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Abstract Power consumption has become a major design concern in current high-
performance chip multiprocessors, and this problem exacerbates with the number of
core counts. A significant fraction of the total power budget is often consumed by
on-chip caches, thus important research has focused on reducing energy consumption
in these structures. To enhance performance, on-chip caches are being deployed with
a high associativity degree. Consequently, accessing concurrently all the ways in the
cache set is costly in terms of energy. This paper presents the PS-Cache architecture,
an energy-efficient cache design that reduces the number of accessed ways without
hurting the performance. The PS-Cache takes advantage of the private-shared knowl-
edge of the referenced block to reduce energy by accessing only those ways holding
the kind of block looked up. Experimental results show that, on average, the PS-Cache
architecture can reduce the dynamic energy consumption of L1 and L2 caches by 22
and 40 %, respectively.
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1 Introduction

As silicon resources become increasingly abundant, core counts grow rapidly in suc-
cessive chip multiprocessor (CMP) generations. These CMPs usually implement the
shared-memory programming model and accelerate their access to memory using one
or more levels of private caches per core, which are made transparent to software by
means of a cache coherence protocol. Two main types of coherence protocols are being
implemented in modern CMPs: directory-based protocols and snoop-based protocols,
which target different system scales.

Caches in current CMPs are organized in a two- or three-level cache hierarchy,
which makes them responsible of a significant percentage of the overall CMP die
area [1], as well as a large portion of the overall power budget. Concerning dynamic
energy consumption, the first levels of caches are more frequently accessed than last
level caches (LLCs); however, accesses to these caches are more energy consuming
due to the higher number of ways in LLCs. This concern is even more important
in CMPs than in monolithic processors since caches can be accessed both from the
processor side and from the interconnection network side (i.e., coherence requests),
increasing the number of cache accesses.

Due to performance reasons, caches are deployed with a high associativity degree in
current processors (e.g., Intel Core i7 [2] and IBM POWER 7 [3]). In high-performance
microprocessors, all the ways in the corresponding set are concurrently accessed on
each cache operation. Therefore, the associativity degree defines the number of tags
that are looked up in parallel in each cache access. Caches include one comparator per
way and perform as many tag comparisons as number of ways. As a consequence, the
dynamic energy dissipated per access increases with the cache associativity. In this
paper, we focus on reducing the number of ways that must be looked up on each access
with the aim of reducing the dynamic energy consumption of the memory hierarchy
without degrading the system performance.

Many cache energy reduction approaches have focused on monolithic processors
(e.g., Cache Decay [4], Drowsy Caches [5], Way Guard [6]) in the past. Some of them
(e.g., [7]) were originally designed to reduce cache access time, but posterior research
has proven that these schemes allow important energy savings. However, these schemes
are not directly applied to CMPs. Recent research has dealt with energy savings on
CMPs running parallel workloads. Parallel workloads represent an important segment
for current and future CMPs mainly when many-core processors are considered. The
accessed blocks in these workloads can be classified in two different categories: private
blocks and shared blocks. The former are accessed only by a single core, while the latter
are accessed by several cores. In this paper, we take advantage of this classification
to access only a subset of the set ways on each cache access and reduce the dynamic
energy consumption of the memory hierarchy.

Recent research has concentrated on proposals that take advantage of the mentioned
private-shared block access behavior to enhance the performance [8—11] or the energy
consumption [12—14] of different CMP components. In this paper, we present an
energy-aware cache design that makes use of such behavior to address dynamic energy
consumption in cache memories.
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In short, this paper proposes a new cache architecture for CMPs, named as PS-
Cache, with the aim of reducing dynamic energy consumed by the cache structure.
The PS-Cache can be applied to any level of the cache hierarchy. Nevertheless, to focus
the research, results are presented and analyzed for L1 and L2 caches, in particular,
private L1 caches and shared L2 caches. The PS-Cache is based on tagging cache
blocks at run-time as shared or private with a simple classification mechanism, similar
to the one proposed by Cuesta et al. [9]. Upon an access to the PS-Cache, only those
lines having the same type as the requested block are accessed. The PS-Cache is
deployed with minimal hardware complexity and presents important design features:
(1) block classification is done with negligible complexity, just a single bit must be
added to each TLB entry; (ii) tags and data arrays can be accessed in parallel so no
performance degradation will rise, which is a major concern in L1 caches; and (iii)
unlike other approaches, such as [14], no way-alignment across cache sets must be
done.

