigm, we evaluated three methods: K-means, Fuzzy K-
means and GMM clustering. In the structured prediction case we evaluated the GHMRF as the
archetype of unsupervised structured learning models.

Let X = {x1, x2, . . ., xN} the set of voxels to be classified, where xn 2 R
D represents a feature

vector of D dimensions for voxel n. Let C = {1, . . . C} the set of all possible classes for the seg-
mentation and let Y = {y1, y2, . . ., yN} a segmentation of the brain volume, where yn 2 C.

K-means. K-means [39, 40] is an unsupervised non-structured iterative partitional cluster-
ing based on a distance minimization criterion. Its aim is to divide the data space X into C clus-
ters, J = {J1, J2, . . ., JC}, so that each observation of X belongs to the cluster with nearest
centroid. The distance criterion minimized by K-means is

arg min
J

XC

c

X
xn 2Jc

k xn � mc k2

From a statistical point of view, the iterative distance minimization criterion followed by K-
means is equivalent to find the most likelihood parameters of a mixture of multivariate Gaus-
sians [17], assuming a shared identity covariance matrix and uniform prior probabilities for all
classes. The iterative approach followed by K-means is also demonstrated a special limit of the
EM algorithm [41, 42], called Hard-EM, where each observation is uniquely assigned to a class
with posterior probability of 1.

Fuzzy K-means clustering. Likewise K-means, Fuzzy K-means [43, 44] is a non-struc-
tured iterative partitional clustering that also proposes a mixture of multivariate Gaussian dis-
tribution with shared identity covariance matrix and uniform prior probabilities for all classes.
However, Fuzzy K-means differs from K-means in which the assignment of an observation to a
cluster is not hard but fuzzy. This means that each observation now keeps a degree of member-
ship to each cluster (related to its posterior probability) instead of a unique assignment to a
class with posterior probability of 1. In the same manner as K-means, the aim is to divide the
data space X into C clusters, J = {J1, J2, . . ., JC}, but it also provides a vector un for each observa-
tion, which determines the membership degree of the observation n to the different clusters.
The distance minimization criterion followed by Fuzzy K-means is

arg min
J

XC

c

X
xn 2Jc

um
nc k xn � mc k2 1 � m < 1

wherem controls the degree of fuzziness of the cluster c, typically set to 2 in absence of domain
knowledge, and unc is defined as

unc ¼ 1PC
j

kxn �mc k2
kxn �mj k2

� � 2
m�1

where unc is proportional to the posterior probability of cluster c given the observation n.
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GMM clustering. GMM clustering is a model-based classification algorithm whose aim is
to find the maximum likelihood parameters of a Mixture of Gaussian distributions that better
fit the data to be classified. GMM clustering can be seen as the generalization of K-means and
Fuzzy K-means algorithms, where the hard constraints related to the shared covariance matri-
ces and the uniform prior probabilities are relaxed. The mixture model proposed for the GMM
clustering is

pðxn Þ ¼
X

c

pc N ðxn jmc ;Sc Þ

The EM algorithm [41] is used to find the maximum likelihood parameters of a statistical
model in cases where latent variables and unknown parameters are involved, such as in the un-
supervised learning paradigm. The EM algorithm starts with an initialization of the parameters

mð0Þ
c , Sð0Þ

c and pð0Þc and alternates between the E step and the M step until a convergence criteria
is achieved. In the E step an estimation of the posterior probability p(cjxn) at iteration (k) is
computed given the current estimation of the parameters of the model. In the M step a maxi-
mum likelihood update of the parameters of the model is performed given the posterior proba-
bility computed in the E step. A convergence criteria based on the difference between the
likelihood function of two consecutive iterations is usually used to ensure the convergence.

GHMRF. MRFs are probabilistic undirected graphical models that define a family of joint
probability distributions by means of an undirected graph [45]. These graphs are used to intro-
duce conditional dependencies between random variables of the model, which in the brain tu-
mour segmentation task allows the model to exploit the self-similarity of the images. Such
dependencies are explicitly denoted via an undirected and cyclic graph, whose vertices repre-
sent the voxels of the images and whose edges represent the dependencies between the voxels.
MRFs are usually used to model the prior distribution of a probabilistic generative model,
which is often expressed in terms of energy potentials. Hence, a generative model is defined as

pðX;YÞ ¼ pðXjYÞ pðYÞ ¼ 1

Z
exp ð�UðXjYÞ � UðYÞÞ

where Z is called the partition function and ensures the distribution to sum 1, U(Y) is an energy
function that holds the graphical model and its conditional dependencies, and U(XjY) is anoth-
er energy function proportional to the class-conditional p(XjY) distribution of the
generative model.

