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Abstract. Social circles detection is a special case of community detec-
tion in social network that is currently attracting a growing interest in
the research community. We propose in this paper an empirical evalu-
ation of the multi-assignment clustering method using different feature
representation models. We define different vectorial representations from
both structural egonet information and user profile features. We study
and compare the performance on the available labelled Facebook data
from the Kaggle competition on learning social circles in networks. We
compare our results with several different baselines.
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1 Introduction

Nowadays, users in social networks tend to organize the contacts in their personal
networks by means of social circles, a tool already implemented by the major
companies, like for instance Facebook lists or Google+ circles. However, this
labelling is still mostly done manually and therefore a growing interest has risen
in the automatic detection of these circles. In addition, this problem is related
to the more general task of community detection in graphs, or the identification
of subnetworks in a given network. The main difference between both problems
is the use of information from users’ profiles, apart from information from the
network structure itself.

Despite the lack of a precise and well-accepted definition of community, there
is a wide variety of methods and techniques designed to cope with community
detection [3, 10]. Moreover, some techniques specifically designed for social cir-
cles detection are being developed currently [6, 7]. In this article, we present our
approach based on multi-assignment clustering (MAC) [13, 4], originally a clus-
tering technique for Boolean vectorial data not necessarily related to networks
or graphs. The advantage of this technique is the possibility to assign the same
object into several different clusters, different social circles. MAC has already
been tried for social circles detection [6, 7] but only using a very simple fea-
ture representation, considering only user profile features, ignoring the network



structure. In our work we propose different and novel approaches by considering
different representations of both network structure and user profile features.

The rest of the paper is structured as follows. In section two, we present
previous works on community detection and social circles detection. In section
three, we describe thoroughly our methodology, including the different data rep-
resentations proposed and the baseline methods to compare with. In section
four, we present the dataset and the evaluation measure of our experiments. In
section five, we discuss the obtained results. Finally, we draw some conclusions.

2 Previous Work

2.1 Community Detection in Networks

From an abstract point of view, a network is equivalent to a graph, defined by
a set of nodes connected by edges. Nevertheless, from the point of view of re-
searchers devoted to a diversity of fields, the concept of network has additional
connotations. Networks can represent real structures such as social networks, bio-
logical networks (neural synaptic networks, metabolical networks), technological
networks (the Internet, the World Wide Web), logistic networks (distribution
networks), etc. There is no well-accepted formal definition of community in gen-
eral networks. However, there is a consensus on the fact that it consists of a
group of nodes that are more densely connected to each other than to the nodes
outside. The relation of membership in a community usually has an extra mean-
ing, and the vertices in a community will probably share common properties or
play similar roles within the graph.

Community detection is the task of automated identification of the commu-
nities of a network. A considerable number of methods have been developed to
solve this problem [3, 10].

In real networks nodes are often shared among different communities. The
most popular technique to detect overlapping communities is the clique percola-
tion method [8]. Given a graph, a k-clique is defined as a complete subgraph of
size k. Clique percolation consists in the identification of k-clique communities,
defined as the union of all k-cliques that can be reached from each other through
a series of adjacent k-cliques. Despite of the good performance of this technique,
clique percolation remains a hard computational problem, new and improved im-
plementations still scale worse than some other overlapping community finding
algorithms.

2.2 Application to Social Networks and Social Circles Detection

The study of social networks is a research topic with a history of decades and
it has been recently revitalized by the appearance of new information and com-
munication technologies which have opened new ways of interacting. Clustering
of this social content has been studied designing several procedures. Some ap-
proaches base the clustering on the network links [10], while others consider



the semantic content of social interactions [15]. In between both methodologies,
there has also been work on combining the links and the content for doing the
clustering [9, 12]. Very recently, a new technique studied the characteristics of
community structures formed around topical discussion clusters, using modular-
ity maximization algorithms [2].

Social circles detection is a special case of this framework. Within a social
network, an ego network or egonet is defined as the subgraph of the contacts of a
particular user (called the ego). Thus, it includes all the contacts of the ego and
the contact relationship between every pair of them. Then, the social circles of an
ego can be considered as clusters of the egonet. Social circles may overlap (share
nodes), for example university friends who were high school friends as well; and
they may also present hierarchical inclusion (the nodes of a circle totally included
into another), for example university friends into a generic friends category.
Apart from the links of the egonet, user profile information is also normally
considered in this task. The latest works on social circles detection define a
generative model that considers circle memberships and a circle-specific profile
similarity metric [6, 7].