Experimental results show that the PS-Cache architecture can reduce the L1 cache
dynamic energy consumption by about 22 % for both snoopy and directory protocols,
and that it can reduce the L2 cache dynamic energy consumption by 40 %. These
reductions in energy consumption are achieved without degrading performance. We
also compare our PS-Cache against previously proposed designs showing that the PS-
Cache provides the best trade-off between performance and energy when implemented
in L2 caches.

The remainder of this work is organized as follows. Section 2 describes the main
reasons that motivate this work. Section 3 discusses the related work. Section 4 presents
the design of the PS-Cache. Section 5 describes the simulation framework. Section 6
analyzes the behavior of both types of blocks and presents the simulation results.
Finally, Sect. 7 draws some concluding remarks.

2 Motivation

Two main reasons led us to deal with this work. First, memory reference instructions
represent a significant percentage of the executed instructions. Second, when running
multithreaded workloads, in addition to access the local cache, other caches (e.g.,
remote caches) can be accessed for coherence purposes.

The first reason states that cache memories are frequently accessed. We launched
experiments to quantify the percentage of memory reference instructions in the studied
workloads. Figure 1 shows the percentage of memory reference instructions in each
individual benchmark executed on a 16-core CMP system!. This value is roughly the
same, around 20 %, across the different benchmarks.

The second reason indicates that when running parallel workloads, the number of
accesses to the cache increases with respect to monolithic processors because of coher-
ence requests issued by other cores. In other words, the cache is not only accessed from
the processor side, but also from the interconnection network (NoC) side, therefore,
increasing the dynamic power consumption. In this context, the number of accesses

1 Experimental environment, system parameters, protocols and cache hierarchy are described in Section 5.
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Fig. 2 L1 Coherence lookups

coming from the NoC strongly depends on the type, snoop-based or directory-based,
of the underlying coherence protocol.

Snoop-based protocols are based on broadcasting coherence requests to all the
cores, which require high bandwidth and energy consumption at the network and also
at the caches, since all caches in the system are accessed on a coherence request.
Thus, they are only appropriate for small system scales [12,15,16]. Directory-based
protocols keep track of the various copies of cached blocks in a directory structure
between the private and the shared cache levels [9,17,18]. This allows the processor
to easily identify replicas of a block, so minimizing the coherence communication.
Coherence requests are only sent to cores storing a replica, so only a subset of caches
is looked up. This makes them more suitable for large-scale CMPs, since they reduce
energy and bandwidth with respect to snoop-based protocols.

Figure 2 shows the fraction of cache accesses coming from the bus side in both types
of protocols in our 16-core system. As observed, this value is noticeable in snoopy
protocols and it represents around one fifth of the total accesses; moreover, in some
workloads this value is as high as 45 %. In contrast, this value presents a scarce interest
in directory-based protocols.

The previous discussion illustrates the importance of reducing dynamic power con-
sumption in caches of CMP systems, and in snoop-based protocols as well, where more
coherence requests are issued by the cache controllers. To deal with this problem, this
paper proposes an architectural approach with the aim of taking advantage of the
behavior exhibited by parallel workloads.

In particular, previous research has taken advantage of the private-shared block
classification in parallel workloads running in CMP systems to enhance different
aspects in the design of CMPs. The aim of this paper is to save energy by reducing the
number of lookups on each cache access. More precisely, the proposal saves significant
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An energy-efficient cache design 71

energy by looking up only those set ways having the same type (shared or private) as
the block requested either by the processor or by the coherence access.

3 Related work

This paper presents an energy-efficient cache design that takes advantage of a private-
shared detection of the blocks referenced by applications. To the best of our knowledge,
there is no prior work on using private-shared classification for dynamically reducing
the number of accessed ways on each cache access. Hence, this section first reviews
some related work about energy-efficient cache designs, and then, it discusses some
other optimizations based on a private-shared detection.

3.1 Energy-efficient cache designs

Caches consumption comes from both leakage (or static) and dynamic consumption.
Regarding leakage reductions, Powell et al. [19] proposed a Gated-Vdd technique that
aims to reduce leakage for instruction caches by reconfiguring them and turning off
unused lines. Kaxiras et al. [4] proposed the Cache Decay, an approach that reduces the
leakage power of processor caches by turning off those cache lines that are predicted
to be dead, i.e., not referenced by the processor before they are evicted. Alternatively,
Flautner et al. [5] exploited the fact that in a particular period of time only a subset of
the cache lines is accessed to propose the Drowsy Caches. Different from the previous
proposals, the voltage is reduced, but not cut off, for those cache lines that are not
being accessed. In this way, the content of the cache line is not preserved.

