Document downloaded from:

http://hdl.handle.net/10251/64262
This paper must be cited as:

Garcia Gomez, P.; Lépez Rodriguez, D.; Vazquez-De-Parga Andrade, M. (2015). DFA
minimization: Double reversal versus split minimization algorithms. Theoretical Computer
Science. 583:78-85. d0i:10.1016/j.tcs.2015.04.002.

The final publication is available at

http://dx.doi.org/10.1016/j.tcs.2015.04.002

Copyright E|sevier

Additional Information

“NOTICE: this is the author’s version of a work that was accepted for publication in
Theoretical Computer Science. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control mechanisms may
not be reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published inTheoretical
Computer Science, [Volume 583, 7 June 2015, Pages 78-85] DOI
10.1016/j.tcs.2015.04.002



DFA minimization: double reversal versus split
minimization algorithms

Pedro Garcia, Damian Lépez and Manuel Vazquez de Parga
Departamento de Sistemas Informaticos y Computacién
Universidad Politécnica de Valencia
{pgarcia,dlopez,mvazquez } Qdsic.upv.es

Abstract

In this paper, we show the relationship between the two most widely
used approaches for the minimization of deterministic finite automata:
minimization by split of partitions and minimization by double rever-
sal. Even though the double reversal approach has usually been con-
sidered to be unconventional with respect to the more common split
approach, we show that any double reversal minimization algorithm
can be related to a split minimization algorithm and vice versa.

Keywords: DFA minimization; atomic automaton; double reversal algo-
rithms; split minimization algorithms

1 Introduction

The minimization of deterministic automata is a classic issue in Computer
Science that still plays an important role in obtaining efficient solutions
for certain problems in fields such as text processing, image analysis, and
linguistics.

The minimization of deterministic finite automata (DFA) is based on
the computation of Nerode’s equivalence relation for the language that is
accepted by the automaton to be minimized. In order to do this, two main
approaches have been used. The first approach includes methods that itera-
tively refine an initial partition that distinguishes final and non-final states
[1, 2, 3]. Among these algorithms, the algorithm by Hopcroft is of spe-
cial interest because it is the algorithm that offers the best time complexity
(O(nlogn), where n stands for the number of states of the input automa-
ton). Recently, Berstel et al. [4] named the operation on which the mini-
mization is based, the split operation. This operation formalizes the set (the
splitter) that is used to refine a given partition. Their work in [4] describe
the most important of these methods. Note that, for obvious reasons, the
splitters are usually obtained taking into account the transition function of



the automaton to be minimized. Nevertheless, in order to consider any po-
tential algorithm that uses this approach, we will consider general splitters
regardless of how they are obtained.

The second approach is based on Brzozowski’s double reversal algorithm
[5], which receives any automaton (regardless of whether or not it is deter-
ministic) and outputs the minimal DFA for the language. Despite the fact
that the algorithm has an exponential time complexity in the worst case
(even when the input is a DFA), the algorithm has always sparked inter-
est. The implementation of the algorithm is very straightforward and, in
essence, alternates reverse operation and determinization operation twice.
In other words, for any automaton A, the process can be described as
D(R(D(R(A)))), where D and R stand for the determinization and reverse
operations, respectively. The correctness proof is based on the fact that, for
any DFA A, the automaton D(R(A)) is the minimal DFA for the reverse
language of L(A) [5].

Brzozowski’s algorithm can be viewed as a special case within the frame-
work that was recently proposed by Brzozowski and Tamm [6]. In their
framework, the first determinization of the double reversal algorithm is
substituted by any algorithm that returns an atomic automaton that ac-
cepts the reverse of the language (instead of the computation of the DFA
for the reverse language). Thus, the framework can be summarized as
D(R(Atom(R(A)))), where Atom stands for any process that outputs an
atomic automaton. In [6], Brzozowski and Tamm do not propose any al-
gorithm to compute the atomization of an automaton. Recently in [7], we
proposed a polynomial-time algorithm that, for any DFA A, outputs an
atomic automaton that accepts the reverse language of L(A). This implies
that, when the problem is restricted to DFA, it is possible to implement the
double-reversal minimization of the input automaton in polynomial time.

