Document downloaded from:

http://hdl.handle.net/10251/64400

This paper must be cited as:

Decker, H.; Francesc D. Mufioz-Escoi; Misra, S. (2015). Data consistency: toward a
terminological clarification. En Computational Science and Its Applications -- ICCSA 2015:
15th International Conference, Banff, AB, Canada, June 22-25, 2015, Proceedings, Part V.
Springer International Publishing. 206-220. doi:10.1007/978-3-319-21413-9_15.

The final publication is available at

http://link.springer.com/chapter/10.1007/978-3-319-21413-9 15

Copyright - springer International Publishing

Additional Information

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21413-
9 15

Data Consistency:
Toward a Terminological Clarification

Hendrik Decker!, Francesc D. Munoz-Escoi!, and Sanjay Misra?(®)

! Instituto Tecnolégico de Informética, Universidad Politécnica de Valencia,
Valencia, Spain
2 Covenant University, Ota, Nigeria
sanjay.misra@covenantuniversity.edu.ng

Abstract. ‘Consistency’ is an ‘inconsistency’ are ubiquitous term in
data engineering. Its relevance to quality is obvious, since ‘consistency’
is a commonplace dimension of data quality. However, connotations are
vague or ambiguous. In this paper, we address semantic consistency,
transaction consistency, replication consistency, eventual consistency and
the new notion of partial consistency in databases. We characterize their
distinguishing properties, and also address their differences, interactions
and interdependencies. Partial consistency is an entry door to living with
inconsistency, which is an ineludible necessity in the age of big data.

1 Introduction

In the field of databases, the meaning of the word ‘consistency’ is overloaded with
multiple, often unclear meanings, as revealed by googling or looking it up in
Wikipedia [59]. The terminological disarray becomes even more discomforting
when trying to clarify the meaning of ‘consistency’ in terms of ‘data quality’. Con-
sistency is unanimously considered one of the most important ‘aspects’ or ‘dimen-
sions’ of data quality [61] [21]. Occasionally, both terms even are identified [15]. In
general, however, different people (authors as well as readers) may mean different
things with ‘consistency’, without being explicit or clear about the differences.
Another frequently used synonym for ‘consistency’ is ‘correctness’. But, with-
out further explanation, that just replaces one unclear term by another. So, two
questions arise that beg for an answer: What precisely is meant by ‘consistency’,
and how to avoid, eliminate or at least contain inconsistency. In this paper, we
propose some prolegomena for answering the first one. The second is for future
work, but first steps for answering it are taken already in Sections 6 and 7.
Necessary conditions for data consistency can be expressed by an integrity
theory, i.e., a finite set of integrity constraints (sometimes also called assertions,
or, in database normalization theory, dependencies). These are sentences in the
database language that are supposed to evaluate to true (i.e., to be satisfied)
in each committed state of the database. We are going to clarify the meaning

H. Decker and F.D. Mufioz—supported by the Spanish MINECO grant TIN 2012-
37719-C03-01.

fmunyoz
Caja de texto

of ‘consistency’ in connection with updates that may affect the truth value of
integrity constraints associated to the given database.

Four situations or reasons can be distinguished, why or when updates may
lead to consistency violation. One is simply that a bad update directly contra-
dicts what is required by some constraint, e.g., the insertion of married(fred, fred)
which goes against the constraint that nobody can marry herself or himself. The
second situation which may lead to constraint violations are the well-known
‘update anomalies’ that are due to an insufficient observance of data redundan-
cies or dependencies that have not been eliminated by schema normalization [5].
The third kind of occurrence of integrity violation is due to equally well-known
‘update phenomena’ caused by deficient concurrency control [10]. The fourth is
due to bad management of data distribution or replication [55].

The mentioned reasons of inconsistency are conductive to the different kinds
of consistency studied in the remainder. In particular, we are going to address
semantic consistency, transaction consistency, distribution consistency, replica-
tion consistency and eventual consistency. Also, we propose the new notion of
partial consistency, which alleviates the abrasiveness of inconsistency. We con-
clude with an outlook on coping with big data inconsistency and more future
work.

We are not going to deal with normalization except to emphasize that there
is no normal form that could guarantee any of the consistency properties we
are going to deal with. In fact, normalization can be very helpful, but is neither
sufficient nor necessary for consistency. Moreover, we are not going to deal with
physical consistency (a.k.a. disk consistency, or file integrity i.e., the inviolacy
of binaries) [52], nor with network consistency [43], nor with the consistency or
integrity of data transmission or communication (a topic of coding theory and
cryptography) [51], nor with any other integrity issue of concern to database
security, such as fraudulent tampering, authenticity or trustworthiness of data
[50]. Nor is ‘relational consistency’ (an issue in constraint programming [16]) of
interest in this paper. Also, we do not discuss issues related to the provenance,
accuracy or truthfulness of data, concerning the consistency between the (real
or imaginary) world that the database is supposed to model and the database
content itself. For instance, if the born attribute b in a database entry about
a person p is not p’s actual birth date, then we do not count that mistake as
an inconsistency, as long as there is no other stored information which would
contradict b. Such issues are studied in fields such as data lineage [38], truth
finding [40], truth discovery [62] and data fusion [26].