While techniques that aim to save leakage focus on reducing (or cutting off) voltage,
dynamic energy-saving techniques try to minimize the number of data read and written
on every cache access. For example, Albonesi [20] proposed Selective Cache Ways,
a cache design that enables only a subset of the cache ways when the cache activity is
not high. The prediction of ways was previously proposed by Calder et al. [7] to reduce
the access time of set-associative caches. This approach works well with L1 caches
with a relatively small associativity which present very predictable access patterns;
however, as we show in the evaluation, it presents poor results for lower level caches
since locality is hidden by previous cache levels.

Zhang et al. [21] proposed the way-halting cache that filters lines accessed in the
corresponding set by comparing during the index decoding the four least significant
bits of the tag. This approach performs a fully associative search in the first comparison
which negatively affects power consumption, but still it is orthogonal to our proposal
and could be combined to increase the benefits of both. One possible combination
could be using less bits in the first tag comparison to reduce the fully associative
look-up and combining it with the PS bit to increase its effectiveness.

Ghosh et al. [6] proposed Way Guard, a mechanism for large set-associative caches
that employs bloom filters to reduce dynamic energy by skipping the look-up of cache
ways that do not contain the requested data according to the bloom filter. This scheme
requires the addition of a large decode and a two fields per way: one segmented bloom
filter, previously proposed by the same authors to filter accesses to the whole cache
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[22], and another bloom filter to filter accesses to ways. This may result in excessive
overhead and critical complexity. Way Guard shows improvements with respect to
the way-halting cache. A quantitative comparison with Way Guard is shown in the
evaluation section.

Other techniques focus on reducing both leakage and dynamic consumption, for
example, by reducing the area of the cache tags, like in the TLB Index-Based Tagging
[23], or by performing run-time partitioning, like in the Cooperative Caching scheme
[14] or in the ReCaC scheme [24]. There are also some recent works addressing the
reduction of cache energy consumption in fault tolerance systems with high reliability
[25].

3.2 Private-shared optimizations

The detection of private and shared data can also be employed to optimize performance
and power. Kim et al. [12] detect the sharing degree of memory pages to reduce the
fraction of snoops in a token-based protocol. In this way, they can replace broadcast
messages with multicast ones, thus reducing the energy consumption of the intercon-
nection. The R-NUCA approach by Hardavellas et al. [8] detects private and read-only
pages and maps them efficiently in a distributed NUCA cache. By mapping private
pages to the closest NUCA bank to the core accessing them, the access latency is
reduced, but also the amount of traffic generated, which impacts in the energy con-
sumed by the network. Cuesta et al. [9] deactivate coherence for private pages, thus
avoiding their tracking by directory caches. This enables to reduce the directory size
up to eight times while still maintaining performance. Reductions in directory area
also leads to reduce both dynamic and leakage consumption.

Some previous proposals rely on the compiler and/or memory allocator to classify
memory pages in either remove coherence for private pages [26] or improve data
placement [27,28]. In [27], a data ownership analysis of memory regions is performed
at compilation time. This information is transferred to the page table by modifying
the behavior of the memory allocator by means of hooks. This proposal is further
improved in [28] by considering a new class of data, named as practically-private,
which is mapped to the NUCA cache according to a first-touch policy. In [26], private
data are not stored at the LLC with the aim of avoiding cache thrashing for private
blocks. Different from our approach, these works mark statically data as private either
by the memory allocator or at compile time, when privacy of some data cannot be
guaranteed.

SWEL [10] is a novel hardware-based coherence protocol that uses a private-shared
block classification at the directory to allocate shared read—write blocks only at the
shared LLC, so removing the need of coherence maintenance for them. The main
drawback of that proposal is the latency penalization of accessing shared read—write
blocks, which must be served by the LLC cache. POPS [11] decouples data and coher-
ence information in the shared LLC to reduce access latency to this information and
to improve the aggregate NUCA capacity. It also employs a directory private-shared
classification (this time with the help of a predictor table). Spatio-temporal Coherence
Tracking [29] also classifies private and shared data at the directory, accounting for
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temporal private data. It tries to find large private regions to merge them in the directory
to save directory space. Ros and Kaxiras [13] proposed VIPS, a complexity-efficient
coherence protocol that employs write-back caches for private data for efficiency rea-
sons and write-through caches for shared data for protocol simplicity.