It is relevant to mention the difficulties that the community has had to
connect both approaches to automata minimization. The paper by Cham-
parnaud et al. [8] can be seen as a first attempt to relate Brzozowski’s
algorithm with split minimization methods. In their paper, the authors
propose an algorithm that computes the first step of Brzozowski’s algorithm
(the computation of D(R(A))) and takes into account the set of states of
the resulting automaton to sequentially split the initial partition of the set
of states of A. The correctness proof of this algorithm considers that p and
q are two equivalent states in A if and only if, for any state P of D(R(A)),
it holds that p € P if and only if ¢ € P. Therefore, any split that is carried
out using the states of D(R(A)) will keep the states p and ¢ as equivalent.
Despite its exponential behavior in the worst case, this algorithm is inter-
esting because basically it rewrites Brzozowski’s algorithm within the split
paradigm.

In this paper, we show the relationship between the two approaches. To
do this, we first consider any possible split minimization algorithm and take



into account the sequence of partitions obtained during the minimization
process of any input DFA A. We prove that this information suffices to
obtain an atomic automaton that accepts the reverse of the language L(A).
Second, we note that the double reversal approach is determined by the
atomic automaton used. Thus, we consider any possible atomic automaton
B, and we prove that we can obtain a set of splitters (and therefore a
sequence of partitions) that allows any DFA A that accepts the reverse of
the language L(B) to be minimized.

2 Notation and definitions

Let X be a finite alphabet and let X* be the free monoid generated by ¥ with
concatenation as the internal operation and the empty string A as neutral
element. A finite automaton is a 5-tuple A = (Q,%,4,1, F'), where @ is a
finite set of states, X is an alphabet, I C @ is the set of initial states, F' C Q
is the set of final states and § : @ x ¥ — P(Q) is the transition function,
which can also be seen as § C (Q x ¥ x @). The transition function can be
extended in a natural way to ¥* and P(Q). We will denote the language
accepted by an automaton A = (Q,%,4, I, F) with L(A), which is defined
as the set of x € ¥* such that §(1,xz) N F # (.

Given an automaton A = (@, 3,0, 1, F) and a state g € @), we define the

—

right language of q (denoted by L;l) as the language {z € ¥* : §(q,x)NF #
0}. In a similar way, we define the left language of a state ¢ (denoted by

<
LqA) as the language {z € ¥* : ¢ € §(I,x)}. When necessary, we will refer

to the strings in Eg‘ as representatives of the state ¢. We also will consider
the natural extension of these languages to P(Q).

Given an automaton A, we say that it is accessible if, for each ¢ €
Q, there exists a string x such that ¢ € 6(I,z). An automaton is called
deterministic (DFA) if, for every state g and every symbol a, the number of
transitions d(g, a) is at most one, and it has only one initial state. A DFA is
said to be complete whenever the size of the set §(q, a) is always one. In the
following, we consider only complete and accessible DFA. The minimal DFA
for any given regular language L is the DFA with the minimum number of
states. We recall that each state of the minimal DFA relates to one class of
Nerode’s relation for the language.

Given an automaton A = (Q, 3,0, 1, F') that accepts a language L, the
reverse automaton is defined as the automaton R(A) = (Q,%,067 1, F, 1),
where ¢ € §~(p,a) if and only if p € §(¢,a). It is known that L(R(A)) =
L", where L" denotes the reverse language of L. For any automaton A =
(Q,%,0,1,F), it is known that the automaton A’ = (29, %, ', I, F), where
F'={Pec2? : PNF # 0}, and §(P,a) = Upepd(p,a), is a DFA that is
equivalent to A. Let us denote the accessible version of A’ by D(A).



Given a regular language L over X, the (left) quotient of L by a string
u is defined as the language u 'L = {v € ¥* : wv € L}. It is well known
that, by Nerode’s theorem, the set of quotients of a regular language is finite;
let us denote this set with {L1, La,..., L,}. In [6], Brzozowski and Tamm
consider this set to define an atom A of L as any of the nonempty languages
of the form LN Ly N...N L,, where EZ (which we will refer to as a literal)
is either L; or L;.