2 Semantic Consistency

Semantic consistency is a property of database states. Thus, for a given database
schema, semantic consistency can be identified with a subset of all possible states.
Ideally, the predicate that corresponds to the characteristic function of that
subset is described by an integrity theory.

In general, however, semantic consistency is not expressed completely by
explicit declarative integrity constraints in the database schema. In fact, the

fmunyoz
Caja de texto

integrity conditions of an application even may not all be cleanly documented.
Worse, not all developers of applications may be aware of every semantic con-
straint. Hence, semantic consistency tends to be hard to guarantee, in general.

Instead of an automated enforcement of declarative constraints, semantic
consistency is often realized by nested subtransactions, or firing triggers, or run-
ning stored procedures, or executing inline code of application programs, or
compensating transactions, the latter in case an update is detected post-factum
to have violated integrity. Such procedural ways of integrity enforcement are
known to be error-prone and hard to maintain.

In this paper, we identify, for simplicity, semantic consistency with what
is expressed (or is expressible) in the integrity theory that is (implicitly or
explicitly) associated to the database. Thus, semantic consistency means that
all integrity constraints in the given integrity theory are satisfied.

Semantic consistency is also known under the name of data integrity (which,
however, also suffers from a fuzzy overload of different meanings, in- and outside
of the literature on data quality [53] [60]; occasionally, semantic integrity is even
identified with data quality [54]).

Ideally, semantic consistency is enforced automatically, by the DBMS or some
module on top of its core, so that transaction designers, application programmers
and users need not be asked to pay attention to the preservation of integrity.
Automatic integrity enforcement usually sanctions an update only if it does not
produce any constraint violation. The common built-in enforcement of some
specific forms of declarative consistency conditions such as primary and for-
eign key constraints is an imperfect realization of that ideal. Imperfect because,
among others, more general forms of constraints usually are not supported by
the systems on the market. For query optimization or mere documentation, some
do support a declarative assertion of more complex constraints (e.g., Oracle’s
RELY construct [46]), but not their enforcement. More comprehensive methods
to support an automated checking of declarative integrity constraints, such as
described, e.g., in [44] [17], have not yet found their way into marketed products.

3 Transaction Consistency

Simply put, transaction consistency means concurrency-transparent semantic
consistency. That is, the database system ensures that each complete history H
of concurrent transactions preserves semantic consistency if each transaction T’
in H preserves semantic consistency whenever T is executed alone [10].

In Section 2, semantic consistency has been characterized as a property of
database states. Transaction consistency is a property of state transitions. More
precisely, each successful execution of a transaction (which may consist of a single
update or comprise a partially ordered set of updates) effects a state change that
is supposed to preserve semantic consistency. Thus, for non-concurrent transac-
tions, all of what has been said in Section 2 applies, without further worries.

However, concurrent transactions may violate the semantic consistency in a
way that is not to blame on possible integrity violations by individual transac-
tions, but on some harmful interleaving of actions of different transactions. Such

fmunyoz
Caja de texto

interleavings may lead to well-known problems of concurrency such as dirty or
non-repeatable reads, lost updates and other anomalies. These are not necessar-
ily problematic by themselves, but only if they lead to the violation of semantic
consistency. To avoid such anomalies, serializability was invented [34].
Transaction consistency sometimes is wrongly identified with serializability,
i.e., the equivalence of the execution of a history H of transactions with a one-
by-one execution of all transactions in H. However, neither semantic consistency
nor transaction consistency are guaranteed by serializability alone, nor does a
history H the transactions of which preserve semantic consistency necessarily
entail its serializability [39]. Yet, given a consistent input state, it is plausible
that H and in particular each transaction T in H teminate consistently if H
is serializable and each solitary execution of T (i.e., running T' alone) preserves
semantic consistency [10]. That can be expressed schematically as follows.

(*) serializability + solitary consistency = transaction consistency

In Section 2, we have pointed out practical problems of warranting semantic
consistency. Hence, the solitary consistency preservation of each transaction in
a history is an Achilles heel of (*).

In 3.1-3.4, we relate transaction consistency to the popular ACID properties
[35], by discussing them with regard to serializability and semantic consistency.

3.1 ACID

Brewer is quoted saying that the acronym ACID is “contrived [...] much more
than people realize”, that Jim Gray “admitted that ACID was a stretch”, and
“A and D have high overlap and the C is ill-defined” [14]. Nevertheless, many
authors identify ACID with either serializability or (*) or transaction consistency.

The following brief explanation of ACID leans on [10]: A stands for atomicity,
C for consistency, I for isolation, and D for durability. Atomicity means that
each transaction in H terminates either by committing or aborting. Consistency
means semantic consistency as characterized in Section 2. Isolation means that
the interleaved execution of transactions in H does not harm semantic consis-
tency. Durability means that, once committed, the effects of a transaction will
remain persistent, or will be recovered after temporary unavailability, until they
are modified, undone or overridden by any subsequent transaction.

