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Abstract 
Glyphosate quantification methods are complex and expensive, and its control in natural water 
bodies is getting more important year after year. In order to find a new system that facilitates the 
detection of glyphosate, we present a comparison between two models to predict Glyphosate 
concentration in aqueous dissolutions. One of them is done by an Artificial Neural Network (ANN) 
embedded in a Microcontroller and the other one is done by statistic methods (Partial Least Squares) 
in a computer.  
From an analytical point of view, Voltammetric techniques have been selected to obtain 
electrochemical responses to different Glyphosate concentrations. In order to get them, a 
Voltammetry/Amperometry device designed by our research group and called FraPlus has been 
used. In this work we have selected two sensitive electrodes (Cobalt and Copper), ten different 
glyphosate concentrations and a train pulse made by nine different voltammetric pulses to build the 
models. The ANN developed model is able to properly relate data obtained by FraPlus and 
Glyphosate concentrations and the obtained value for regression coefficient (R) is 0.9998 and the P-
Value is 0.0. Taking into account these results, we propose this ANN model based in Voltammetric 
techniques working with Glyphosate concentrations in a buffer as an approach to Glyphosate 
detection in natural water bodies. 
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1. Introduction 
Glyphosate is a systemic, non-selective, broad spectrum and post emergence herbicide widely used 
in agriculture [1]. It is chemically named as Phosphonomethyl amino acetic acid or N-
(phosphonomethyl) glycine (CAS RN 1071-83-6). This chemical is polar, non-volatile, very soluble in 
water and almost insoluble in organic solvents. The way this product acts as an herbicide is by 
inhibiting the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, also known with the acronym 
EPSP, that has an essential function in the metabolism of plants because it takes part in the 
synthesis of some amino acids such as tryptophan and tyrosine [1] that are fundamental for vegetal 
life.  
Glyphosate is dramatically increasing in use in vast rural areas all around the world in association 
with the rise of genetically modified crop varieties specifically designed to be resistant to this 
herbicide. Unfortunately there is no known typical concentration of this agrotoxic in natural water 
bodies. The problem with this herbicide is the lack of control in very important agricultural regions in 
America and Asia while its use is controlled in most of the developed countries [2,3]. For drinking 
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waters, USEPA and Health Canada have published Drinking Water Guidelines limiting Glyphosate 
concentrations to a maximum of 0.7mg/l and 0.28mg/l respectively [4,5]. 
In some regions, light aircrafts are used to apply this herbicide by spraying it over the fields so the 
area of application is very poor selective and the product, in addition to settle on the crop to be 
treated, also precipitates on other non-desired areas affecting water [6,7], soil, plants and crops [8], 
wildlife and also directly and indirectly to humans [9].  
Glyphosate has a decomposition period ranging from 7 to 60 days [10] but it can persist more than 
174 days under certain environmental conditions [11] and, in addition, the toxicology of the product is 
under severe discussion. It is well known that, although it has not been shown to be carcinogenic 
yet, recent studies show its toxicity and its power as an endocrine disruptor [12]. Meanwhile, what 
happens with long term use of Glyphosate and the compounds derived from its degradation is still 
unknown. 
On the other hand, the existing analytical techniques for detecting and quantifying Glyphosate and its 
derivatives in the physical environment (water and soil), animals or plants are complex and costly. In 
this sense, one of the most used methodologies is High Performance Liquid Chromatography-Mass 
Spectrometry (HPLC-MS) [13] although there are other methods like immunosorbent assays (ELISA) 
[13], Colorimetry [14], Caplillary Electrophoresys [15] and Electrochemiluminescence techniques, 
that make possible an effective analysis of Glyphosate [16]. However, these procedures are 
generally slow, expensive and they have to be performed in a laboratory, so the advance in the 
development of rapid, sensitive and "in situ" analytical procedures is a work of great interest [16].  
In this regard, there are very important advances like those presented by Aquino et al [17] based on 
Electrochemistry and sensors made with different materials such as Silver and Platinum [18], Copper 
[19] or the very latest research with reactive enzymes [20] and double-layer hydroxides [21] which 
could be the basis for future “in situ” detection of Glyphosate. In this sense, it seems that 
Voltammetric / Amperometric techniques can be the basis for the development of these “in situ” 
measurement procedures. In fact, Voltammetry is the basis of the proposed procedure to predict 
Glyphosate concentration and a Voltammetric/Amperometric device called FraPlus has been 
designed and created to do Voltammetric/Amperometric measurements in a laboratory. 
Finally, the goal of this paper is to present the results of the work developed to embed an ANN in a 
microcontroller in order to detect Glyphosate concentrations in a buffer dissolution by pulse 
voltammetry. To achieve this, several assays have been done with different concentrations of the 
herbicide and they have been analyzed using different metals (noble and not noble) as electrodes. 
The voltammetric data obtained by FraPlus have been used to create the mathematical models 
presented in this work.  
 