In the same work, Brzozowski and Tamm define the dtomaton of a given
language L as the automaton in which each state represents an atom of
L. For any DFA A the dtomaton for L(A) can be obtained by computing
R(D(R(A))). In the same way, an NFA is atomic if the right language of
each of its states is a union of atoms. Let us also recall that in [6], Brzozowski
and Tamm also prove that an automaton A is atomic if and only if D(R(A))
is the minimal DFA for the language L(A)". Note that this implies that any
DFA is also atomic because D(R(D(R(A)))) is the minimal DFA for L(A)
according to Brzozowski’s algorithm. Also note that any DFA A is atomic

because, for any state g of A, the language Z;‘ is a quotient and can therefore
be obtained by union of the atoms that include the corresponding quotient
uncomplemented. This will be important in proving our results, especially
the correctness of Algorithm 3.1.

A partition m of a set Q is a set { Py, Ps,. .., Py} of pairwise disjoint non-
empty subsets of ) such that QQ = Uj<;<iF;. We refer to those subsets as
blocks, and we denote the block of 7 that contains p by B(p, 7). A partition
7 is refined by 7’ (7 is coarser than 7’) if each block in 7’ is contained in
some block in 7. We denote this as 7 > 7.

Given a DFA A = (Q,%,9,qo, F) and a partition 7 over @), we define
the quotient automaton A/m = (7,%,0', B(qo, ), F'), where F/ = {P; €
m : PNF # (0} and where P; € ¢'(P;,a) if there exist two states p € P,
q € Pj such that §(p,a) = gq.

Given a DFA A = (Q, X, 6, qo, F'), we are interested in the sequences of
partitions (m; = {F,Q — F},ma,...,m) of @ that fulfill that A/my is the
minimal DFA for L(A) and such that m; > 711 for each 1 <i < k. We will
call such a sequence a convergent sequence of partitions (for the automaton
A).

Let us note that, given a DFA A = (Q,%,4,qo, F') and a convergent
sequence of partitions & = (mwy,ma,...,mg) for A, it holds that each block
P in the sequence of partitions 2 is the union of some blocks of my, (if it
were not, then the sequence of partitions & would not be convergent).

Let w1 and s be two partitions of @), and let us denote the coarsest
partition that refines both 71 and w9 by m1 Amy. The blocks of this partition
are the non-empty sets in Py N Py, where P; € m; and P € mo.

Note that the algorithms that solve the minimization of an automaton
by the successive refinement of its set of states, in essence, take into account



the transition function in order to obtain a set (of states) that allows such
a refinement. In order to unify the notation, in [4], the authors propose
the notion of splitter. Thus, for any given DFA A = (Q, 3,0, qo, F), any
P,R C Q, and a € ¥, the authors define a splitter as the set (P, a), which
allows the split of the set R into the sets R’ = §~1(P,a)NR and R”" = R—R'.
The result of the split is denoted (P, a)|R. Whenever ' (P,a) N R = ) or
5 Y(P,a) N R = R, it is said that the splitter 6~1(P, a) does not split R
which is denoted with (P,a)|R = R.

We extend this notation in order to consider splitters that may be ob-
tained by any other processes. Thus, for any given sets such that P, R C Q,
we will denote the split of the set R into the sets PN R and R— P as (P)|R,
and we will say that the splitter (P) splits the set R whenever both PN R
and R — P are non-empty.

3 From split to double reversal minimization al-
gorithms

Given a regular language L and any DFA A such that L(A) = L, we consider
any minimization algorithm that refines the initial partition of states of the
automaton by successive split (for instance, [2, 1]). We do not restrict the
procedures that any algorithm may use to split any given partition.

In order to prove the relationship between the two minimization ap-
proaches, we first propose Algorithm 3.1. This algorithm, for any given
DFA A and using any convergent sequence of partitions obtained by any
split minimization algorithm, outputs an atomic automaton B such that
L(B) = L(A)". The algorithm builds an automaton that initially considers
each block P in the convergent sequence of partitions provided as a state
(note that P C @Q4). Then, the algorithm iterates over the sequence of
partitions and considers any state P in the current partition such that, for
some a € ¥, (P, a) is undefined. In those cases, if §,* (P, a) can be covered
using the blocks in the next partition, then a transition is added from P into
B using the symbol a to each one of these blocks. The final partition is used
to define any undefined transition that may remain. Example 1 illustrates
the behavior of the proposed algorithm.