Nowadays, if complexity is considered, the inference algorithms for MRFs are only able to
optimize undirected graphs with dependencies of order 2 (pairwise dependencies). Hence, the
most widely used graphical model is the Ising model. The Ising model consists on a regular lat-
tice with many vertices as voxels exist in the image, where conditional dependencies are ex-
pressed in terms of the orthogonal adjacent neighbourhood of a voxel. Therefore, we defined
the U(Y) energy function as

UðYÞ ¼
X

ðyn ;ym Þ2Q
dðyn ; ym Þ

dðyn ; ym Þ ¼
(
0; if yn ¼ ym

1; otherwise

where Q refers to the pairwise cliques of the Ising model.
Given that the U(Y) function already determines the conditional dependencies between the

observations of the model, the U(XjY) function can be assumed i.i.d. In our case, we modelled
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the U(XjY) function as a Gaussian process of the form

UðXjYÞ ¼
Y
n

Uðxn jyn Þ ¼
Y
n

� logN ðxn jmc ;Sc Þ

Exact inference on the p(X, Y) model is intractable due to the sum over all possible configu-
ration of labels computed in Z, which is a #P—complete problem. However, approximate effi-
cient algorithms such as Iterated Conditional Modes (ICM), Monte Carlo Sampling or Graph
cuts are available to compute the best labelling for pairwise MRFs. In our study we used the al-
gorithm proposed by Komodakis et al. [46, 47] based on a combination of Graph cuts with pri-
mal-dual strategies.

Likewise GMM, GHMRF also finds the maximum likelihood parameters of a Mixture of
Gaussian distributions that better fits the data to be classified, but imposing the structured
MRF prior. A Hard-EM version of the EM algorithm is usually used to estimate the maximum
likelihood parameters of the model, given that exact inference is not possible for models includ-
ing MRF priors.

Initialization. A well-known requirement of unsupervised learning is the good initial
seeding. Although the global minima is not usually reached even if a good initialization is pro-
vided, a bad initialization can lead the model to a very sub-optimal local minimum, thereby
providing a poor segmentation. Several strategies such as multiple replications or intelligent
initial seeding are proposed to palliate this effect. In our study, we implemented the K-means+
+ algorithm proposed in [48], which provides an initialization that attempts to avoid such
local minimums.

We propose the following procedure to ensure a competitive unsupervised segmentation:
First, generate 100 different initializations using K-means++ algorithm. Next, automatically se-
lect the 10 most promising initializations by minimizing the average intra-cluster sums of
point-to-centroid distances of the initializations. Finally, run each unsupervised segmentation
algorithm with the 10 most promising initializations and choose the best solution considering
the following criteria: for K-means and Fuzzy K-means algorithms, choose again the solution
with lowest intra-cluster sums of point-to-centroid distances. For GMM clustering and
GHMRF, choose the solution with lowest Negative Log-Likelihood value.

Automatic tumour classes isolation
Unsupervised segmentation produces a partitioning of the data space into several classes, each
class without semantic sense. In other words, in the unsupervised approach, class labels do not
specify a code for a specific tissue but only a mechanism to distinguish clusters different
enough from each other to be considered equal. Moreover, classes between different segmenta-
tions may not always represent the same tissue, complicating its biological interpretation.
Hence, automated tumour classes identification is mandatory to provide a powerful and com-
petitive unsupervised brain tumour segmentation method. We propose the following method
to automatically isolate tumour classes:

1. Identify and remove WM, GM and CSF classes

2. Remove outlier classes

3. Merge classes by statistical distribution similarities

Identify and remove WM, GM and CSF classes. Under the ICBM Project, an unbiased
standard MR brain atlas was provided by the McConnell Brain Imaging Centre in 2009 [49,
50]. The ICBM atlas includes the T1, T2 and Proton density MR images and the WM, GM and
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CSF tissue probability maps. Such tissue probability maps indicate the probability for each
voxel v of the brain to belong to a normal tissue T = {WM, GM, CSF}.