In [30], the proposed L1 Collective Cache [30] uses two separate cache structures
in the first-level cache to differentiate between shared and private accesses. The main
goal of this approach is to reduce network communications. However, both caches are
accessed in parallel so no energy savings are provided. In addition, the fixed size of each
cache structure makes the scheme unable to adapt to the multiple behaviors exhibited
by the different workloads. RECAP [31] focuses on reducing power consumption in
the LLC. This scheme adds an access permission register or APR, a field similar to a
sharer vector to each way. The register includes one bit per core to indicate whether a
core has access permission to the associated way, resulting in an important area and
energy overhead. It uses the information in the APR to access only those ways which
the core has access permission to.

Finally, Valls et al. [32] proposed a two-level cache directory organization, named
as PS-Dir. Entries keeping track of Private blocks are stored in a large but narrow
cache, and an independent, much smaller and wider cache is used to keep track of
shared blocks.

4 The PS-Cache

The main goal of the PS-Cache is to take advantage of the classification of private
(P) and shared (S) blocks to design a power-efficient cache architecture that is able
to reduce the number of ways looked up on each cache access. Instead of accessing
all the ways in the corresponding set, as usually done, the PS-Cache only looks up a
subset of them, in particular, those blocks whose type (private or shared) matches the
requested block type.

The PS-Cache needs (i) to keep blocks tagged as private or shared in the cache,
and (ii) a private-shared classification mechanism to indicate the type of the block to
be looked up. Blocks are tagged in the cache using a bit (the PS bit) attached to each
cache line. This bit indicates the type of the block allocated in that line. In addition,
although the PS-Cache can work with any private-shared classification mechanism to
find out the type of the looked-up block before accessing the data and tag arrays, this
paper assumes an OS-based private-shared mechanism similar to the one proposed
by Cuesta et al. [9], which keeps the information in a PS bit stored along with the
TLB. Using such coarse granularity presents its advantages and shortcomings. An
interesting analysis about this fact can be found in [9]. In this way, the PS-Cache only
accesses those ways whose PS bit value in the entry matches with the PS bit value
given by the TLB for the looked-up block.

4.1 The PS page classification mechanism

The classification mechanism is based on OS support, therefore, the classification is
performed at the page granularity. This means that all the blocks of the same page
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Fig.3 The PS Page classification mechanism workflow. PO and P1 are processors and PT is the page table
in main memory

are classified with the same type. The sharing information is stored both in the page
table and in the TLB that holds the translation for the most recently referenced pages.
The sharing information comprises the PS bit and the keeper id, which is the first core
that requested the page translation. This information is stored in the page table, and
the TLB only stores the PS bit. On a memory reference, the core obtains the block
type of the reference from the TLB when it is accessed with the purpose of getting
the address translation. On a TLB miss, the page table is accessed (as usually done),
but the devised classification mechanism also updates the sharing information in the
page table and in the core TLB.

Figure 3 depicts an overview of how the classification mechanism works. The first
miss (suffered by PO in the example) sets the page status as private and the keeper
field is set to P1. The page is set to private in the PO TLB. On subsequent misses, if the
page is found as private (which occurs in the second access from P1 in the example),
it is necessary to compare the keeper field (PO) with the core requesting the access
(P1) to check if the page will become shared or if, otherwise, the one that requests the
page translation is the same core as the first time. If the page must become shared, the
page table (labeled as PT) entry is updated and a private-shared coherence recovery
mechanism is triggered to maintain coherence between the page table and the keeper
TLB and the PS bits in the caches.

The private-shared coherence recovery mechanism has to ensure that all the PS bits
of the cached blocks of the page as well as in the TLBs keep the same type as their
entry in the page table. For doing this, the requesting core issues a recovery request to
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the page keeper (obtained from the page table entry). On the arrival of such a request,
the keeper updates both the PS bit in the corresponding TLB entry and the PS bits of
the cached blocks belonging to the given page. Notice that this recovery procedure
is only required upon a Private-to-Shared transition. This way we keep the PS bit of
every block in the cache coherent with the state of the page in the TLBs and in the
page table. More details about the mechanism can be found in [9].

After solving the TLB miss the sharing information is in the PS bit stored along
with the page translation in the TLB of the requesting core and this PS bit is used by
the core to check the type of the requested block (private or shared). As commented
above, the PS bit allows us to discern the group of ways in which the requested block
can be found and, consequently, only these ways are accessed.

Although the private-shared classification employed in this work is performed by
accessing the page table on every TLB miss [8,9], the PS-Cache can also work along
with a classification mechanism that employs TLB-to-TLB transfers [33], which can
improve the overall performance of the system.

