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Factorization of p-Dominated Polynomials
through Lp-Spaces

P. Rueda & E. A. Sánchez Pérez

Introduction

Since Pietsch’s seminal paper [32], the study of the nonlinear operators ideals
has been strongly developed. Several polynomial ideals have been defined and
studied, and it can be said that it is now a relevant topic in functional analysis
and important contributions have been made by many mathematicians such as
R. Alencar, R. M. Aron, G. Botelho, V. Dimant, M. Matos, Y. Meléndez, D. Pel-
legrino, J. Santos, J. Seoane-Sepúlveda, and A. Tonge, among others. The hope of
these nonlinear ideals is that they keep the main properties of the corresponding
linear operator ideals, and so the linear theory can be lifted and extended to more
general settings. To establish the relationship between an operator ideal and its
natural polynomial extensions, the notions of a coherent sequence of polynomial
ideals and of compatibility between polynomial and operator ideals were intro-
duced in [18]. A variant of these notions that involves pairs formed by polynomial
and multilinear ideals was considered in [27]. All these concepts are related to the
concept of Property (B) and to holomorphy types (see [6]).

The search for such good nonlinear extensions was carried out with consid-
ering several different approaches (as the linearization and the factorization in-
troduced by Pietsch in [32] or the more recent one introduced in [3], based on
locally I-bounded sets). In particular, the ideal of absolutely summing linear op-
erators has been extended in a wide range of possibilities that have been faced by
comparing which properties are satisfied in each class (see [16; 31]). A relevant
polynomial ideal is the one formed by all p-dominated polynomials, which play
a central role in the theory and have been intensively studied [7; 8; 9; 10; 12; 13;
24]. They were introduced as a generalization of absolutely p-summing linear op-
erators, and their interest lies in the fact that they fulfill a Pietsch-type domination
theorem. In fact, more than ten different generalizations of the original Pietsch
domination theorem to nonlinear operator ideals have been obtained in the last
10–15 years (see [11; 19; 28; 30] and the references therein).

The theory of multilinear summing operators has found applications to quan-
tum information theory. For example, very recently, estimates for the constants of
the multilinear Bohnenblust–Hille inequality (case of real scalars) were used to
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solve problems in quantum information theory (see [15; 25]). The hypercontrac-
tivity of the Bohnenblust–Hille inequality for complex homogeneous polynomials
was proved in the remarkable paper [20].

The classical Pietsch domination theorem in tandem with Pietsch factorization
theorem is in the basis of the linear operator theory. This is why a factorization
theorem for p-dominated polynomials has been pursuit concomitantly (see [23;
24; 10]). However, the search of a canonical prototype of a p-dominated poly-
nomial through which any p-dominated polynomial could factor in the spirit of
the linear theorem for absolutely summing operators has turned out difficult and
tricky. The factorization of p-dominated polynomials requires new techniques,
which have been recently developed and can be found in [10] and [14]. These
results allow us to prove that the factorization of p-dominated polynomials needs
to consider spaces based on Lp(μ) for a Pietsch measure μ but endowed with a
different norm in a way that they do not coincide with the Lp(μ)-norm.

In this paper we isolate the class of p-dominated polynomials that satisfy a
Pietsch-type factorization theorem, paying regard to both required ingredients: on
one hand, we determine the canonical prototype of a polynomial in the class, and,
on the other hand, the factorization is given through a subspace of an Lp-space en-
dowed with the Lp-norm. These polynomials are defined by means of a summing
inequality and form an ideal of polynomials, which we call an ideal of factorable
p-dominated polynomials. Significantly, factorable p-dominated polynomials are
then an appropriated generalization of absolutely summing operators rather than
p-dominated polynomials.

1. Definitions and Notation

We use standard notation. Let m,n ∈ N, and let X, Y , Z, G be Banach spaces
over K := R or C. Let 1 ≤ p < ∞. As usual, �n

p(X) is the space of all sequences
(xi)

n
i=1 in X with the norm

‖(xi)
n
i=1‖p =

( n∑
i=1

‖xi‖p

)1/p

,

and �n
p,w(X) is the space of all sequences (xi)

n
i=1 in X with the norm

‖(xi)
n
i=1‖p,w = sup

‖x∗‖X∗≤1

( n∑
i=1

|〈xi, x
∗〉|p

)1/p

,

where X∗ is the topological dual of X. The closed unit ball of X∗ is denoted by
BX∗ .