X
t2T

pðt j vÞ ¼ 1

In our study we used the tissue probability maps to detect which classes of a segmentation
explain the WM, GM and CSF tissues. However, considering that the ICBM template repre-
sents a healthy brain, we first corrected the normal tissue probability maps by removing the
probability of any normal tissue t in the area of the tumour. Therefore, we first performed a
non-linear registration of the ICBM T1 image to the patient T1 image and applied the non-lin-
ear transformation to the tissue probability maps. Following the study conducted by Klein
et al. [51], we used the SyN algorithm [52] implemented in the Advanced Normalization Tools
(ANTS) software with the cross-correlation metric to perform the non-linear registration.

After this step, we obtained custom normal tissue probability maps for the hypothetical
healthy brain of each patient. To correct these probability maps, a roughly approximate mask
of the lesion area of each patient was computed. The delineation performed by the expert radi-
ologist of the location of the tumour is usually based on the hyper-intensity areas in the T2 and
T1c sequences [2]. Following a similar criteria, we computed an approximate mask of the le-
sion by retrieving the Flair and T1c histograms and selecting those voxels with an intensity
level higher than the median plus the standard deviation of any histogram. Next, we automati-
cally filled the holes of the computed masks and removed the voxels that fell in the perimeter
of the brain. Finally, we corrected the normal tissue probability maps of each patient by setting
an ε probability in the area determined by their corresponding lesion mask. Fig 4 shows an ex-
ample of the computation of the corrected tissue probability maps for a patient. It is worth not-
ing that these lesion masks did not modify the shapes of the classes provided by the

Fig 4. Patient tissue probability maps computation and lesion area correction.

doi:10.1371/journal.pone.0125143.g004
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segmentations. Only served to approximately locate the lesion area and to correct the tissue
probability maps.

Based on these custom corrected tissue probability maps, we identified which classes of a
segmentation mainly explained the normal tissues T. Let S be a segmentation obtained through
any unsupervised method, let t be a specific normal tissue, where t 2 T, let c be a class of S and
let v be a voxel of S, we computed the following probability:

pðcjt; SÞ ¼
P

v;SðvÞ¼c pðtjvÞP
v pðt j vÞ

Simplifying, the p(cjt, S) determines how much of the normal tissue t is explained by the
class c in the segmentation S. Based on these percentages, we constructed two vectors, one with
the p(cjt, S) values sorted in descending order, called Pt, and the other with the corresponding
class codes sorted in the same manner, called Ct.

Ct ¼ fc j pðcjt; SÞ � pðc0jt; SÞg
P t ¼ fpðcjt; SÞ j pðcjt; SÞ � pðc0jt; SÞg

Then, we computed the cumulative sum of Pt, we denoted as St, and finally choose those clas-
ses of Ct whose St value exceed a threshold τ.

Z t ¼ fCt ðiÞ j St ðiÞ > t; 1 � i < Cg

The Zt set contains the classes of S that have a very low probability of explain the normal tis-
sue t. Hence, we repeated the same procedure for each normal tissue t and computed the inter-
section between the Zt sets to finally isolate the classes that do not explain any normal tissue,
i.e. the pathological classes

Z ¼ ZWM \ ZGM \ ZCSF

Given that our aim is to evaluate the performance of each unsupervised segmentation algo-
rithm, all of them in the same conditions, we do not carried out a particular optimization of the
τ threshold for each algorithm. Instead, we fixed a general threshold for all the methods to per-
form the tumour class identification. We choose 0.8 as a reasonably, high confidence and com-
patible threshold for all unsupervised methods. Note that it is not possible to fix a value of 1
due to the fact that this implies the selection of all the classes of a segmentation to explain only
a single normal tissue. Moreover, the custom corrected tissue probability maps were obtained
through a non-linear registration of a healthy atlas template to a pathological brain, which is
not an error-free process, so the selection of the threshold should consider it.

Remove outlier classes. The process of identifying and removing the normal tissue classes
may leave some spurious classes that should be deleted. We found that these classes frequently
appear in the perimeter of the brain or in a very low rate compared to the other classes of the
segmentation. The classes located at the perimeter of the brain usually correspond to the inten-
sity gradient between the brain and the background or to the partial volume effects that the
super resolution cannot remove. The low rate classes often match to outlier voxels in terms of
abnormal intensity values, usually produced by artefacts in the MR acquisition.

In order to delete the perimeter unwanted classes, we first computed a binary dilated mask
of the perimeter of the brain. Next, for each remaining class after the WM, GM and CSF re-
moval, we computed their connected components and deleted those ones that fell into the
mask with more than the 50% of its area. In order to remove the low rate classes we first
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computed the percentage of occurrence of each class of the current segmentation and deleted
those ones with a value less than a 1%.