 
 

2. Materials and Methods 
Chemical compounds 
In order to carry out the tests using pulse voltammetry, ten different dissolutions of Glyphosate 96% 
(purchased from Molekula) have been prepared, ranging from 5·10-3 M to 5·10-5 M, using a buffer 
dissolution of sodium dihydrogen phosphate 0.1 M (Sharlau, CAS: 7558-80-7) in distilled water, pH 
6.7 achieved by adding a few drops of NaOH 1M. 
Electrochemical measurement using pulse voltammetry  
The electrochemical measurement technique called pulse voltammetry has been used to apply an 
electric voltage to the utilized electrodes (working electrodes) when submerged in Glyphosate 
dissolutions, and then measure the electric current that circulates through the electrode. This is 
because the flow of the current through the dissolution is a function of the applied voltage and the 
chemical concentration in the dissolution. 
The measurements have been made with a device developed by the Institute of Molecular 
Recognition and Technological Development (IDM) called FraPlusMini [22], which is capable of 
running tests for Potentiometry [23], Amperometry [23,24], Pulse Voltammetry and Cyclic 
Voltammetry [25], and has been successfully used in food [26-28], water  analyses [29] and also in 
the determination of environmental parameters [30]. 
The system consists of a software application that runs on a PC and electronic equipment. 
For Pulse Voltammetry, the equipment generates a sequence of up to 50 pulses with an amplitude 
that can be configured for each of the pulses in the range of [-2V; +2V]. The width of the pulses can 
also be configured with a minimum value of 1 ms and a maximum value of 50 ms. 
The system includes a potentiostat that applies the voltage to the counter electrode of the 
electrochemical cell and measures the voltage at the reference electrode and the current at the 



working electrodes. The potentiostat permits measurements with up to 8 multiplexed working 
electrodes that can be automatically selected from the software application. As potentiostats are 
quite unstable systems, the design contains a stabilization circuit that can be configured according to 
the needs of each application. The current measurement circuit of the potentiostat disposes of 32 
programmable current scales. Fig. 1 shows the block diagram of the designed system. 
 

[Insert Figure 1] 
 
The software application includes a section for pulse voltammetry. In this section, a sequence of 
tests for several working electrodes can be programmed. The application allows the setup of the 
pulse train parameters: number of pulses, amplitude of each pulse and width of the pulses. A 
different pulse pattern can be configured for each working electrode. The current scale and the 
stabilization level can also be established. Once the test has been configured the application sends 
this information to the electronic equipment. The application calculates 1000 points corresponding to 
the signal temporal evolution of the pulse train and sends this information (along with the rest of the 
data needed to carry out the test) to the electronic equipment through a USB port. Then, the 
electronic equipment generates and applies the pulse train to the electrochemical cell and samples 
the voltage and current signals. Finally the equipment sends these samples to the PC where the 
data is displayed and stored. This procedure is then repeated for the next working electrode of the 
sequence. The data of the complete sequence are stored in a file so that statistical studies can be 
applied. 
The electronic equipment includes a 16-bit microcontroller (PIC24FJ256), a 12-bit Digital-to-Analog 
converter (DAC), two 12-bit Analog-to-Digital converters (ADC) and a potentiostat that incorporates a 
current measurement circuit, a working electrode multiplexing block and a stabilization circuit. Some 
analog signal conditioning circuits are used to adapt the signals that connect the potentiostat to the 
DAC and the ADC’s. 
The microcontroller receives the data sent by the PC. When all the data corresponding to a test is 
received, the microcontroller configures the current scale and the stabilization level of the 
potentiostat and selects the desired working electrode. Then it outputs the value corresponding to 
the temporal evolution of the signal to the DAC at a rate that fulfills the signal timing requirements. In 
the same loop the program of the microcontroller samples the signals corresponding to the voltage at 
the reference electrode and the current flowing through the selected working electrode. The collected 
data are sent to the PC where it is processed and stored. 
 