Let us introduce now some basic definitions regarding polynomials. A function
P : X → Y is an m-homogeneous polynomial if there exists a unique symmetric
m-linear operator P̌ : X × (m)· · · × X → Y such that P(x) = P̌ (x, (m). . ., x) for every
x ∈ X. As usual, P(mX;Y) denotes the space of all continuous m-homogeneous
polynomials from X to Y endowed with the sup norm. We refer to [21; 22; 26]
for the main definitions and properties of these polynomials.
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Recently, the notion of ideal of m-homogeneous polynomials has been inten-
sively studied (see, e.g., [2; 3; 5]).

A polynomial P ∈ P(mX;Y) is p-dominated if there is a constant C > 0 such
that for every (xj )

n
j=1 ⊂ X, we have

‖(P (xj ))j‖p/m ≤ C[‖(xj )j‖p,w]m. (1)

We write Pd,p(mX;Y) for the space of all p-dominated m-homogeneous polyno-
mials. It is well known that (Pd,p,‖ · ‖d,p) is a Banach ideal of polynomials if
p ≥ m. The norm for this space is given by the infimum of all constants C appear-
ing in (1). Some fundamental results on p-dominated homogeneous polynomials
between Banach spaces can be found in [5; 23; 24].

A polynomial P ∈ P(mX;Y) is weakly compact if it maps bounded sets to
relatively weakly compact sets.

2. Factorable p-Dominated Polynomials

Recently, some factorization theorems have been obtained for p-dominated poly-
nomials and related classes of operators (see [1; 14] and the references therein).
However, although these results are quite general and hold for broad classes, they
are not giving factorizations through Lp-spaces in the fashion of Pietsch’s factor-
ization theorem that one could expect. In [4] it is shown that dominated polynomi-
als are not always weakly compact. This fact obligated to consider factorizations
through linear subspaces of Lp-spaces conveniently renormed. Our aim is to de-
termine the class of homogeneous polynomials that factor through subspaces of
Lp-spaces keeping the Lp-norm and characterize them by means of a summabil-
ity property.

We will show in this section that the following restricted class of p-dominated
m-homogeneous polynomials is exactly the one whose polynomials satisfy the
desired factorization theorem.

Given x ∈ X, by 〈x, ·〉m we mean the m-homogeneous polynomial x∗ �→
〈x, x∗〉m. It is well known that for dual Banach spaces X = Y ∗, the supremum
given in the definition of ‖ · ‖p,w can be taken over all elements in BY . Therefore,
when considering the space P(mX∗;K) as a dual space, it can be proved that

∥∥∥∥
( k∑

i=1

λi
j 〈xi

j , ·〉m
)

j

∥∥∥∥
p,w

= sup
‖x∗‖X∗≤1

( n∑
j=1

∣∣∣∣
k∑

i=1

λi
j 〈xi

j , x
∗〉m

∣∣∣∣
p)1/p

for any xi
j ∈ X and scalars λi

j , 1 ≤ j ≤ n, 1 ≤ i ≤ k, n, k ∈ N.

Definition 2.1. Let p ≥ 1. A polynomial P ∈ P(mX;Y) is factorable p-domi-
nated if there is a constant C > 0 such that for every set of vectors xi

j ∈ X and
scalars λi

j , 1 ≤ j ≤ n, 1 ≤ i ≤ k, n, k ∈N, we have

∥∥∥∥
( k∑

i=1

λi
jP (xi

j )

)
j

∥∥∥∥
p

≤ C

∥∥∥∥
( k∑

i=1

λi
j 〈xi

j , ·〉m
)

j

∥∥∥∥
p,w

. (2)
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We write PFd,p(mX;Y) for the space of all factorable p-dominated m-homogene-
ous polynomials. The factorable p-dominated norm ‖P ‖Fd,p is given by the infi-
mum of all C > 0 appearing in (2).

Remark 2.2. Note that we could have taken for each j different many summands,
which turns out to be equivalent to consider k summands for every j .

Clearly, the class of factorable p-dominated polynomials is included in the one
formed by all pm-dominated polynomials. Indeed, if P ∈P(mX;Y) is factorable
p-dominated, given x1, . . . , xn ∈ X, taking k = 1 and λ1

1 = · · · = λ1
n = 1, it fol-

lows that

‖(P (xj ))j‖pm/m = ‖(P (xj ))j‖p

≤ ‖P ‖Fd,p sup
‖x∗‖X∗≤1

( n∑
j=1

|〈xj , x
∗〉m|p

)1/p

= ‖P ‖Fd,p‖(xj )j‖m
mp,w.