Merge classes by statistical distribution similarities. The heterogeneity of the tumour
classes led us to assume that each tissue of the brain was modelled through at least a mixture of
two Gaussians. However, the unsupervised voxel classification provided a general mixture of
Gaussians over the brain, without grouping pairs of distributions. Hence, at this point, a tissue
may have been represented with two or more classes of the segmentation, or by the opposite,
with a single class depending on its homogeneity. Thus, it was mandatory to provide a mecha-
nism to find class similarities that results in a homogeneous segmentation that correctly ex-
plains the final tumour tissues.

Based on the work proposed by Sáez et al. [53], we analysed the statistical distributions of
the remaining classes after the previous steps, to find possible mixtures of classes with similar
distributions. We estimated a non-parametric probability density function for each class
through a kernel smoothing density estimation, and used the Jensen-Shannon divergence to
measure its distances. Thus, we constructed a pairwise matrix of statistical distribution dis-
tances and used a Hierarchical Agglomerative Clustering (HAC) with an average link (Average
Link (UPGMA)), to merge the similar classes.

Due to the BRATS 2013 labelling considers 4 pathological classes to be segmented, we en-
forced the clustering to return a maximum of 4 classes. Note that the method is able to return
less than 4 classes if the HAC finds enough similarities between the classes, however, in any
other case the method is enforced to return a maximum of 4 classes. Fig 5 shows and example
of the full tumour classes isolation procedure.

Fig 5. Automatic tumour class isolation process.

doi:10.1371/journal.pone.0125143.g005
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Evaluation
We evaluated our unsupervised brain tumour segmentation framework with the BRATS 2013
Leaderboard and Test sets. Segmentations provided by different unsupervised methods in com-
bination with the proposed preprocessing and postprocessing pipelines were send to the
BRATS evaluation page. The figures of merit provided by the evaluation web page to assess the
quality of the segmentations were:

• Dice: 2ðTPþTNÞ
PþNþP̂þN̂

• PPV: TP
TPþFP

• Sensitivity: TP
TPþFN

• Kappa: PA �PE
1�PE

where TP refers to the true positives in the segmentation, TN to the true negatives, FP to the
false positives, FN to the false negatives, P to the real positives of the ground truth, N to the real

negatives of the ground truth, P̂ to the estimated positives of the proposed segmentation, N̂ to
the estimated negatives of the proposed segmentation, PA to the accuracy of the segmentation
and PE to a term that measures the probability of success by chance, defined as:

PE ¼ P
PþN

� P̂
P̂þN̂

� �
þ N

PþN
� N̂
P̂þN̂

� �
.

Furthermore, three different sub-compartments were evaluated for the segmentations.

1. Complete tumor: labels 1 + 2 + 3 + 4.

2. Tumor core: labels 1 + 3 + 4.

3. Enhancing tumor: label 4.

Results
Tables 1 and 2 show the results obtained in the Test and Leaderboard sets respectively, grouped
by the unsupervised algorithms tested in this study.

As it was expected, GHMRF and GMM rise as the best algorithms in combination with the
proposed preprocessing and postprocessing pipelines. Almost all the metrics reveal that both
algorithms obtain the best results in all the sub-compartments segmentations. Only the en-
hancing tumour sub-compartment in the Leaderboard set yielded low results for the GHMRF,
worse than the results obtained in the other sub-compartments and datasets. Such effect is pro-
duced by the smoothing prior of the GHMRF, which is later discussed in the
Discussion section.

Tables 3 and 4 show the published ranking of the BRATS competition grouped by the learn-
ing paradigm adopted by each method and the metrics and sub-compartments evaluated in the

Table 1. Summary of average results obtained by the different unsupervised algorithms in combination with the proposed preprocess and post-
process over the BRATS 2013 Test set.

Classifier Dice PPV Sensitiviy Kappa

complete core enhancing complete core enhancing complete core enhancing

K-means 0.69 0.49 0.57 0.66 0.48 0.68 0.76 0.57 0.51 0.98

Fuzzy K-means 0.70 0.46 0.39 0.73 0.47 0.51 0.71 0.54 0.35 0.98

GMM 0.69 0.60 0.55 0.63 0.60 0.64 0.78 0.68 0.55 0.98

GHMRF 0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98

doi:10.1371/journal.pone.0125143.t001
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Table 2. Summary of average results obtained by the different unsupervised algorithms in combination with the proposed preprocess and post-
process over the BRATS 2013 Leaderboard set.