Electrochemical sensors (electrodes) 
In a preliminary approach, two electronic tongues have been designed, developed and used with two 
different sets of sensor materials (one with four noble metals: Ir, Rh, Pt and Au; and another one with 
four non-noble metals: Ag, Cu, Co and Ni) with a contact diameter of 1 mm for each metal. The 
selection of electrodes to our electronic tongues has been made according to our experience and 
papers published before [1][16][21][28]. After several preliminary tests we have decided to work with 
those more sensitive: Copper and Cobalt. 
Once the valid electrodes have been identified, rotating disk electrodes have been built with Cu and 
Co with a contact diameter of 2 mm in order to confirm the effect of increasing the contact surface in 
the measurement sensibility and also the effect of the electrode rotation to avoid oxides to get fixed 
to the electrode surface. In this way, both surface increase and the turbulent flow created by the 
rotation help to increase the signal. 
Besides, the use of a calomel (Radiometer Analytical, XR 100) reference electrode was needed.  
Laboratory analyses. 
Electrochemical measures by pulse voltammetry have been done to Glyphosate dissolved in buffer 
at ten different concentrations (5·10-3 mol dm-3, 2.5·10-3 mol dm-3, 1.25·10-3 mol dm-3, 0.625·10-4 mol 
dm-3, 5·10-4 mol dm-3, 2.5·10-4 mol dm-3, 1.25·10-4 mol dm-3, 0.625·10-4 mol dm-3, 5·10-5 mol dm-3, 
2.5·10-5 mol dm-3) using the FraPlus device and a determinate pulse train. Preliminary assays have 
been done with eight different working electrodes made with noble and non-noble metals as 
described above. Next, specific analyses have been done with the most sensitive electrodes to these 
glyphosate concentrations by using rotating electrodes, due to their better response when compared 
with the static ones. Then, three different series of assays (A, B and C) have been carried out in 
order to have a statistically significant number of samples and check their repeatability. 
After considering several pulse trains in preliminary assays and attending to previous papers in this 
area [11,13,17], we have decided to use a pulse train that consists of nine different pulses both 
positive and negative in the voltage range of [-500 mV, 600 mV] in order to capture the Glyphosate 



response to different voltages. These nine pulses last for 40ms each and are the following ones: 0 
mV, -200mV, 0mV, +600mV, -500mV, -200mV, 0mV, 200mV and 0mV.  
After this, assays with rotating Co and Cu electrodes have been done. The voltammetric response 
database for the ten different Glyphosate concentrations to the nine pulses with Cobalt and Copper 
electrodes has been collected in a text file to be modeled by two different procedures. 
Multivariate analysis of data  
A data matrix has been built with the data collected for statistical calculations. The software 
Statgraphics ® (StatPoint Technologies, Inc.) has been used for these analyses; Principal 
Component Analysis (PCA) and Partial Least Squares analyses (PLS) have been done with this 
software. PCA analyses were made in order to reduce the amount of input variables (usually 
dependent) in a lower number of independent variables (this allows their representation in two or 
three dimensions for the two or three principal components) and PLS analysis were made in order to 
obtain the factors of each component of the models and check their statistical validity. 
Artificial Neural Network modeling 
Neural networks can be applied in systems when it is necessary to develop a model (functional, 
classifier, predictive, etc.). They are ideal in applications with low density of data and information even 
though a large amount of input data. In addition, they present some interesting properties such as 
robustness to inconsistencies in input data, connections with mixed data and processing rules, highly 
parallel processing, self-organization and adaptability [31,32]. 
The procedure for working with artificial neural networks consists of two stages, a first stage of 
training of the network and a second stage for its verification. The training stage has been performed 
with some of the available measures. At this stage the network categories have been set out (in this 
case, ten different Glyphosate concentrations). The data from eight electrodes for each measurement 
have been applied as an initial input vector that was simplified later. With these data, the coefficients 
of the algorithm that configures the network have been calculated. In the verification stage, the data 
from new measures have been applied to the inputs, checking whether the output of the active 
network is correct or not. 