Example 1 Let us consider the DFA in Figure 1 and the following conver-
gent sequence of partitions:

m = {{1,2,3,4,7},{5,6}}
m ={{1,2,7},{3,4},{5,6}}
T3 = {{1’ 2}’ {3’ 4}’ {5’ 6}’ {7}}
T4 = {{17 2}7 {3}7 {4}7 {57 6}7 {7}}

Initially, the algorithm obtains the set of states as well as the sets of
wnitial and final states. These sets are shown below.



Algorithm 3.1 Algorithm to obtain an atomic automaton from a conver-

gent sequence of partitions.

Input: A DFA A = (Qa,%,04,q0,Fa)

Input: A convergent sequence of partitions & = (my,ma,...,m,) of Q4

Output: An atomic automaton B = (Qp, X, 05, I, Fp) that accepts L(A)"
1: MethoT(Li

Q= Um // the set of the different blocks in any partition of &2
i=1
I={Fa}

»

3:

4:FB:{P€QB:QQ€P}

5: 53 =0

6: fori=1ton—1do

7. for each a € ¥ and every block P € 7; do

8: if 65(P,a) is undefined and 6, (P,a) can be covered using the
blocks in ;41 then

9: Let P be the cover of 6, (P, a) using the blocks in ;1

10: for each block P’ € P do

11: Add the transition (P,a, P’) to dp

12: end for

13: end if

14:  end for

15: end for

16: for each P € Qp and a € ¥ such that dp(P,a) is undefined do
17:  Let P be the cover of 5AT1(P, a) taking into account the blocks in 7,
18:  for each P’ € P do

19: Add the transition (P,a, P") to dp
20:  end for
21: end for

22: return the accessible version of the automaton (Qp,,05,1, Fg)
23: End Method.

Q=1{{1,2,3,4,7},{5,6},{1,2,7}, {3, 4}, {1, 2}, {7}, {3}, {4}}
F=1{{1,2,3,4,7},{1,2,7},{1,2}}

I'={{5,6}}

The first iteration of the loop at line 6 considers the partition w1. Note
that: §,1({5,6},a) = 0 can be discarded; 6, ({5,6},b) = {3,4,7}, which
cannot be covered using the blocks in mo; 621({1, 2,3,4,7},a) ={1,2,3,4,5,
6,7}, which can be covered using the blocks {1,2,7}, {3,4}, and {5,6}; and,
finally, 521({1,2,3,4, 7},b) ={1,2,5,6}, which cannot be covered using the
blocks in mo. When the iteration ends, the following transitions have been

added:
0p({1,2,3,4,7},a) = {{1,2,7},{3,4},{5,6} }



Figure 1: DFA example.

The second iteration of the loop considers the partition wo and processes
each block of it. Thus, note that:

e 0,1({1,2,7},a) = {1,2,4,5,6}, which cannot be covered using the
blocks in ms.

e 0,1 ({1,2,7},b) = 0 and it is discarded.

e 0,1({3,4},a) = {3,7} and it is not possible to cover using the blocks
m 3.

e 0,1({3,4},b) = {1,2,5,6}, which can be covered using the blocks {1,2}
and {5,6} in w3. Therefore, the transitions ép({3,4},b) = {{1,2},
{5,6}} are added.

e 0,'({5,6},a) = 0.

e 0,1 ({5,6},b) = {3,4,7}, which is covered using the blocks {3,4} and
{7} in w3. Therefore, the algorithm adds the transitions dp({5,6},0)

= {{3,4},{7}}-

Figure 2 depicts the automaton once the loop at line 6 ends.

Now, the loop at line 16 traverses the undefined transitions of the au-
tomaton, taking into account the blocks in the last partition to cover the
remaining transitions. We stress here that the automaton may have some
non-accessible states (for instance, state {1,2,7} in this example). Once the
automaton is complete, the algorithm outputs the accessible version of the
automaton. Figure 8 shows the output for this example.

Let us now recall a remark in [7].

Remark 2 (Remark 7 in [7]) Let M; and My denote unions of atoms.
Let us stress that atoms are disjoint sets. Then MyNMs and MiNMS (where
M5 denotes the complementary language of Ma) are unions of atoms.



{1,2,3,4,7}

Figure 2: The automaton obtained once the sequence of partitions has been
considered.

Figure 3: The final automaton output by the algorithm.