3 Methodology

3.1 Multi-Assignment Clustering

Multi-Assignment Clustering (MAC) [13, 4] is a clustering method, originally
developed for Boolean vectorial data, which allows for the possibility to assign
the same object into several different clusters. It provides a decomposition of the
data matrix x into a matrix containing the clusters prototypes z and a matrix
representing the degree to which a particular data vector belongs to the different
clusters y. Finding optimal matrices z and y is NP-hard [14], but a probabilistic
representation allows to drastically simplify the optimization problem. In [13]
the authors propose to model the probability of xij under the signal model as:

p(xij |z, β) =

[
1−

K∏
k=1

βzik
kj

]xij [ K∏
k=1

βzik
kj

]1−xij

, where βkj := p(ykj = 0) (1)

In addition to the signal model, there is a noise model for the difference between
the original data and the reconstruction made from z and y. The model pa-
rameters are inferred by deterministic annealing [11, 1]. When MAC is applied
to social circles detection, y is the matrix indicating which users belong to the
different clusters, social circles.

In [6, 7] MAC was already employed and considered as a baseline method for
social circles detection, although using only user profile information. This piece
of evidence that MAC is a state-of-the-art technique, having recent and influ-
ential publications, helped us making the choice over alternative soft-clustering
strategies. In this work, we propose to explore further its possibilities for this



task, investigating novel representations. We defend the fact that this technique
still has potential and better results can be obtained. Furthemore, MAC is more
adequate for large networks than other methods with a very high computational
cost, like clique percolation.

As a novelty, we model the structural information of the egonets into diverse
vectorial representations ready to be supplied to the algorithm. Several vecto-
rial representations for user profile features were developed as well. Unlike the
original MAC, we allow the input to be real data in [0, 1]n as a way to model a
hierarchy of link levels in the case of structural information, or an aggregation
of the number of feature values shared by two users profiles in the case of user
profile information.

In all the experiments, the input data matrix x is a horizontal concatena-
tion of a matrix s, containing structural network information, and a matrix p,
containing profile features information: x = [s |p]. Rows represent users of the
egonet and therefore for every user u there is a row vector of structural network
information, su, and a row vector of profile features information, pu. Therefore,
the number of rows of the matrix x is the number of users in the ego-network
| u |, and the number of columns of the matrix x is the total number of features
used to represent structural and profile information of each user.

3.2 Structural network representation

In this subsection, we present the different representations of the structural net-
work information that have been considered. All of them transform graph links
into the matrices s. We use the following concepts:

– Friendship ranks: when there is a link between two users, we say they are
direct friends or rank 1 friends. When two users are not direct friends but
have a common direct friend, we say they are rank 2 friends. Friendship
ranks of greater levels can be further defined. In this study we consider up
to rank 3 friends. There is a column in s for every friendship rank and user
in the egonet. An element of s is 1 if the row user and the column user are
friends of such rank, and 0 otherwise. Obtaining in total 3× | u | structural
features for each user.

– Weighting: the data is weighted depending on the friendship rank it repre-
sents. Rank 1 friendship is left with 1, whereas rank 2 friendship is weighted
to 0.5 and rank 3 friendship is weighted to 0.25. Like in the previous case,
obtaining in total 3× | u | structural features for each user.

– Aggregation: for every user, the different friendship ranks are aggregated
into just one value. This is obtained by calculating the maximum weighted
friendship rank. Reducing the number of structural features to | u |.

From these concepts we define the representations shown in Table 1.

3.3 User profile representation

There are up to 57 profile features for every user in the data corpus we used for
the experiments. Nevertheless, some of them are very seldom informed whereas



Table 1. Representations of structural network information

Representation Definition

r1 Rank 1
r12 Ranks 1 and 2
r123 Ranks 1, 2 and 3
r12w Ranks 1 and 2, weighted
r123w Ranks 1, 2 and 3, weighted
r12a Ranks 1 and 2, aggregated
r123a Ranks 1, 2 and 3, aggregated

others are redundant or not relevant for the task. As a consequence, we have
selected the 3 most informative features and we use only these. The selected
features are: hometown, schools and employers. Each of these features can take
different discrete values from a finite set.

We define as | f | the number of features considered, and as | v | the total
number of values of the considered features that are taken by at least one user
in the egonet. We encode the profile features information in the matrices p, for
which the following representations have been defined:

– Explicit: There is a column of p for every different value of the considered
features. An element of p is 1 if the row user takes the column value for the
respective feature, and 0 otherwise. Obtaining in total | v | profile features
for each user.

– Intersection: There is one column of p for every user in the egonet and every
considered profile feature. An element of p is 1 if the sets of values of the
row user and the column user, for that particular feature, intersect. It is 0
otherwise. In this case, obtaining | f | × | u | profile features for each user.