4.2 The PS-Cache architecture

On the execution of a memory reference instruction, the cache controller first looks
in the TLB to get the physical address”. As mentioned above, the TLB includes one
bit per entry, the PS (Private-Shared) bit, that indicates how the page is classified.
The value of this bit is read from the TLB entry jointly with the physical address.
With this information, the cache controller proceeds searching the block in the cache.
The TLB translation information is used to check the tags in the corresponding set,
but as a novelty the proposal also uses the PS bit to avoid some of the way accesses.
The mechanism can be applied to any cache level, for illustrative purposes. Figure 4
depicts an overview of the proposed cache architecture for the L1 cache.

2 If a TLB miss occurs, after solving the miss the corresponding entry is in the TLB.
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The key difference is thatin the PS-Cache only those ways which share the same type
as the one indicated by the TLB are accessed, thus eliminating the energy consumption
caused by the look-up in the other ways. As observed, each cache line has attached a
PS (Private-Shared) bit which indicates the type of each block (according to the page
table and the other TLBs). The PS bit provided by the TLB is compared with the PS
bits of all the ways in the set. A simple logic is included to select the wordline (WL) of
those ways whose PS bit matches the value of that obtained from the TLB for the page
of the current memory reference. This means that, in the tag array, only a subset of the
tags is read and then compared with the tag of the physical address and, in the data
array, only a subset of data blocks is read. On a hit, the mux placed in the data array
would select the proper data block from the ones accessed. This allows the proposal
to reduce significant dynamic energy consumption across the memory accesses since
in general, as experimental results will show, only a small fraction of ways is required
to be accessed in many memory operations.

The proposal also reduces dynamic energy consumption when accessing the cache
from the NoC side (i.e., coherence requests). In this case, only shared ways are looked
up, since the classification mechanism ensures that before arriving the coherence
request, the block is shared or it has been reclassified as shared by the private-shared
updating mechanism.

In addition, to reduce the static power consumption, the proposed mechanism takes
also advantage of the invalid bit. The power of all ways in an invalid state is turned off
and is also excluded from the process of looking the block up. This allows not only
reducing the number of possible ways for the block (the lower the number, the less
dynamic consumption), but also reducing the static energy consumption since power
supply to these ways is cut off while they are in the invalid state.

In case of accessing to L2 or L3 caches, the PS bit of the target block (already taken
from the TLB) is carried in the miss request. On the other hand, PS bits in the cache
entries are updated accordingly by the cache coherence protocol, so the PS bit of a
request and the PS bit of the requested block are always coherent.

Regarding hardware complexity, the proposal requires minimal complexity. On the
one hand, no extra information must be added to the TLB except a single bit (the PS
bit) per entry. Note that this bit can also be employed to optimize the cache coherence
protocol as in [9]. On the other hand, the proposal can be easily adapted to current
caches. In fact, using a single wordline for all the ways in the set presents several
problems due to, among others, many transistors are connected to the row’s wordlines
and the column’s bitlines increasing the total capacitance and resulting in an increase
in delay and power dissipation. Thus, to deal with this problem, current SRAM cache
designs employ the divided wordline approach (DWL), which divides the wordline
into a fixed number of blocks, for instance, one WL per cache way [34]. Notice, that
our proposal takes benefit of this wordline scheme already working in current caches.
Due to the low overhead of our scheme the access time to the PS-Cache is not affected.
In L2, the PS bit is known before accessing the cache and therefore does not affect the
access time. Even regarding the first-level cache, the proposal could be integrated in
most current deep pipelined processors because the access to first-level caches usually
takes several stages; e.g., a L1 hit time takes 3 cycles in the AMD Opteron X4 2356
(Barcelona) [35].
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The previous discussion focused on typical physically tagged and physically
indexed caches. However, the proposal could be also applied to other types of caches;
for instance, virtually indexed but physically tagged. In these caches the tag array is
accessed in parallel with the TLB, and then the physical address is used to compare
only those tags whose type matches the target one.

5 Simulation environment

The proposal has been evaluated with a full-system simulation using Virtutech Simics
[36] and the Wisconsin GEMS toolset [37], which enables detailed simulation of
multiprocessor systems. GARNET [38], a detailed network simulator included in the
GEMS toolset, models the interconnection network.

Table 1 shows the values of the main system parameters that correspond to the
assumed base system, which is a 16-tile CMP architecture. CACTI 6.5 tool [39] has
been used to estimate access time, area requirements and power consumption of the dif-
ferent cache structures for a 32-nm technology node and high-performance transistors.