Note that, if My and Ms denote unions of atoms, then, trivially, the
union of M7 and Ms is also a union of atoms, and the following result
follows:

Remark 3 Let # = {My,Ms,...,M,} be a set where each M; is a union
of atoms, then, the elements of the boolean closure of # are also unions of
atoms.

In Proposition 5, both Remark 3 and Proposition 4 are used to prove
that the output of Algorithm 3.1 is an atomic automaton that accepts the
reverse language of the input automaton.

Proposition 4 Let A = (Q,X%,0,q0, F) be a DFA and let & = (w1, 79, ...,
) be a convergent sequence of partitions for A. Also let Q' = {Q1,Q2, ...,



Q. } be the set of states of the automaton D(R(A)). It holds that every block
P in 2 belongs to the boolean closure of Q.

Proof. We first recall that, in [8], Champarnaud et al. base their min-
imization algorithm on the fact that m, can be obtained by considering the
states in Q' as splitters. More formally:

m=/\ (@Q)IQ
vQi:eQ’

In other words, in any partition 7 in the sequence of partitions, the
blocks in m, can be obtained by performing a finite number of intersection
and complementation operations over the elements in Q'. Therefore, the
blocks in m, belong to the boolean closure of Q.

As we stated in Section 2, if &2 is convergent, then each block P in the
sequence of partitions & is the union of some blocks of 7y, and, therefore,
P also belongs to the boolean closure of Q'. O

Proposition 5 Let A = (Q,%,0,q0, F) be a DFA and let & = (mwy,ma,
..., ) be a convergent sequence of partitions for A such that A/, is the
minimal DFA for L(A). Algorithm 3.1 outputs an atomic automaton that
accepts L(A)".

Proof. We first recall that, as stated in the previous section, the automa-
ton D(R(A)) is atomic because it is deterministic. Therefore, any state in
D(R(A)) is a union of atoms.

The states of the automaton output by Algorithm 3.1 are the blocks of the
partitions in the convergent sequence &. By Proposition 4, all these blocks
belong to the boolean closure of the set of states of D(R(A)).

Note that the blocks in any partition of the sequence of partitions can be
obtained by the union of some blocks in m, (the final partition is the finer
one in the sequence), and therefore, the blocks in the final partition are able
to cover any undefined transition (in the loop on line 16 of the algorithm).

By Remark 3, each state of the output automaton denotes a union of
atoms, and, therefore, it can be concluded that the algorithm obtains an
atomic automaton.

O

Note that, given any DFA A, Algorithm 3.1 and Proposition 5 relate the
computation carried out by any split minimization algorithm with the con-
struction of an atomic automaton that accepts L(A)". Therefore, Algorithm
3.1 and Proposition 5 also relate this computation with any double reversal
minimization algorithm. Please note that the minimization is granted by
the following proposition, due to Brzozowski and Tamm.

Proposition 6 (Corollary 2 in [6]) B is an atomic automaton if and only
if D(R(B)) is the minimal DFA for L(B)".



4 From double reversal to split minimization al-
gorithms

In this section, we show that for any given DFA A, and using any atomic
automaton for the language L(A)", it is possible to obtain a set of splitters
that allow to minimize A.

Note that the splitters obtained allow convergent sequences of partitions
to be built, where each one of the sequences does not necessarily have to
be related to a known split minimization algorithm. Similarly to what we
did in Section 3, in order to use the most general conditions possible, we
assume that the input can be any atomic automaton of L" and we propose
a procedure that obtains a sequence of partitions that minimizes any input
DFA that accepts L.

Given any DFA A and an atomic automaton B that accepts L(A)",
Algorithm 4.1 proposes a method that obtains a sequence of splitters that

allows A to be minimized. The algorithm chooses a string x in Eg‘ for
each state ¢ in A. These strings are used to label each state in the atomic
automaton with a subset of Q4. These sets are considered to be as the
splitters in order to obtain the minimal DFA for L(A). Example 7 illustrates
the behavior of the proposed algorithm.