Without concurrency, I is trivially satisfied, both A and D can be ensured
fairly straightforwardly, and C' can be handled as indicated in Section 2. For
concurrent transactions, however, A, C, I and D are interrelated much more than
without concurrency. For instance, imagine a transaction that infringes atomicity
by terminating with only half of its writes done (e.g., a subtraction from credit
but no corresponding addition to debit), or a DBMS that violates durability by
an incomplete recovery from a crashed history that would replay not all of the
writes of a committed transaction. In both cases, semantic inconsistencies (e.g.,
a faulty balance of accounts, or an incomplete and thus potentially inconsistent
state) are likely to happen, too. In general, each of A, C, D is complicated

fmunyoz
Caja de texto

by concurrency, i.e., by the need to cater for I. Conversely, I is complicated
whenever A, C or D has to be catered for by the DBMS as well.

3.2 Isolation or the Transparency of Concurrency

The I of ACID is also called “concurrency transparency” [56], i.e., the designer
or programmer or user of a transaction 7" does not have to worry about possibly
concurrent executions of T, and the output of 7" in such executions is the same as
if T had been executed alone, so that users and applications do not take notice
of concurrency.

As already indicated in 3.1, a history H of transactions is concurrency-
transparent, i.e., satisfies I, if it has the same effect as (or, is equivalent to) a
solitary one-by-one execution of the transactions in H. To formalize this notion,
it is necessary to precisely define what is “the effect of”, i.e., the equivalence
relation between, concurrent and sequential histoires.

Usually, each of the two most well-known variants of serializability (called
conflict-serializability and, resp., view serializability [10]) is taken to ensure the
sameness of effects or execution equivalence, thus guaranteeing the transparency
of concurrency. Yet, serializability is only a sufficient, though not a necessary
condition for isolation. And, similar to serializability, also isolation is neither
sufficient nor necessary for transaction consistency. Since serializability is not
always necessary for isolation, there are several similar, more or less exigent
definitions of serializability [57], as well as a large amount of various weakenings,
e.g., [30][47], each of which determines its own degree or modality of isolation
[6] [39] [8]. In fact, each weakening of serializability may debilitate isolation and
hence transaction consistency, i.e., (*) above may no longer hold.

Instead of discussing specific definitions of serializability, we leave it here
with the intuition that, for each of them, transaction designers, application pro-
grammers and users are supposed to be not bothered by concurrency, whenever
transactions are guaranteed to always be executed serializably by the DBMS.

3.3 Consistency of Final and Commited States

The C of ACID means semantic consistency in the context of concurrency. Inde-
pendent of the given variant of serializability, there are two significantly different
notions of semantic consistency of concurrent transactions in a history H: either
each transaction’s commit in H contributes to a state that satisfies all constraints —
we call that committed state consistency —, or only the final state at the end of H
is required to satisfy integrity — we call that final-state consistency. This difference
had been made in [48], and was further discussed in [25].

To deal with committed-state consistency is more difficult than with final-
state consistency, since the committed state at the end of any transaction T,
except the one that commits last, in any history H, is not necessarily quiescent,
i.e., is not a committed state at any time at which no transaction is in course.

In [10], a state of a database is given by “the values of the data items at any
one time”, while a committed state is defined with respect to some execution,

fmunyoz
Caja de texto

“to be the state in which each data item contains its last committed value”.
Since non-committed concurrent transactions may be in course at any time,
the committed state of a transaction 7" may never materialize physically at any
one time. However, if all non-committed values of a transaction are protected
from being accessed by other transactions, then each transaction only “sees”
(parts of) committed input states. In general, the difficulties of pinpointing non-
quiescent states that are committed or “seen” by users or applications tend to
increase with the degree of relaxing serializability, and so do the intricacies of
characterizing the consistency of such states.

Many papers about concurrent transaction processing only deal with final
state consistency, and ignore what may happen with the states reached at commit
time of transactions that terminate before a history comes to its end. However,
transactions usually are issued without concern for the potential concurrency of
their execution, and tend to have a vital interest in the consistency of their own
individual outcome, rather than in the consistency of the state reached after
the execution of all transactions that accidentally have been running concur-
rently. Hence, committed-state consistency is at least as relevant as final-state
consistency, if not more.

3.4 Atomicity and Durability

The A, i.e., atomicity (also often spelled out adroitly as ‘all or nothing’) means
that each transaction terminates either by comitting all of its updates, or by
aborting without leaving behind any changes. Atomicity is a fairly straightfor-
ward standard in centralized database systems [27] [42], even if there are multiple,
possibly remote users. We come back on atomicity in Sections 4 and 5.

The D, i.e., durability, has to do with the persistence of stored data beyond
terminated transactions, user sessions and application program runs, and with
the recovery from failures. While durability is essential for the reliability of
database systems, we deliberately exclude it from further discussion in this
paper, except to mention that properties of histories that define or ensure recov-
erability overlap but do not coincide with serializability, as pictured nicely in
[10], pages 36 and 46; in particular, technologies that cater for recovery also may
be beneficial for atomicity and isolation, and vice-versa.

4 Distribution Consistency and Replication Consistency

Distributed consistency means transaction consistency in distributed databases,
where distribution is transparent to the designers, programmers, users and appli-
cations of transactions. (A more refined characterization of transparency is given
in [56].) Similarly, replication consistency means distribution consistency in repli-
cated databases, i.e., replication does not harm the transparency of distribution
and concurrency.