As a part of further works in this research line, once validated the results, we will intend to create a 
portable system equipped with artificial intelligence that must be able to detect glyphosate by using 
the simplest and most economic procedure. Usually, portable systems use programmable 
components such as microcontrollers, DSP, FPGA, etc. In our case, we are planning to implement the 
algorithm in a microcontroller because of its ease of programming, comprehensive development tools 
and low production cost. 
For implementation in portable equipment, the neural network algorithm must be transferable to a 
microcontroller which has a limited amount of memory. Thus, the neural network algorithm will require 
high accuracy and low memory requirements, as well as it must work fast and be able to work in real-
time in order to be implemented in a microcontroller. In the end, not all neural network algorithms are 
able to reach all these requirements. In order to get it, two neural network algorithms have been used 
in this communication: Fuzzy ARTMAP and Multi-Layer Feed-Forward (MLFF). 
 

3. Results 
An important database has been obtained from the analyses done with Glyphosate dissolved in 
buffer at ten different concentrations by using the FraPlus device and a determinate pulse train. The 
results of applying this pulse train to the ten selected Glyphosate concentrations are 999 
voltammetric measures corresponding to the voltammetric response of each dissolution to the 
applied voltages.  
 
A comparison among the results for the eight different electrodes and their responses to the different 
Glyphosate concentrations  has allowed us to decide working with Co and Cu electrodes. They have 
given the highest electrochemical response as they have been observed to have a clear tendency to 
be oxidized in the presence of this compound forming complex species. Due to their sensibility to 
Glyphosate concentrations, they have been selected as working electrodes.  
 
After this, the assays with rotating Co and Cu electrodes have shown very interesting results. The 
results data base have been built including the 999 voltammetric data of 140 different assays with 
the rotating Cu electrode and 111 different assays with the rotating Co electrode. In this sense 
several tables as the one shown in Table 1 have been obtained for each analytical series (A, B and 
C) with the following voltammetric data: 
 

[Insert Table 1] 



 
Next, an example of the global electrochemical responses obtained is shown in Fig. 2, corresponding 
to the averaged voltammetric results in series A for all pulses and the ten Glyphosate concentrations 
analyzed with the Cu electrode 
 

[Insert Figure 2] 
 
Finally, the voltammetric response database for the ten different Glyphosate concentrations to the 
nine pulses with Cobalt and Copper rotating electrodes has been collected in a text file to be 
modeled by two different procedures as shown in the next section. 
 
 

4. Mathematical modeling 
Two different mathematical modeling procedures have been used in this study in order to be able to 
predict Glyphosate concentrations in water samples by voltammetric techniques. The first one has 
been done by using PLS (Partial Leasts Squares). The second modeling procedure has been based 
on the theory of Artificial Neural Networks. The goal of these two different modeling processes is to 
be able to compare results and check the fit of these two different philosophies of modeling to the 
electrochemical response of Glyphosate dissolutions to voltammetric pulses. 
 

4.1. Mathematical model by PLS 
The idea of modeling by PLS is to have a flexible tool to obtain the mathematical expressions of the 
curves and be able to get a mathematical model based on our own design and not on a 
preconfigured one. In this sense, we have used Statgraphics® to model the response of Glyphosate 
obtained with the two most sensitive sensors identified in the laboratory assays: Cobalt and Copper. 
 

a) For Cobalt electrode: 
First of all we have calculated the areas determined by the curves of the nine pulses applied to the 
different Glyphosate concentrations assayed (111 assays have been done with the Co electrode). 
Next, the areas of the curves from the buffer have been subtracted to each one of the curves for 
each Glyphosate dissolutions, in order to use the buffer of each series as a reference to compare 
results. 
 
After this, we have developed a method to determine the Glyphosate concentration based on 
considering the areas for each pulse as independent variables. The idea was to create a model in 
the following form: 
       
 
[ Glypho (mg⁄l ) ]=a+b·P1+c·P2+d·P3…..i·P9       [1] 
 
 
In this expression, [Glypho (mg⁄l )] is the predicted value of Glyphosate concentration and Pi is the 
value of the area corresponding to each one of the nine pulses used. Lastly, letters, a, b, c… to i, are 
coefficients given by the PLS analysis. 
 
In this specific case, we have chosen only three of the nine pulses applied in the assays due to the 
fact that this is what a preliminary Principal Components Analysis (PCA) of the results suggests. In 
fact, the output of the applied PLS analysis showed the result of fitting models for 1 dependent 
variable based on 3 predictor variables. To fit the model, 2 components were extracted. In the end, 
the P-Value of the model is 0.0 and the value of R is 0.9793 so the proposed model is statistically 
valid (Table 2). 
 