Algorithm 4.1 Algorithm to obtain a set of splitters from an atomic au-
tomaton
Input: A DFA A = (Q4,%,04,q0,Fa)
Input: An atomic automaton B = (@Qp, %, dp, I, Fp) that accepts L(A)"
Output: A set of splitters S = P, Py, ..., P, such that A (F;)|Q4 is the
VPeS
partition corresponding to the minimal DFA for L(A)
Method
W =10
for each p € Q4 do
Append to W the pair (p,u) where u is the first string in canonical
order such that §4(qo,u) =p
end for
Let S be an empty array indexed by Qp
for each (p,u) € W do
for each q € 6, (Fp,u) do
Append p to S[q]
10: end for
11: end for
12: return S
13: End Method.

10



Q| A |B|C| D | B | F
S 166 B 0 601y 12y

Table 1: Relations found by Algorithm 4.1 between the states of the au-
tomata in Figures 1 and 4.

Example 7 Let A be the DFA in Figure 1 and let B be the atomic automa-
ton shown in Figure 4. Note that L(B) = L(A)".

Figure 4: An atomic automaton that accepts the reverse language of the
DFA shown in Figure 1.

The algorithm first stores pairs in W. FEach of these pairs relates a state
in A with the first string in canonical order that reach that state in A. These
strings are shown below.

W ={(1,1),(2,a),(3,b), (4,ba), (5,bb), (6,bab), (7,bba)}

The algorithm then processes the pairs in W and relates the state p
to each state in 551(F3,u), where (p,u) € W. For instance, note that
65" (F,bb) = {A}; therefore, S[A] will contain the state 5 € Q4 (note that
the pair (5,bb) € W ). Table 1 shows the whole set of relations.

Finally, the algorithm outputs the set S. Although it is not explicitly
stated in the algorithm, let us show that the sets stored in S allow the parti-
tion induced by Nerode’s equivalence relation to be obtained. Actually, note
that the order in which the splitters are considered may lead to different

11



sequences of partitions, but always with the same result. For instance:

m = ({1,2,4})|Qa = {{1,2,4},{3,5,6,7}}

m =m A({5,61)]Q = {{1,2,4},{3,5,6,7}} A {{1,2,3,4,7},{5,6}}
= {{1,2,4}, {3, 7}, {5,6}}

my = m A ({THIQ = {{1,2,4}, {3}, {5, 6}, {T}}

Ty =m3 A ({3,41)1Q = {{1, 2}, {3}, {4}, {5, 6}, {7}}

Also note that the consideration of the remaining splitters does not mod-
ify the partition, which is the same that is induced by Nerode’s equivalence
relation.

The proof of correctness of the algorithm takes into account that the left
language of every state of R(B) is a union of classes of Nerode’s equivalence
for the language L(B)" = L(A). Proposition 8 and Corollary 9 are helpful
in proving the correctness of the algorithm in Proposition 10.

Proposition 8 Let A= (Q,X%,0,1,F) be an automaton. It holds that D(A)
is the minimal DFA for L(A) if and only if, for every state q of A, the
%

language L’q4 is a union of classes of Nerode’s equivalence for the language
L(A).

Proof. On the one hand, let us suppose the contrary; thus, for some
class [x] of L(A) there would be two strings u and v in the class [x] and a
state p in A such that p € 6(I,u) and p € 6(I,v). Therefore, in D(A), two
strings in the same class would go to different states, which is a contradiction
because D(A) is minimal.

On the other hand, note that if the left languages of the states of A are
unions of classes of Nerode’s equivalence, then, for any given class [z], every
string in the class [x] reaches the same set of states, and, therefore, D(A)
s minimal. (]

Corollary 9 Let B = (Q,%,0,1, F) be an atomic automaton. Then R(B)
is such that the left language of each state is a union of classes of Nerode’s
equivalence for the language L(B)".

Proof. Note that, taking into account that D(R(B)) is the minimal DFA
for L(B)" (Proposition 6), it is a direct consequence of Proposition 8. O

Proposition 10 Let A = (Qa,X,04,q0, F4) be a DFA and let B = (Qp, %, 035,
I, Fg) be an atomic automaton such that L(B) = L(A)". Algorithm 4.1 out-
puts a set of splitters that allow the minimal DFA for L(A) to be obtained.

Proof. Let us note that the left language of every state in A represents a
fraction of a class of Nerode’s equivalence. Let us also note that B is atomic
and, by Corollary 9, the left language of each state in R(B) is a union of
classes of Nerode’s equivalence relation on L(A).