For obtaining such transparency, some amount of system-level communica-
tion between the server nodes of a distributed database network is due, since

fmunyoz
Caja de texto

data items must be accessible from each node but are either not stored at each
one, or are replicated at several nodes, in which case changes of their values must
be synchronized or at least coordinated to some extent.

The communication needed for data access and node coordination may suf-
fer network latency, transmission delay and failures of nodes or network links.
To cope with that, special attention has to be paid to the coordiation of con-
current accesses to replicated data items and of the atomic commit or abort of
transactions. The ensurance that all commit and abort actions are carried out
“consistently” is characterized in [10] as “the only non-trivial problem” caused
by possible failures in distributed database systems without replication. Here,
atomic commitment is a property for achieving distribution consistency. Together
with transaction consistency, it is sufficient for distribution consistency. Thus,
the latter can be schematically described as follows:

(**) transaction consistency + atomic commit = distribution consistency

Depending on how it is realized, atomic commitment is not categorically
orthogonal to transaction consistency. For instance, if it is realized as a two- or
three-phase commit [10], then the respective protocol already covers part of the
work necessary to ensure isolation.

In replicated databases, the situation is further complicated by the need to
make replication transparent to designers and programmers of transactions, as
well as to human and programmed agents that use transactions. Thus, not only
the actions of commit and abort, but also some or all actions that read or write
data need to be coordinated transparently. That is usually achieved by some
system protocol [28,45]. In analogy to serializability properties as mentioned in
Section 3, the one-copy serializability property (1SR) [10] is a sufficient, though
not a necessary property for obtaining replication consistency. That is described
schematically as follows.

(***) distribution consistency + 1SR protocol = replication consistency

Usually, 1SR protocols are not orthogonal to distribution consistency. Typi-
cally, such protocols are meant to cater for part or all of distribution consistency,
and also part or all of recoverability [1][29] [2].

5 Eventual Consistency

A striking example of the babel (and sometimes babble) around ‘consistency’ is
the ongoing discussion about ‘eventual consistency’ in distributed systems. In
databases, it is a form of ‘lazy’ (‘optimistic’) replication consistency [49], which
weakens the guarantees made by serializability, born out of the urge to scale. Even-
tual consistency is often mixed up with related but different issues such as avail-
ability, semantic consistency, transaction consistency, atomicity, recoverability or
other consistency aspects associated to concurrency, shared memory coherence,
distribution and cloud computing; see, e.g., [13] [58] [37] [63] [7] [41] [9] [3] [32].

fmunyoz
Caja de texto

According to [47], eventual consistency requires that replicated copies are
consistent at certain times — usually in states that are quiescent for a sufficiently
long period of time (some milliseconds may suffice, but maybe more) — but may
be inconsistent in the interim intervals. In other words, eventual consistency
means that violations of replication consistency will disappear after some indef-
inite delay, usually when states that are quiescent for a sufficiently long period
of time are reached.

Stronger variants of eventual consistency require each violation of replication
consistency to be repaired after some indefinite time, but before any write access
to violated data items. Some even require that inconsistent values should be
repaired by the time they are accessed, no matter if read or written, and if
that is not feasible, replication inconsistency must be repaired asynchronously
(typically by some compensating transactions), i.e., any consistency guarantee
may be suspended indefinitely.

In summary, we can say that, in databases, eventual consistency is a compro-
mised form of replication consistency, at the cost of strict consistency require-
ments. So, the question is, which kind of consistency is compromised. The answer
is that each of the four kinds of consistency as addressed in Sections 24 can be
violated in eventually consistent databases. However, what is violated in the
first place by eventual consistency is the “consistency” of atomic commitment,
as broached in Section 4.

Semantic consistency, transaction consistency, distribution consistency and
replication consistency as characterized in Sections 2-4 are defined for whole
database states, in terms of the satisfaction of integrity constraints in those
states. As opposed to that, atomic commit consistency is defined for individual
data items. Since eventual consistency does not comply with the strict atomic
commit requirements of the 1SR property of replication consistency, also distri-
bution consistency, transaction consistency and semantic consistency guarantees
are at risk.

Instead of requiring a coordinated order of committed updates, eventual con-
sistency tolerates a local and immediate commit at the node where a transaction
is executed. Later, the locally committed updates are propagated to the remain-
ing database replicas, in a lazy FIFO way. Lazy propagation may be the source of
consistency conflicts among concurrent transactions. Such conflicts can be dealt
with by one of the two following general approaches [49].

— Each data item has a manager node. That manager uses a deterministic crite-
rion for deciding which will be the surviving update value in case of conflicts,
using compensating transactions in nodes where those values were not the
latest ones being applied. That usually entails the lost update phenomenon,
but ensures eventual value convergence in all copies.

This solution may demand that all data items accessed by each of the
concurrent transactions share the same manager node. That demand may
be difficult to maintain in general.

fmunyoz
Caja de texto

— Semantic scheduling. Suppose that the operations in each transaction of a
given history is commutative, and that all transactions are applied in each
replica node. Then, the value of the copies of each data item will converge.

In this case, the database system should ensure that all updates are
eventually propagated to every node of the distributed network.

The data-item-based concept of atomic commit consistency is the C' in the
widely discussed CAP theorem [31] [14] [1]. According to [36], the C of CAPis a
special case of strict serializability, where transactions are restricted to consist
of a single operation applied to a single object.