Two cache coherence protocols, a directory-based protocol and a snoop-based pro-
tocol, have been implemented and evaluated. Both protocols store the blocks in the
private caches considering MOESI states, and implement a non-inclusive LLC (L2 in
our study) cache. Also, invalidation acknowledgments are directly sent to the requester.
The main difference between the two protocols is the trade-off between area and power.
The directory protocol implements an on-chip directory cache, which increases its area
overhead, while the snoopy protocol performs a broadcast on every write, and on every
load in case the data is not found in the LL.C. As analyzed in Sect. 2, snoopy protocols
induce a higher number of coherence requests to the L1 caches, therefore, a reduc-
tion in the average number of accessed ways results in higher energy savings than in
directory-based protocols. Energy results account for any access to the cache, includ-

Table 1 System parameters
Memory parameters

L11& L1 D caches 64KB, 8-way

L1 cache access time 2 cycles

Cache block size 64 bytes

Shared single L2 cache Non-inclusive, 512KB/tile,
16-way

L2 cache access time 6 cycles (2 if only tag
accessed)

Memory access time 160 cycles

Network parameters

Topology 2-dimensional mesh (4 x 4)
Routing technique Deterministic X-Y

Flit size 16 bytes

Data and control message size 5 flits and 1 flit

Routing, switch, and link time 2,2, and 2 cycles
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Table 2 Simulated applications Name Parameters

SPLASH-2 benchmark suite
Barnes 16K particles
Cholesky tk15
FFT 64K complex doubles
Ocean 514 x 514 ocean
Radiosity Room, -ae 5,000.0 -en 0.050 -bf 0.10
Radix 512K keys, 1,024 radix
Raytrace Teapot—optimized by removing

locks for unused ray ids

Volrend Head
Water-Nsq 512 molecules

PARSEC suite
Blackscholes Simmedium
Swaptions Simmedium

ALPBench suite
FaceRec Script
MPGdec 525_tens_040.m2v
MPGenc Output of MPGdec
SpeechRec Script

Scientific benchmarks
Tomcatv 256 points
Unstructured Mesh.2K

Commercial workloads
Apache 4,000 transactions
SPEC-JBB 4,000 transactions

ing those that come as a consequence of the private-shared classification mechanism

of page tables.

The proposal has been evaluated using a wide range of scientific applications from
the SPLASH-2 benchmark suite [40], the ALPBench suite [41], the PARSEC suite
[42], scientific applications and commercial workloads. Table 2 shows the list of appli-
cations considered in the study. Experimental results reported in this work correspond

to the parallel phase of the evaluated benchmarks.

6 Experimental evaluation

6.1 Private-shared blocks behavior analysis

Energy benefits of the proposal depend on the average number of ways that are looked
up by the cache accesses. This number would mainly change depending on which
cache we are accessing to (L1 or L2), and on the type of block we are looking for.
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Fig. 5 Average number of ways in a set of each type in the L2 cache for both studied protocols
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Fig. 6 Average number of ways in a set of each type in the L1 cache for both studied protocols

The study starts with the L2 cache since it implements a higher number of ways,
thus the proposal can potentially achieve higher energy savings in this cache.

Figure 5 depicts the average number of blocks of each type in the 16-way set-
associative L2 cache. Results are shown for the snoopy and directory MOESI-based
protocols considered in this paper. As observed, on average, there are around five pri-
vate blocks in a set, whose access would result in important energy savings. Neverthe-
less this number strongly depends on the application. There are some few applications
with more than twelve private blocks per set on average (e.g., fomcatv), but as can be
seen most of the applications store shared blocks in most of the ways.

Figure 6 shows the average number of blocks of each type in the 8-way set-
associative L1 cache. Unlike L2 caches, the difference in the amount between private
and shared ways is higher, around two ways storing private blocks and five storing
shared blocks.

Results confirm that the final number of accessed ways vary according to the type
of block we are looking for and the application behavior. That is, the average number
of blocks of each type seen on the arrival of a request to a private block can widely
differ from that seen on the arrival of a request to a shared block.

To provide further insights on how much energy savings the proposal is able to
bring, Fig. 7a, b shows the distribution of the number of accessed ways on each access
on the arrival of a private or shared request, respectively, in the L1 cache. The data
in the first figure is normalized to the number of memory accesses when employing
a directory protocol with PS-Cache, whereas the second figure is normalized to the
number of memory accesses when employing a snoopy protocol with PS-Cache. As
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Fig. 7 Distribution of the number of ways accessed in the L1 cache normalized with respect to the snoopy
protocol

expected from Fig. 6, most applications look up more ways when accessing shared
blocks than when accessing private blocks, with only few exceptions such as Tomcatv
and Blackscholes. An interesting observation is that when looking for a private block,
most of the times (over 60 % of the accesses) just one or two ways are looked up.
Benefits, are lower when looking for a shared block, but even in this case, around
60 % of times, five or less ways are looked up, which will also bring important energy
savings. Regarding protocols, two main observations can be drawn. First, it can be
appreciated that the rate of shared to private blocks accessed is quite similar in both
protocols regardless of whether a shared or private block is requested. Second, major
differences among protocols mostly appear when looking for a shared block, with the
exception of SpeechRec when looking for a private block. In this case, a directory-
based protocol reduces the number of lookups on average around 20 % with respect
to the snoopy protocol. Moreover, this reduction can be as high as 70 % in Water-Nsq
when looking a shared block.