– Weighted: There is just one column of p for every user in the egonet. An
element of p represents the proportion of features for which the row user and

the column user share at least one value. It is calculated as |s||f | , where | s |
is the number of features shared between both users. Reducing the number
of profile features to | u |.

4 Experiments

The corpus we use for the experiments is the one published for the Kaggle
competition on learning social circles in networks [5]. The data consist of hand-
labelled friendship egonets from Facebook and a set of 57 profile features for
every node in those networks. We discarded every egonet for which the ground
truth is not available. Out of the 60 egonets we finally considered, the smallest
one contains 45 users and the largest one contains 670 users. The 60 egonets
altogether comprise 14,519 users.



The degree of a given user is defined as the number of different circles which
it belongs to. MAC takes as a parameter the range of possible degrees of the
users of an egonet. In all our experiments the minimum degree is set to 0 and
we try several values for the maximum degree, up to 3. In this regard, unlike
previous studies, we do not include any prediction technique for the number
of circles within the egonets, using the number of circles of the ground-truth
instead. In future works, that would be easily incorporated with methods such
as the bayesian information criterion employed in [6, 7].

The evaluation measure of our experiments, and proposed in Kaggle, is cal-
culated as follows:
An evaluation measure for every egonet e is computed as an edit distance between
the ground truth circles (ge) and the predicted circles (pe): EDMe = d(ge, pe).
Four basic edit operations are considered: adding a user to an existing circle,
creating a circle with one user, removing a user from a circle and deleting a
circle with one user; every one of them at cost 1.
The evaluation measure of the whole dataset is the sum of the edit distances
obtained for all the egonets.

EDM =
∑
e∈E

EDMe, (2)

being E the set of the egonets in the corpus.
The smaller EDM is, the better the performance of the prediction.

5 Results

We compare our results to several different baselines. First of all, we consider
MAC when it receives only structural information, using an r1 representation.
MAC with only profile features, in this case, we use an explicit representation
of the features. The use of both baselines has the aim to show to what degree
the combination of structural network and profile information improves either
of these sources of information when taken independently.

Empty circles is the third baseline we employ. This baseline relies on the fact
that the evaluation measure used in this study heavily penalizes the misclassifi-
cation of users into circles. Thus, defining no circle at all performs better than
other possible simple baselines like connected components or classifying all the
friends of an ego into just one circle.

Finally, we have considered a very high-performing baseline by using a 5-
clique percolation algorithm. However, this cannot be done for every egonet due
to its exponential computational complexity. Therefore, we replace the clique
percolation predictions by empty circles in those cases.

It would be interesting to report results of the participants of the Kaggle
competition from which we borrowed the data, as well. Unfortunately, there are
only publicly available rankings for the test dataset, for which the ground truth
is not available. Thus, there is no possibility to make this comparison.



The evaluation measures obtained by the baselines and our experiments are
shown in Table 2. Only results obtained from weighted and aggregated structural
egonet representations are presented, as non-weighting has always performed
worse.

Table 2. Baselines and results of the experiments

Baseline EDM

MAC only structure 18679
MAC only profile 20271

Empty circles 17101
Clique percolation 15350

Data representation EDM

Structural Profile deg. 1 deg. 2 deg. 3

r12w Explicit 16962 16803 16827
r12w Intersection 16032 16360 15927
r12w Weighted 17001 16955 16920

r123w Explicit 17106 17053 17082
r123w Intersection 16520 16504 16518
r123w Weighted 16994 17065 17075

r12a Explicit 15797 15619 15570
r12a Intersection 16433 16840 16694
r12a Weighted 15725 15751 15625

r123a Explicit 16804 16770 16703
r123a Intersection 16960 17000 17383
r123a Weighted 16634 16542 16558

The best results have been produced when considering friendship of ranks 1
and 2, aggregated; and an explicit representation of the profile features informa-
tion, allowing MAC for a maximum degree of 3. This representation has provided
a value of EDM close to that obtained from the clique percolation baseline. All
the experiments using the structural network representation r12a have given low
values of EDM, outperforming the empty circles baseline in all the cases and
most of the other representations as well. The combination of (weighted) struc-
tural network information and profile features has always performed better than
structure or profile separately.

6 Conclusions

Network structure and profile features are complementary sources of information
for social circles detection. In addition, weighting of structural network informa-
tion with respect to friendship levels is crucial to improve the results and get close
to the ones provided by methods such as clique percolation. This work opens



the door to new research in the topic, being possible future experiments the use
of a greater set of profile features or better retrieved ones and the adoption of
other prediction techniques or even a more in-depth study of MAC.
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