We will see that this inclusion is strict. A similar notion of weighted summability
is considered in [29] when characterizing arbitrary nonlinear mappings that satisfy
a Pietsch domination-type theorem around a given point.

The next proposition shows that factorable p-dominated polynomials satisfy
the ideal property for polynomials. We omit the easy proof.

Proposition 2.3. Let p ≥ 1, and let G, X, Y , Z be Banach spaces. If P ∈
PFd,p(mX;Y), v : Y → Z, and u : G → X are continuous linear operators, then
v ◦ P ◦ u ∈PFd,p(mG;Z) and ‖v ◦ P ◦ u‖Fd,p ≤ ‖v‖ · ‖P ‖Fd,p · ‖u‖m.

Factorable p-dominated polynomials form a polynomial ideal (we refer to [5] for
the definition) that generalizes the ideal of absolutely p-summing linear opera-
tors. The next theorem shows that these polynomials satisfy the corresponding
domination theorem. To avoid a repetition of standard arguments to prove it, we
will use the abstract and general theorem given in [11] that unifies known domina-
tion results in several different linear and nonlinear operator ideals. A simplified
version of this general result appears in [28], and a more abstract version has been
considered in [30].

Theorem 2.4. Let p ≥ 1. An m-homogeneous polynomial P ∈ P(mX;Y) is fac-
torable p-dominated if and only if there are a regular Borel probability measure
μ on BX∗ , endowed with the weak-star topology, and a constant C > 0 such that∥∥∥∥

k∑
i=1

λiP (xi)

∥∥∥∥ ≤ C

(∫
BX∗

∣∣∣∣
k∑

i=1

λi〈xi, x∗〉m
∣∣∣∣
p

dμ

)1/p

for all x1, . . . , xk ∈ X and scalars λ1, . . . , λk . In this case, the factorable p-
dominated norm of P coincides with the infimum of the constants C above.

Proof. A factorable p-dominated m-homogeneous polynomial P is RS-abstract
p-summing (see [11; 28] for the definition) for R : BX∗ × (K × X)(N) ×
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R → [0,∞) (where (K × X)(N) denotes the finite sequences in K × X) and
S : P(mX;Y) × (K× X)(N) ×R → [0,∞) given by

R(x∗, (λ1, x1, . . . , λk, xk), b) :=
∣∣∣∣

k∑
i=1

λi〈xi, x∗〉m
∣∣∣∣

and

S(Q, (λ1, x1, . . . , λk, xk), b) :=
∥∥∥∥

k∑
i=1

λiQ(xi)

∥∥∥∥,

(λ1, x1, . . . , λk, xk) ∈ (K×X)(N), x∗ ∈ BX∗ , b ∈R, Q ∈P(mX;Y). Theorem 2.2
in [11] or Theorem 3.1 in [28] gives the result. �
Let us show in what follows the factorization theorem for the class of the
factorable p-dominated polynomials. Let iX : X → C(BX∗) be the evaluation
map given by iX(x) := 〈x, ·〉, x ∈ X. Given a Borel measure μ on BX∗ , let
jp : C(BX∗) → Lp(μ) be the canonical map that identifies each continuous func-
tion with itself when considered as an element of Lp(μ). Using this linear map,
Meléndez and Tonge [24, Theorem 13] prove a factorization theorem for domi-
nated polynomials P of the form P = Q◦jp ◦ iX , where the map Q that closes the
factorization is a homogeneous polynomial. Let us define the canonical factorable
p-dominated m-homogeneous polynomial through which any other polynomial
of the class must factor. Define jm

p : iX(X) → Lp(μ) as

jm
p (x) := (jp ◦ iX(x))m = 〈x, ·〉m, x ∈ X.

Some efforts have been made to get a factorization through the canonical homo-
geneous polynomial jm

p/m in [10; 14]. For instance, in [14, Theorem 4.7] it is
proved that assuming that (BX∗ ,w∗) is separable, a polynomial P ∈ P(mX;Y)

is p-dominated if and only if P factors as P = u ◦ jm
p/m ◦ iX , where the linear

operator u is continuous for a suitable norm on the domain.

Proposition 2.5. The m-homogeneous polynomial jm
p is factorable p-dominated,

and its factorable p-dominated norm is less than or equal to 1.