Originally, CAP had not been formulated particularly for databases, but for
networked shared data systems in general. According to [14], CAP says that a
distributed system cannot have at a time the three properties of “consistency”
(all nodes see the same data at the same time), availability (each request receives
a response of success or failure) and partition tolerance (system continues oper-
ation despite loss of network connectivity).

In large-scale distributed systems (e.g., data-related cloud services deployed
in multiple datacenters), network partitions may appear. In order to maintain
system responsiveness to users, such systems prioritize availability and partition
tolerance (i.e., A and P) over the C' of CAP. In other words, the C' property is
being sacrificed, and that is one of the reasons for using eventual consistency
instead of “strong” replication consistency in such kind of systems.

6 Partial Consistency

Partial consistency means that a given committed state may violate some con-
straint. Traditionally, a state that violates integrity is called inconsistent, but,
arguably, calling it partially consistent is more adequate, being more suggestive
of the positive potential of such states inspite of their compromised integrity,
than the negative connotations associated to inconsistency.

By the usual understanding of semantic and transactional consistency, incon-
sistency should definitely be avoided, because inconsistencies may be severely
harmful. In distributed and replicated databases, transitory inconsistency is
accepted as inevitable, but even the eventual consistency paradigm insists on
a convergence of the states seen by distributed users and applications toward
consistency. In general, inconsistency is taken to be uncontrollable by means of
classical logic, due to its ex falso quodlibet rule which invalidates each and every
answer given to any query by an inconsistent database.

Classical logic is the acknowledged fundament of database theory and prac-
tice. Hence, inconsistency is ill-reputed, if not considered monstrous. On the
other hand, inconsistency is ubiquitous in practice, to the extent that an insis-
tence on total consistency is illusory. Moreover, practical experience shows that
the majority of answers given by database systems that contain some inconsis-
tencies are not nonsensical but valuable.

In fact, all kinds of consistency violations may easily manifest themselves in
databases. For instance, legacy data that are not checked for compliance with

fmunyoz
Caja de texto

newly introduced constraints may violate them. Or, updates that directly vio-
late what is required by some integrity constraint will not be rejected whenever
integrity control is switched off for boosting performance. Or, transaction consis-
tency is violated by running some transaction that is not programmed according
to the rules in concurrence with other transactions. Or, distributed consistency is
violated by a prolongued laziness of protocols that lead to the violation of some
constraint. Or, replication consistency is violated by giving priority to availabil-
ity requirements and thereby weakening semantic consistency guarantees.

The predictions made by conventional transaction processing theory for trans-
action consistency, and hence also for distribution and replication consistency
of committed database states, all depend on the fulfillment of the promise of
solitary consistency preservation of each transaction. In other words, the control
of transaction consistency is not in the hands of any single transaction program-
mer or user, but is a collective achievement of all authors of the transactions
that accidentally run concurrently in the same history. However, it is naive to
trust that each transaction is written such that each of its solitary executions
will preserve consistency. After all, by (*) as described in Section 3, none of the
transactions in any history H is guaranteed to produce consistent outcome if
there is just a single transaction in H such that a solitary execution of it fails
to preserve integrity. Then, (*) does not make any consistency guarantee at all,
not even for those transactions in H the solitary executions of which are per-
fectly consistency-preserving. Or, to put it differently: Would you bet that each
transaction, programmed by a possibly unkown colleague, maybe before the lat-
est changes in the application, that happens to run concurrently with your own
(no matter how carefully written) transaction, is correctly taking into account
all integrity constraints (including those that you possibly might not even know
of)? If not, then the usual transaction consistency guarantees are not for you.

However, integrity violations are losing large portions of their theoretical
sting, by recent advances in database research. Already since early last cen-
tury, the absolute intolerance of inconsistency in logic had been questioned [12],
and the ramifications of that movement have arrived in database research [18].
Although inconsistency thereby has not lost all of its potential calamities, logi-
cally sound ways to work consistently in inconsistent databases have been devised
[11][25] [24] [19] [23], so that database inconsistency has become tolerable, not
only pragmatically speaking, but also from an austere theoretical point of view.

The theories presented in the preceding references provide a logical justifica-
tion of database reasoning in the presence of semantic inconsistency, no matter
if inconsistency has resulted from direct violations of constraints by updates,
or because of any failures of controlling concurrency, distribution or replication.
Concretely, [11] contains articles that describe how consistent answers to queries
in inconsistent databases can be computed. In [24], it is shown that conventional
integrity checking methods can be soundly applied also in inconsistent databases,
even if their integrity theories are not satisfiable by any state whatsover. As
shown in [23][20], integrity violation becomes controllable and repairable by
quantifying it with inconsistency measures [33]. In [19][22], it is shown that

fmunyoz
Caja de texto

query answers the causes of which are independent of any causes of integrity
violation have the same integrity as answers in perfectly consistent databases.
The authors of [25] outline how concurrent transaction consistency guarantees
can be extended to inconsistent database states and histories containing trans-
actions that do not comply with the solitary integrity preservation requirement
of (*). We expect that such theories will be further developed toward a logically
sound processing of transactions in situations where consistency is harmed by
abandoned precautions in terms of eventual consistency, including applications
of big data processing.