Figure 8 shows the average number of accessed ways per access in the L2. On
average a second-level cache implementing the PS-Cache architecture needs only to
look 10 of its 16 ways up, although there are some cases (i.e., BlackScholes) in which
this number can be as low as 2 ways per access.

As mentioned above, the proposal can be applied to any level of the cache hierarchy,
thus this section also explores the benefits on the L1 cache in the studied system.
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Fig. 10 Reduction of the dynamic energy consumption in L2

Figure 9 shows how many ways are looked up on average across all the benchmarks
in the proposed 8-way first-level cache. Results show scarce difference between both
types of coherence protocols, both of them accessing 5 ways on average. In some
applications the PS-Cache greatly reduces the number of ways to be looked up (e.g.,
only 2 in Blackscholes), while in others like MPGenc that presents a large number of
shared ways, the impact is not so high.

6.2 Energy consumption

This section analyzes the impact of the proposal on the energy consumption of the
caches.

Figure 10 shows the dynamic energy consumed by the L2 cache for the directory
and a snoopy protocols considered in this paper. Conventional protocols and caches
(labeled as baseline) have been included for comparison purposes. Results of the PS
approach have been labeled with the name of the protocol implemented in the system.
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Fig. 11 Reduction of the dynamic energy consumption in L1

In this cache, there is not much difference between both coherence protocols. As
observed, energy savings widely differ across benchmarks. On average, the PS-Cache
achieves by 40 % of energy reduction in both coherence protocols. However, notice
that in some cases, energy consumption of the PS-Cache is only by 12 % that of the
conventional system (BlackScholes), and even in the worst case, these benefits always
exceed 8 %.

Figure 11 shows the results for the L1 cache. On average, similar energy savings (i.e.,
by 22 %) in percentage are brought by both snoopy and directory protocols in the L1
cache. An interesting remark is that a snoopy protocol with the PS-Cache architecture
can consume less than a conventional directory one. This is simply achieved through
the selective look-up within the different ways of a set provided by the PS bit.

As suggested in the previous section, applications with a large number of private-
block lookups, obtain higher energy reductions. For example, Barnes reduces dynamic
power consumption by 44 and 51 %, for snoopy and directory protocols, respectively,
and Radiosity by 47 and 53 %, respectively. On the other hand, applications with a
low number of private-block lookups offer no such benefits. Best example of this
scenario is the SpeechRec benchmark, which only reduces the power consumption
by 3 %.

Results show that the dynamic energy consumption reduction is higher in L2 caches
than in L1 caches, even more so if we considered virtually-indexed, physically-tagged
L1 caches instead of physically-indexed, physically-tagged ones. Hence, it can be
concluded that the lower the cache level the higher the benefits provided by this
technique.

6.3 Comparing PS-Cache versus way prediction and way guard

This section compares the PS-Cache with previous proposals that also reduce dynamic
energy consumption by accessing a subset of the cache ways instead of all of them, i.e.,
Way Prediction and Way Guard. The following subsections provide a brief summary
of these schemes to make the paper self-contained. Finally, a comparison of both of
them against our PS-Cache scheme is shown. For the sake of fairness, the invalid bit
technique has also been implemented in all the compared schemes.

6.3.1 Way prediction

Way Prediction techniques [7,20] predict the way to be accessed in advance (typically
the way containing the MRU block) and only that way is accessed first. The problem
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lies when the prediction fails; in such a case, all the remaining ways are accessed at
a second phase to look for the target block. This means that on misprediction, energy
wasting rises and latency increases, since additional cycles are required to solve the
memory request.