[Insert table 2] 
 
As shown in table 2, the selected areas were the ones for pulses P2, P4 and P8. In this way, the 
mathematical model to predict Glyphosate concentrations based on the selected areas of the 
voltammetric responses to the pulse train previously described is as shown: 
 
 
[ Glypho (mg⁄l) ]=6.5802 + 0.071343·P2 + 0.174714·P4 + 0.0170091·P8    [2] 



 
 
The mathematical model validation has been made by “leave one out”. 
 
 

b) For Copper electrode: 
 
We have proceeded in the same way with the results of the electrochemical analyses with the Cu 
electrode. In this sense, the mathematical model was in the same form than the one shown before 
but considering four predictor variables as suggested by a previous PCA analysis. In order to fit the 
model, three components were extracted as shown in table 2. Then, the mathematical model is in 
the following form: 
 
 
 

[Insert Figure 3]  
 
 
 
 [Glypho (mg/l)]=2.58091 + 8.51427·E-3·P3 + 1.6872·E-3·P4 - 4.91523·E-3·P8 + 0.103068·P9  [3] 

 
 

In this case, P-value was 0.0 and R-Squared was 0.9955 for the predicted versus observed values 
(Fig. 3) so the mathematical model is considered statistically valid. As done with the model for Co 
electrode, the validation of the model was made by “leave one out”. 
 
 

4.2. Mathematical model by neural networks. 
 
In order to develop the model, we have used a very extended and versatile artificial neural network: 
feed-forward multi-layer perceptron neural network (FF-MLP). The network is a two layer feed-
forward network with sigmoid hidden neurons and linear outputs neurons. The first layer has a 
connection from the network input; in this specific case, we have four inputs for Copper 
corresponding to pulses P3, P4, P8 and P9 and three inputs for Cobalt corresponding to pulses P2, 
P4 y P8. For each one of these inputs we have 127 data corresponding to the different molar 
concentrations used in the assays. The number of the hidden nodes selected is 10. The activation 
function used for the hidden neurons is the type Tansig (Hyperbolic tangent sigmoid transfer 
function). Purelin (linear) function is used for the output node.  
 
a) For Copper electrode: 
 
Random data divisions have been used by Matlab® in order to select the samples for the training. 
70% of the samples have been used training data, 15% as validation data and the remaining 15% has 
been used as test data. After the training, two weight matrices have been obtained: a 20x4 hidden 
weight matrix and in the other hand, a 4x1 output weight matrix. In addition, two bias matrices were 
also obtained: a 4x1 hidden bias matrix and a 1x1 output bias matrix. A maximum and minimum of the 
input data have been also obtained.  
 
Values of MSE (Mean Squared Error) and R (Regression Coefficient) are shown in Table 3. Fig. 4 
shows R values for every sample (training, validation and test) as well as for all sample groups. 
 

[Insert table 3] 
 
Despite of getting a good value of R = 0.999 in the regression line, there is a high dispersion at low 
concentration values. When representing measured values versus those predicted by the neural 
network, it can be seen that there is a very good value at high and medium concentrations (R = 
0.9504 for medium concentration and R = 0.9992 for high concentration) but the relationship is bad 
at low concentrations. 
 



Since the results at low concentrations are not the desired ones, we decided to use a previous phase 
for classifying the data before the modeling phase with the idea of getting a better R value. In our 
case, we classified the data into three different classes: Class 1 (Low concentrations), Class 2 
(medium concentrations) and Class 3 (High concentrations).This classification was performed by 
using a neural network Fuzzy ARTMAP type as explained in section c). 
 

[Insert Figure 4] 
 

 
b) For Cobalt electrode: 
 
In the specific case of using a Cobalt electrode we have realized that the results are not as good as 
those obtained by using the Copper one so we have decided to develop the Artificial Neural Network 
considering only the Copper electrode. 

 
 
c) For Copper electrode with previous classification: 
 
As cited before, a previous classification of the input data has been done. The idea is to improve the 
model created by the FFMLP. Next, the data classification has been made with the other neural 
network (Fuzzy ARTMAP)[33] [34] that is based on the Adaptative Resonance Theory [35] and is 
able to learn in an unsupervised mode with a fast learning rate [36]. 
 