Proof. Consider xi
j ∈ X and scalars λi

j , 1 ≤ j ≤ n, 1 ≤ i ≤ k, n ∈ N. Then
∥∥∥∥
( k∑

i=1

λi
j j

m
p (xi

j )

)
j

∥∥∥∥
p

=
( n∑

j=1

∥∥∥∥
k∑

i=1

λi
j 〈xi

j , ·〉m
∥∥∥∥

p

Lp(μ)

)1/p

=
(∫

BX∗

n∑
j=1

∣∣∣∣
k∑

i=1

λi
j 〈xi

j , x
∗〉m

∣∣∣∣
p

dμ

)1/p

≤ sup
‖x∗‖≤1

( n∑
j=1

∣∣∣∣
k∑

i=1

λi
j 〈xi

j , x
∗〉m

∣∣∣∣
p)1/p

=
∥∥∥∥
( k∑

i=1

λi
j 〈xi

j , ·〉m
)

j

∥∥∥∥
p,w

.
�
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To obtain the factorization of factorable p-dominated polynomials through jm
p ,

we use a direct argument that in a sense is simpler than the one that is used in [14,
Proposition 3.4]. The reason is that the linear operator v that closes the diagram is
automatically well defined without further requirements on the Pietsch measure
involved, due to the stronger domination that is assumed for P .

Theorem 2.6. Let m ∈ N and p ≥ 1. A polynomial P ∈ P(mX;Y) is factorable
p-dominated if and only if there exist a regular Borel probability measure μ on
BX∗ with the weak* topology, a closed subspace S of Lp(μ), and a continuous
linear operator v : S → Y such that the following diagram commutes:

X
P ��

iX

��

Y

iX(X)
jm
p ��

��

S

v

��

��
C(BX∗) Lp(μ)

(3)

Proof. Assume that P ∈ PFd,p(mX;Y) and consider the polynomial jm
p ◦

iX : X → Lp(μ), where μ is a Pietsch measure for P given by Theorem 2.4.
By Proposition 2.5, this polynomial is factorable p-dominated. Consider the sub-
space S of Lp(μ) given by the linear span of jm

p ◦ iX(X) and the linear op-
erator v : S → Y given by v(z) := ∑n

i=1 λiP (xi) for z = ∑n
i=1 λi〈xi, ·〉m ∈ S.

Let us show that this map is well defined. Consider another representation for z,
z = ∑k

i=1 τi〈yi, ·〉m, that is,
∑n

i=1 λi〈xi, ·〉m and
∑k

i=1 τi〈yi, ·〉m are equal μ-a.e.
Consider the element w = ∑n

i=1 λi〈xi, ·〉m − ∑k
i=1 τi〈yi, ·〉m. Then w equals 0

μ-a.e. We need to show that v(w) equals 0 too. Since by Theorem 2.4 we have
that ∥∥∥∥

n∑
i=1

λiP (xi) −
( k∑

i=1

τiP (yi)

)∥∥∥∥

≤ C

(∫ ∣∣∣∣
n∑

i=1

λi〈xi, ·〉m −
( k∑

i=1

τi〈yi, ·〉m
)∣∣∣∣

p

dμ

)1/p

= 0,

we have that v(w) = 0 and so v is well defined. Moreover, also by Theorem 2.4
we obtain that

‖v(z)‖ =
∥∥∥∥

n∑
i=1

λiP (xi)

∥∥∥∥ ≤ C

∥∥∥∥
n∑

i=1

λi〈xi, ·〉m
∥∥∥∥

Lp(μ)

= C‖z‖Lp(μ).

Therefore, v is continuous, and ‖v‖ ≤ C. To get the desired factorization, it suf-
fices now to extend v to the completion S of S in Lp(μ).

The converse is a consequence of Proposition 2.5 and the ideal property given
in Proposition 2.3. �
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Remark 2.7. Let us consider 1 < p < ∞. Botelho [4] (see also [17]) proved the
existence of a p-dominated polynomial that is not weakly compact. This example
was used in [10] to prove that p-dominated m-homogeneous polynomials could
not be expected to factor through a subspace of an Lp-space, and it justified the
introduction of a new norm in order to obtain a factorization theorem for all p-
dominated polynomials. The fact that we keep the Lp(μ)-norm on the subspace
S guarantees that the m-homogeneous polynomial jm

p : iX(X) → S is weakly
compact. Actually, since S is reflexive, the bounded set jm

p (BiX(X)) is relatively
weakly compact. The factorization given in Theorem 2.6 allows us to conclude
that every factorable p-dominated polynomial is weakly compact. Botelho’s ex-
ample [4] proves now that the class of factorable p-dominated polynomials does
not coincide with the class of pm-dominated polynomials.
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