7 Conclusion

For clarifying the meaning of the frequently used technical term ‘consistency’
in the sense of stored data quality, we have characterized semantic consistency,
transactional consistency, distribution consistency, replication consistency, even-
tual consistency and partial consistency. Semantic consistency means the satis-
faction of all integrity constraints associated to a given database. Transaction
consistency means concurrency-transparent semantic consistency. Distribution
consistency means distribution-transparent transaction consistency. Replication
consistency means replication-transparent distribution concurrency. Eventual
consistency means lazy replication consistency. Partial consistency means that
not necessarily all integrity constraints are satisfied.

Partial consistency is more general than all forms of consistency addressed
in Sections 2-5: the latter all are oriented toward the ideal of total consistency
(even though eventual consistency only promises to reach total consistency after
an indefinite time), while partial consistency is prepared to always work consis-
tenly in the presence of inconsistency, no matter if integrity violations will ever
disappear or not.

The preceding lineage of database consistency that ascends from the total sat-
isfaction of constraints for semantic consistency to a relaxation of integrity in the
sense of partial consistency can be reversed to a description that descends from
user-friedly partial consistency to the satisfaction of schema-level constraints,
as follows. Integrity violations that are possible with partial consistency and
eventual consistency are tolerable as long as they do not interfere with comput-
ing answers to queries. From a human or programmed agent’s point of view,
replication consistency is the same as distributed consistency, which, from the
same point of view, is the same as transaction consistency, i.e., concurrency-
transparent semantic consistency preservation.

We have recalled that serializability entails isolation, and also that neither
serializability nor isolation alone is neither necessary nor sufficient for semantic
consistency, nor for transaction consistency. Moreover, we have scrutinized the
theorem that serializability in conjunction with solitary integrity preservation by
all transactions in a history is sufficient (though not necessary) for transacion
consistency. We have argued that the applicability of this theorem is severely
limited in two ways. Firstly, total semantic consistency, and hence totally con-
sistent states before or after the execution of transactions, are rarely given in

fmunyoz
Caja de texto

practice, at least not in large (let alone in big) databases. Secondly, to trust
in that theorem is very risky, since it actually makes no consistency guarantees
unless each contingently concurrent transaction is bug-free in the sense that it
will never violate integrity when run solitarily.

We have introduced the notion of partial consistency, which serves to allevi-
ate the deficiencies of the theorem that serializability plus solitary consistency
preservation entail transaction consistency. More generally, partial consistency
is meant to replace the notion of inconsisteny as the natural complement of
consistency. The main theoretical advantage of partial consistency over incon-
sistency is that classical logic throws up whenever inconsistency is encountered,
while partial consistency provides a modus vivendi with integrity violations. The
main practical advantage of partial consistency is that the consistency guaran-
tees described schematically by (*), (**), (***) in Sections 3 and 4 are useless
in databases that are not totally consistent, but become useful when relaxing
the requirement of total consistency by admitting partial consistency. The main
challenge of partial consistency is to apply it systematically for transaction pro-
cessing in modern database systems such as column store, main-memory, NoSQL
(‘not only SQL’) and NewSQL architectures, and to use it for reasoning with big
data.

In this context, it is useful to recall that partial consistency generalizes
eventual consistency (by not insisting on a convergence to total consistency),
while its applications as mentioned in Section 6 (consistent query answering,
inconsistency-tolerant integrity checking and repairing, inconsistency-tolerant
concurrency control) do not at all forfeit strong consistency guarantees. In a
similar spirit, eventual consistency is fortified in [4] by explicitly stating integrity
constraints (“invariants” that define consistency conditions for a given applica-
tion) as logical properties that have to hold in each state of a history (“a given set
of transactions”). Thus, eventual consistency is directly linked back to semantic
consistency, so that a reliable form of eventual consistency can be enforced by
using inconsistency-tolerant integrity checking [24], which is an application of
partial consistency. Future work may further explore this idea.

More work lies ahead also for a clarification of the meaning of ‘consistency’
in the fields of data science and software engineering, where ‘consistency’ is
subsumed under ‘quality’, which in fact is a wider and even more fuzzy term
than ‘consistency’. Thus, it is a challenge to embark on a terminological study
of ‘data quality’, similar to what we have done in this paper for ‘consistency’.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
Cap is only part of the story. Computer 45(2), 37-42 (2012)

2. Bailis, P. (2015). http://www.bailis.org/blog/

3. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and
beyond. ACM Queue, 11(3) (2013)

4. Balegas, V., Duarte, S., Ferreira, C., Rodrigues, R., Preguica, N., Najafzadeh, M.,
Shapiro, M.: Putting consistency back into eventual consistency. In: 10th EuroSys.
ACM (2015). http://dl.acm.org/citation.cfm?doid=2741948.2741972

http://www.bailis.org/blog/
http://dl.acm.org/citation.cfm?doid=2741948.2741972
fmunyoz
Caja de texto

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Beeri, C., Bernstein, P., Goodman, N.: A sophisticate’s introduction to database
normalization theory. In: VLDB, pp. 113-124 (1978)

Berenson, H., Bernstein, P., Gray, J., Melton, J., O'Neil, E., O’Neil, P.: A critique
of ansi sql isolation levels. SIGMoD Record 24(2), 1-10 (1995)

Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? In: 6th
MW4SOC. ACM (2011)

Bernabé-Gisbert, J., Mufioz-Escoi, F.: Supporting multiple isolation levels in repli-
cated environments. Data & Knowledge Engineering 7980, 1-16 (2012)
Bernstein, P., Das, S.. Rethinking eventual consistency. In: SIGMOD 2013, pp.
923-928. ACM (2013)

Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

Bertossi, L., Hunter, A., Schaub, T.: Inconsistency Tolerance. In: Bertossi, L.,
Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 1-14.
Springer, Heidelberg (2005)

Bobenrieth, A.: Inconsistencias por qué no? Un estudio filoséfico sobre la 1égica
paraconsistente. Premios Nacionales Colcultura. Tercer Mundo Editores. Magister
Thesis, Universidad de los Andes, Santafé de Bogotd, Columbia (1995)

Bosneag, A.-M., Brockmeyer, M.: A formal model for eventual consistency seman-
tics. In: PDCS 2002, pp. 204-209. IASTED (2001)

Browne, J.: Brewer’s cap theorem (2009). http://www.julianbrowne.com/article/
viewer /brewers-cap-theorem

Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: consistency
and accuracy. In: Proc. 33rd VLDB, pp. 315-326. ACM (2007)

Dechter, R., van Beek, P.: Local and global relational consistency. Theor. Comput.
Sci. 173(1), 283-308 (1997)

Decker, H.: Translating advanced integrity checking technology to SQL. In: Doorn,
J., Rivero, L. (eds.) Database integrity: challenges and solutions, pp. 203-249. Idea
Group (2002)

Decker, H.: Historical and computational aspects of paraconsistency in view of the
logic foundation of databases. In: Bertossi, L., Katona, G.O.H., Schewe, K.-D.,
Thalheim, B. (eds.) Semantics in Databases 2001. LNCS, vol. 2582, pp. 63-81.
Springer, Heidelberg (2003)

Decker, H.: Answers that have integrity. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2010. LNCS, vol. 6834, pp. 54-72. Springer, Heidelberg (2011)

Decker, H.: New measures for maintaining the quality of databases. In: Murgante,
B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan,
B.O. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 170-185. Springer, Heidel-
berg (2012)

Decker, H.: A pragmatic approach to model, measure and maintain the quality of
information in databases (2012).

www.iti.upv.es/~hendrik /papers/ahrc-workshop_quality-of-data.pdf,
www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data_comments.pdf.
Slides and comments presented at the Workshop on Information Quality. Univ,
Hertfordshire, UK

Decker, H.: Answers that have quality. In: Murgante, B., Misra, S., Carlini, M.,
Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA
2013, Part II. LNCS, vol. 7972, pp. 543-558. Springer, Heidelberg (2013)

Decker, H.: Measure-based inconsistency-tolerant maintenance of database
integrity. In: Schewe, K.-D., Thalheim, B. (eds.) SDKB 2013. LNCS, vol. 7693,
pp. 149-173. Springer, Heidelberg (2013)

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data.pdf
www.iti.upv.es/~hendrik/papers/ahrc-workshop_quality-of-data_comments.pdf
fmunyoz
Caja de texto

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Decker, H., Martinenghi, D.: Inconsistency-tolerant integrity checking. IEEE
Transactions of Knowledge and Data Engineering 23(2), 218-234 (2011)

Decker, H., Mufioz-Escoi, F.D.: Revisiting and improving a result on integrity
preservation by concurrent transactions. In: Meersman, R., Dillon, T., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6428, pp. 297-306. Springer, Heidelberg (2010)
Dong, X.L., Berti-Equille, L., Srivastava, D.: Data fusion: resolving conflicts from
multiple sources (2015). http://arxiv.org/abs/1503.00310

Eswaran, K., Gray, J., Lorie, R., Traiger, I.: The notions of consistency and pred-
icate locks in a database system. CACM 19(11), 624-633 (1976)

Munoz-Escoi, F.D., Ruiz-Fuertes, M.I., Decker, H., Armendaﬂriz—fﬁigo7 J.E., de
Mendivil, J.R.G.: Extending middleware protocols for database replication with
integrity support. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol.
5331, pp. 607-624. Springer, Heidelberg (2008)

Fekete, A.: Consistency models for replicated data. In: Encyclopedia of Database
Systems, pp. 450-451. Springer (2009)

Fekete, A., Gupta, D., Lynch, V., Luchangco, N., Shvartsman, A.: Eventually-
serializable data services. In: 15th PoDC, pp. 300-309. ACM (1996)

Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51-59 (2002)

Golab, W., Rahman, M., Auyoung, A., Keeton, K., Li, X.: Eventually consistent:
Not what you were expecting? ACM Queue, 12(1) (2014)

Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intel-
ligent Information Systems 27(2), 159-184 (2006)

Gray, J., Lorie, R., Putzolu, G., Traiger, I.: Granularity of locks and degrees of
consistency in a shared data base. In: Nijssen, G. (ed.) Modelling in Data Base
Management Systems. North Holland (1976)

Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. Com-
puting Surveys 15(4), 287-317 (1983)

Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent
objects. TOPLAS 12(3), 463-492 (1990)