12



We first note that, if p and q in Qa are equivalent and x, and x, are
representative strings of p and q, then x, and x4, are in the same class
of Nerode’s equivalence for L(A), and therefore 6r(py(Ig(p),Tp) is equal to
dr(B)(Ir(B),Tq) because the left languages of the states in R(B) are union
of Nerode’s equivalence classes for L(A).

Second, we note that, if Sp(p)(Ir(B)> Tp) = Or(B)(IR(B)> Tq) then the quo-
tients ﬂ:;lL(R(B)) and ﬂ:q_lL(R(B)) are equal, and therefore x, and x, are
in the same class of the Nerode’s equivalence relation for L(R(B)) = L(A),
and therefore, due to A is a DFA, x, and z, are representative strings of
equivalent states.

In other terms, the representatives of two states p and q in Q4 reach

the same states in R(B) if and only if Z;‘ and Z;‘ are fragments of the
same class of Nerode’s equivalence, and this is so if and only if p and q are
equivalent.

Algorithm 4.1 relates a set of states P C Q4 to each state p € Qp (we
use the notation of the algorithm and denote the whole set of subsets of QQa
related to states in B as S). To do so, the loop at line 7 takes into account
the first string in canonical order that reaches any state of A in order to
assign to each state in Qp a set of states of A that represents the mentioned
above unions of classes of Nerode’s equivalence relation.

Therefore, if p and q in Q4 are equivalent, then, for any P € S, it holds
that p € P if and only if ¢ € P. If p and q are not equivalent, then there is
a set P €S such thatp € S and q ¢ S. This implies that S is a valid set of
splitters.

O

In this section, for any given DFA A, Algorithm 4.1 and Proposition
10 relate the computation carried out by a double reversal minimization
algorithm (regardless of how the atomic automaton is obtained) to the min-
imization of A using a split minimization algorithm. This result completes
the result in Section 3 and shows the relationship between the two mini-
mization approaches.

5 Conclusions

The minimization of DFA are usually tackled using two different approaches
that are traditionally considered to be unrelated. The first approach in-
cludes methods that iteratively refine an initial partition that distinguishes
final and non-final states. These methods have recently been described in
a unified way by Berstel et al. [4]. The second approach is represented
by the method first proposed by Brzozowski [5] and recently extended by
Brzozowski and Tamm [6].

The paper by Champarnaud et al. [8] can be viewed as a first attempt to
relate Brzozowski’s algorithm to split minimization methods. In our work,

13



we clarify the relationship between the two approaches. To do this, we con-
sider both any convergent sequence of partitions (and therefore any potential
split minimization algorithm) and any method that obtains an atomic au-
tomaton (and therefore any generic double reversal algorithm according to
[6]). We provide methods to transform any set of splitters into an atomic
automaton and vice versa, thus showing the relationship between the two
approaches.

References

1]

E. F. Moore. Gedanken experiments on sequential machines. In C. E.
Shannon and J. Mc-Carthy, editors, Automata Studies. Princeton Uni-
versty Press, 1956.

J. E. Hopcroft. An n - logn algorithm for minimizing states in a finite
automaton. Technical report, Stanford University, Stanford, CA, USA,
1971.

D. Wood. Theory of Computation. John Wiley & sons, 1987.

J. Berstel, L. Boasson, O. Carton, and 1. Fagnot. Automata: from Math-
ematics to Applications, chapter Minimization of automata. European
Mathematical Society. (arXiv:1010.5318v3). To appear.

J.A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. Mathematical Theory of Automata, pages 529-561,
1962. MRI Symposia Series, Polytecnic Press, Polytecnic Institute of
Brooklyn.

J. A. Brzozowski and H. Tamm. Theory of d4tomata. Theoretical Com-
puter Science, 539:13-27, 2014.

M. Véazquez de Parga, P. Garcia, and D. Lépez. A polynomial double
reversal minimization algorithm for deterministic finite automata. The-
oretical Computer Science, 487:17-22, 2013.

J-M. Champarnaud, A. Khorsi, and T. Paranthoén. Split and join for
minimizing : Brzozowski’s algorithm. Technical report, Czech Techni-

cal University of Prague, 2002. Proceedings of the Prague Stringology
Conference 2002 (PSC’02).

14