6.3.2 Way Guard

Way Guard [6] has been proven to work efficiently in highly associative caches. The
mechanism implements a counting bloom filter associated with each cache way. Way
Guard works as follows. First, a hash function is applied to a subset of bits of the
address of the target block. The output of the hash is a m-bit index that is decoded to
access the 2 — 1 entry bloom filter vector. If the bit is set to 1 then the associated
cache way is accessed (both tags and data arrays), otherwise that way is not accessed.
Each entry of the bloom filter has associated an up/down counter (e.g., 3-bit in the
original work), that is decremented each time a cache line whose address maps to
that position is evicted from the cache and increased when the block is written in the
cache. In the original paper, results are shown for m equal to four times the number of
blocks in a cache. We will refer to this configuration as WayGuard-4 x . This approach
requires a decoder with 4 times more outputs than the already implemented in the cache
to index the target set. Therefore, to perform a fair comparison in terms of area and
complexity we evaluate two additional configurations: WayGuard-2 x and WayGuard-
1x, both of them still having more memory requirements than the PS-Cache. The
former uses a decoder which doubles the outputs of the cache set decoder and the
latter can share the same decoder. Note that WayGuard-1x includes a 3-bit counter
and one extra way-selection bit per cache entry, while the PS-Cache only adds one bit
per entry.

6.3.3 Quantitative comparison

Figure 12a, b shows the average number of ways accessed in the PS-Cache, Way
Prediction and three Way Guard variants in the L2 cache and the L1 cache, respectively.

In the L2 cache, the proposed PS-Cache is the design choice that provides the best
performance-complexity trade-off. The PS-Cache scheme works really well in some
applications where the number of accessed ways is below 6, accessing on average
around 8 ways, which is the expected value having only one bit to filter ways in a
16-way cache. As mentioned above, Way Prediction is not an adequate design choice
for the lower level caches since they are much less predictable than L1 caches. This is
because the L1 cache filters the high-locality requests. Results show that on average
12 ways are accessed for the Way Prediction in the L2 cache, while only 4 ways are
accessed by the PS-Cache. There are only a few applications in which Way Prediction
achieves better results. Comparing Way Guard, the PS-Cache approach achieves even
higher reductions than WayGuard-2x with much less complexity. Remember that this
configuration has eight bits per line (two bloom filter bits—the decoder is twice as
large—and two 3-bit counters). Regarding, WayGuard-4x, it achieves slightly better
results but with much more hardware complexity.
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An interesting remark is that the Way Guard approach puts the look-up to the bloom
filter bit on the critical path regarding the accessed cache level which might impact
on the access time. That is, the cache cannot be accessed until the bloom filter vector
is known. In contrast, the PS-Cache has no extra delay when accessing the L2 cache.
Also, energy consumption due to a bigger decoder and logic of the up/down counter
might make energy benefits of the Way Guard to be slightly mitigated by this additional
circuitry.

In the L1 cache, Way Prediction is the best design choice in L1 caches, since the
MRU hit ratio is really good at this cache level. Compared to Way Guard, the PS-
Cache approach, with less hardware complexity (it does not require a 3-bit up/down
counter per cache entry), improves WayGuard-1x but it is worse than the remaining
Way Guard approaches which have a higher complexity. Hence, since they employ
more bits to filter ways, the expected results are better.

In summary, one can conclude that the optimal solution from performance and
energy points of views would be to employ Way Prediction in first-level caches and
PS-Cache in lower level ones, obtaining in this way both the most energy-saving and
the shorter execution time.

7 Conclusions

One of the major design concerns in current high-performance CMPs is the power
consumption, which increases as the number of core counts grows. On-chip caches
consume a significant fraction of the total power budget, and important research has
focused on reducing energy consumption in these memory structures, sometimes at
the cost of performance.

This work has proposed the PS-Cache, an energy-efficient cache design that only
accesses a subset of the set ways, without hurting the performance. The PS-Cache
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assumes that blocks are classified at page level as shared or private, according to the
TLB information. It also adds a single bit attached to each cache entry, which only
activates the word line if the block type matches the one provided by the TLB. In
this way, dynamic energy consumption is largely saved. On the other hand, coherence
requests to remote private caches only access the subset of ways that has blocks with
the shared type.

Results have shown that in CMPs, implementing either directory-based or snoop-
based protocols, the PS-Cache can bring important energy savings; and energy savings
(quantified in percentage) are roughly the same for all tested coherence protocols.

The proposal has been evaluated in both L1 and L2 caches. Different cache schemes
has been compared. Results show that the well-known Way Prediction is the best
performing approach for L1 caches. However, for L2 caches the proposal reduces
more than 2x the number of searched ways by the Way Prediction Scheme, which
brings energy savings by 40 % with respect to a conventional scheme. Moreover, it
reduces more energy with much less hardware complexity than Way Guard, an state-
of-the-art energy-aware cache approach.
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