Classifier Dice PPV Sensitiviy Kappa

complete core enhancing complete core enhancing complete core enhancing

K-means 0.76 0.49 0.53 0.75 0.44 0.66 0.82 0.56 0.48 0.99

Fuzzy K-means 0.77 0.46 0.25 0.81 0.46 0.27 0.77 0.51 0.27 0.99

GMM 0.74 0.59 0.60 0.71 0.55 0.60 0.81 0.71 0.66 0.99

GHMRF 0.77 0.63 0.32 0.72 0.61 0.33 0.84 0.71 0.50 0.99

doi:10.1371/journal.pone.0125143.t002

Table 3. Ranking of the BRATS 2013 Test set and the position occupied by our proposed unsupervised segmentation framework with the GHMRF
algorithm.

User Dice PPV Sensitiviy Kappa

complete core enhancing complete core enhancing complete core enhancing

Supervised methods Nick Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 0.99

Raphael Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73 0.99

Syed Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76 0.99

Liang Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70 0.99

Nicolas Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66 0.99

Joana Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70 0.98

Unsupervised
methods

This work.
GHMRF

0.72 0.62 0.59 0.68 0.58 0.67 0.81 0.75 0.60 0.98

Senan Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55 0.98

doi:10.1371/journal.pone.0125143.t003

Table 4. Ranking of the BRATS 2013 Leaderboard set and the position occupied by our proposed unsupervised segmentation framework with the
GMM algorithm.

User Dice PPV Sensitiviy Kappa

complete core enhancing complete core enhancing complete core enhancing

Supervised method Nick Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66 0.99

Unsupervised method This work. GMM 0.74 0.59 0.60 0.71 0.55 0.60 0.81 0.71 0.66 0.99

Supervised methods Liang Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53 0.99

Raphael Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.64 0.99

Syed Reza 0.73 0.56 0.51 0.68 0.64 0.48 0.79 0.57 0.63 0.99

Nicolas Cordier 0.75 0.61 0.46 0.79 0.61 0.43 0.78 0.72 0.52 1.00

doi:10.1371/journal.pone.0125143.t004

Unsupervised Structured Glioblastoma Segmentation

PLOS ONE | DOI:10.1371/journal.pone.0125143 May 15, 2015 15 / 20



Challenge. As shown in Table 3, we achieved the 1st position in the ranking of the unsuper-
vised methods of the Test set, and the 7th position in the general ranking, mainly against super-
vised approaches. Table 4 shows the Leaderboard ranking and the results achieved by our
method. The proposed approach in combination with the GMM algorithm reaches the 2nd po-
sition of the Leaderboard ranking, improving the results obtained by the supervised methods,
mainly in the enhancing tumour subcompartment.

Table 5 shows the average time in minutes required to obtain a segmentation for a single pa-
tient, including the preprocessing and postprocessing of the data. Segmentations were comput-
ed in an Intel Xeon E5-2620 with 64GB of RAM using multi-threading. The preprocessing
time includes the denoising, bias field correction, skull-stripping and super resolution steps.
The unsupervised classification time involves the parallel computation of the 10 different seg-
mentations starting from the K-means++ initialization, and the posterior selection of the best
solution. As expected, the more complex and sophisticated the algorithms are, the longer they
take to reach the solution. The postprocessing time refers to the automated tumour class isola-
tion step, the outlier class removal and the merging process of similar statistical distribution
classes. Such process includes the non-linear registration of the ICBM template to the patient
T1 image, which practically covers the entire time of the postprocessing stage. It is worth not-
ing that the non-linear ICBM registration is performed only once for all the unsupervised
segmentation algorithms.

Finally, examples of segmentations achieved by different unsupervised segmentation algo-
rithms in our system are showed in Fig 6.

Discussion
The proposed unsupervised brain tumour segmentation method is confirmed as a viable alter-
native for GBM segmentation, as it has demonstrated to achieve competitive results in a public
real reference dataset for brain tumour segmentation. The method improves the results ob-
tained by the other unsupervised segmentation approaches evaluated in the BRATS 2013 Chal-
lenge, and obtains competitive results with respect to supervised methods, without requiring a
manual expert labelling.