R. Ho. Design pattern for eventual consistency (2009). http://horicky.blogspot.
com.es/2009/01/design-pattern-for-eventual-consistency.html

Ikeda, R., Park, H., Widom, J.: Provenance for generalized map and reduce work-
flows. In: CIDR (2011)

Kempster, T., Stirling, C., Thanisch, P.: Diluting acid. SIGMoD Record 28(4),
17-23 (1999)

Li, X., Dong, X.L., Meng, W., Srivastava, D.: Truth finding on the deep web: Is
the problem solved? VLDB Endowment 6(2), 97-108 (2012)

Lloyd, W., Freedman, M., Kaminsky, M., Andersen, D.: Don’t settle for eventual:
scalable causal consistency for wide-area storage with cops. In: 23rd SOPS, pp.
401-416 (2011)

Lomet, D.: Transactions: from local atomicity to atomicity in the cloud. In: Jones,
C.B., Lloyd, J.L. (eds.) Dependable and Historic Computing. LNCS, vol. 6875, pp.
38-52. Springer, Heidelberg (2011)

Monge, P., Contractor, N.: Theory of Communication Networks. Oxford University
Press (2003)

Nicolas, J.-M.: Logic for improving integrity checking in relational data bases. Acta
Informatica 18, 227-253 (1982)

Munoz-Escoi, F.D., Irtin, L., H. Decker: Database replication protocols. In: Ency-
clopedia of Database Technologies and Applications, pp. 153-157. IGI Global
(2005)

http://arxiv.org/abs/http://arxiv.org/abs/1503.00310
http://horicky.blogspot.com.es/2009/01/design-pattern-for-eventual-consistency.html
http://horicky.blogspot.com.es/2009/01/design-pattern-for-eventual-consistency.html
fmunyoz
Caja de texto

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

59.
60.
61.
62.

63.

Oracle: Constraints. http://docs.oracle.com/cd/B19306-01/server.102/b14223/
constra.htm (May 1, 2015)

Ouzzani, M., Medjahed, B., Elmagarmid, A.: Correctness criteria beyond serializ-
ability. In: Encyclopedia of Database Systems, pp. 501-506. Springer (2009)
Rosenkrantz, D., Stearns, R., Lewis, P.: Consistency and serializability in concur-
rent datanbase systems. SIAM J. Comput. 13(3), 508-530 (1984)

Saito, Y., Shapiro, M.: Optimistic replication. JACM 37(1), 42-81 (2005)
Sandhu, R.: On five definitions of data integrity. In: Proc. IFIP WG11.3 Workshop
on Database Security, pp. 257-267. North-Holland (1994)

Simmons, G.: Contemporary Cryptology: The Science of Information Integrity.
IEEE Press (1992)

Sivathanu, G., Wright, C., Zadok, E.: Ensuring data integrity in storage: techniques
and applications. In: Proc. 12th Conf. on Computer and Communications Security,
p. 26. ACM (2005)

Svanks, M.: Integrity analysis: Methods for automating data quality assurance.
Information and Software Technology 30(10), 595-605 (1988)

Technet, M.: Data integrity. https://technet.microsoft.com/en-us/library/
22933058 (May 1, 2015)

Terry, D.: Replicated data consistency explained through baseball. Technical
report, Microsoft. MSR Technical Report (2011)

Traiger, 1., Gray, J., Galtieri, C., Lindsay, B.: Transactions and consistency in
distributed database systems. ACM Trans. Database Syst. 7(3), 323-342 (1982)
Vidyasankar, K.: Serializability. In: Encyclopedia of Database Systems, pp. 2626—
2632. Springer (2009)

Vogels, W.: Eventually consistent (2007). http://www.allthingsdistributed.com/
2007/12/eventually _consistent.html. Other versions in ACM Queue 6(6), 14—
19. http://queue.acm.org/detail.cfm?id=1466448 (2008) and CACM 52(1), 40-44
(2009)

Wikipedia: Consistency model. http://en.wikipedia.org/wiki/Consistency_model
(May 1, 2015)

Wikipedia: Data integrity. http://en.wikipedia.org/wiki/Data_integrity (May 1,
2015)

Wikipedia: Data quality. http://en.wikipedia.org/wiki/Data_quality (May 1, 2015)
Yin, X., Han, J., Yu, P.: Truth discovery with multiple conflicting information
providers on the web. IEEE Transactions of Knowledge and Data Engineering
20(6), 796-808 (2008)

Young, G.: Quick thoughts on eventual consistency (2010). http://codebetter.com/
gregyoung/2010/04 /14 /quick-thoughts-on-eventual-consistency/ (May 1, 2015)

http://docs.oracle.com/cd/B19306_01/server.102/b14223/constra.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14223/constra.htm
https://technet.microsoft.com/en-us/library/aa933058
https://technet.microsoft.com/en-us/library/aa933058
http://www.allthingsdistributed.com/2007/12/eventually_consistent.html
http://www.allthingsdistributed.com/2007/12/eventually_consistent.html
http://queue.acm.org/detail.cfm?id=1466448
http://en.wikipedia.org/wiki/Consistency_model
http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Data_quality
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/
http://codebetter.com/gregyoung/2010/04/14/quick-thoughts-on-eventual-consistency/
fmunyoz
Caja de texto