The proposed unsupervised segmentation method comprises four stages: MRI preprocess-
ing, feature extraction and dimensionality reduction, unsupervised voxel classification and au-
tomatic tumour classes isolation. Concerning the preprocessing stage, consolidated state of the
art techniques that provide efficient solutions to enhance the information of the MR images
were employed. However, some preprocessing techniques are primarily oriented to non-patho-
logical brains. This is the case of bias field correction. In our experiments, we found that the es-
timation of the magnetic field inhomogeneities with the N4 algorithm presented problems
primarily with Flair sequences. The hyper-intensity presented in the Flair sequence by the
edema was confused frequently with inhomogeneities of the magnetic field, thereby reducing
its intensity. In order to overcome this problem we reduced the number of iterations of the

Table 5. Average computational times in minutes for the whole segmentation pipeline for a single patient.

Algorithm Preprocess Unsupervised classification Postprocess Total

K-means 13 ± 3 9 ± 5 88 ± 19 110 ± 27

Fuzzy K-means 29 ± 3 130 ± 25

GMM 41 ± 7 142 ± 29

GHMRF 39 ± 10 140 ± 32

doi:10.1371/journal.pone.0125143.t005
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algorithm to remove as much inhomogeneities as possible, while keeping the intensities of the
lesion. Such solution assumes a non optimal removal of the magnetic field inhomogeneities,
but allows to save the information contained in the lesion area, which becomes more important
to the segmentation task. We empirically set a maximum of 10 iterations at each scale of the
multi-scale approach of the N4 algorithm.

Several unsupervised classification algorithms were evaluated to assess its pros and cons,
ranging from the most restrictive algorithms in terms of class-conditional probabilistic models
(K-means and Fuzzy K-means) to more sophisticated models with more degrees of freedom
such as GMM or GHMRF. The last one, also introduces statistical dependencies between adja-
cent variables of the model, that penalizes neighbouring voxels with different classes. Hence,
this structured prior aims to model the self similarity presented in the images, leading the algo-
rithm to a more homogeneous segmentation than the non-structured classification techniques.

Therefore, it was expected that the less restrictive algorithms in terms of class-conditional
probabilistic model were likely to achieve better results based on the hypothesis that these algo-
rithms learn a more flexible model that better fits the data to be classified. Moreover, structured
algorithms are also expected to obtain better results based on the hypothesis that these algo-
rithms introduce mechanisms to model the self similarity of the images through the condition-
al dependencies defined for the data. Tables 1 and 2 confirms such hypotheses. Both GMM
and GHMRF rise as the best algorithm tested in almost all the metrics returned by the evalua-
tion web page. Only the results obtained by the GHMRF model in the enhancing sub-compart-
ment of the Leaderboard set were not comparable with the other sub-compartments and
datasets results. This effect is produced due to the smoothing prior imposed by the GHMRF,
which is too strong in some cases. We revised the cases that achieved low results in the enhanc-
ing tumour sub-compartment and realized that most of them had a large necrotic core and a

Fig 6. Examples of final segmentations of 3 patients of BRATS 2013 dataset computed by the different
unsupervised algorithms.

doi:10.1371/journal.pone.0125143.g006
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thin low-brightness enhancing tumour ring. We also revised the K-means++ initializations
and realized that the enhancing tumour was partially segmented in some cases but finally lost
in the final segmentation due to the hard smoothing prior in the necrotic class. We are now
working in the introduction of different penalizations for the classes, depending on their statis-
tical distribution similarities to avoid this over-smoothing.

It is worth noting that we obtained better results on the Leaderboard set (Table 4) than in
the Test set (Table 3), in contrast with the rest of participants. This effect may have been pro-
duced by the fact that the Leaderboard set may include more heterogeneities and differences
with respect to the Training set than the Test set, thereby directly affecting the supervised ap-
proaches performance. Unsupervised paradigm avoids this possible overfitting by building a
particular model for each patient considering only its own data, therefore achieving better re-
sults in the Leaderboard set against most of the supervised approaches evaluated.

In future work, we plan to improve our feature extraction process by analysing the influence
of the texture images in the final segmentations and including more sophisticated textures such
as the Haralick texture features. Furthermore, we plan to extend our unsupervised methodolo-
gy to the analysis and segmentation of Perfusion Weighted Images (PWI) in combination with
anatomical images. The biomarkers obtained from PWI might discover relevant segmentations
by adding additional valuable functional information about the tissues. We consider that re-
search efforts should be aligned with quantitative MRI by providing powerful systems that le-
verage the information contained in these images.
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