As explained before, in order to train the network, a classification of the obtained data into three 
different classes has been done (low concentration (1), medium concentration (2) and high 
concentration (3)) as shown in Table 4. 

 
[Insert table 4] 

 
In each selected class 38 data have been used so the study is developed with 114 input data. A part 
of these data has been used to do the training (90 data) and another part to do de validation (24). 
 
In order to reach a compromise between a high hit rate and a minimum mapfield, the ρ values have 
been changed in the range of [0.3 - 0.9] and β values have also changed in the range of [0.4 - 1]. 
The goal of getting a minimum mapfield is based on the idea of reducing the use of the 
microcontroller memory when this model became developed into a portable system. 
 
A small sized mapfield has been obtained with values in the range of [0.3-0.6] and in the range of 
[0.6-1] with a hit rate of 87.5%. Maximum hit rate is obtained for ρ = 0.9 and for β = 0.6, 0.7 and 1 
getting a mapfield of 18, 21 and 17 respectively. Minimum mapfield is obtained with ρ = 0.9 and β 
=1. With this, we obtain a weight matrix of 17x8. 

 
[Insert Table 5] 

 
Fig. 5 shows the confusion matrix. In the confusion matrix, the diagonal cells show the number of 
residue positions that were correctly classified for each structural class. The off-diagonal cells show 
the number of residue positions that were misclassified. The blue cell shows the total percentage of 
correctly predicted residues (top number) and the total percentage of incorrectly predicted residues 
(bottom number).  

 
[Insert Figure 5] 

 
After having classified the input data with the Fuzzy ARTMAT network, a FFMLP network has been 
developed in order to predict the concentration for each of the 3 classes, so three independent 
networks were obtained for low, medium and high concentrations. 
 
For class 1, a FFMLP architecture with 4 inputs (for pulses P3, P4, P8 and P9) has been used. We 
have also used 16 neurons for hidden layer and one neuron for the output layer. This architecture 
leads to a 16x4 weight matrix for the hidden layer and a 16x1 matrix for the bias. In the end, the 
output weights form a matrix of 1x16 and 1x1 bias. The obtained value for R is 0.932, it is notably 



better than the one obtained with no preliminary data classification (R=0.0632) and it confirms that a 
previous classification gives better results. 

 
For classes 2 and 3 the best result was obtained using a network with 10 neurons in the hidden layer 
and one in the output layer. This leads to a 10x1 weight matrix for the hidden layer and a 10x4 for 
the bias. Finally, the output weights form a matrix of 1x10 and 1x1 bias. In this case, Regression 
Coefficients are 0.9862 and 0.9992 respectively for Classes 2 and 3. In this case the Regression 
Coefficient for Class 2 is better than the one corresponding to the previous no classification case 
(0.9504) while Class 3 has the same R value. These R values mean that the adjustment of the 
model is very good and Glyphosate concentration in water samples can be predicted in the studied 
concentration range. 

 
In the end, results for Class 1 (low Glyphosate concentrations) can be further improved if data are 
preprocessed trying to eliminate outliers. In order to do this, a univariate outlier detection method has 
been applied as explained by Ben-Gal&Walfish [37,38]. This method consists of three steps. First, 
the outlier detection method is applied to the inputs.  Next, the classification is performed and, finally, 
settings are done. In our case, when outliers elimination is applied, a R value of 0.9583 is obtained 
for Class1 and this is better than the Regression Coefficient obtained without applying this method 
(R = 0.815). Finally, we have proceeded in the same way with the overall Glyphosate concentration 
data to get a global Regression Coefficient for our prediction model (R= 0.9998). This ANN based 
mathematical model is the best choice to predict Glyphosate concentrations in buffer dissolutions 
and so we suggest this model to be applied to the detection of this pesticide in natural water bodies. 

 
[Insert Figure 6] 

 
 

5. Conclusions 
 
It’s well known that Glyphosate is the world’s most used herbicide and that there are ecological 
problems and human affections due to its use. In addition, there are no easy, fast and economic 
techniques for its detection neither in a laboratory nor “in situ”. Voltammetric/Amperometric 
techniques with metal electrodes seem to be giving promissory results in the detection and 
quantification of organic compounds in water. 
We have developed a Voltammetry device called FraPlus that allows us to detect glyphosate 
concentrations in a buffer. Assays with different Glyphosate concentrations have given a database to 
build a mathematical model by both: statistical methods (PLS) and ANN procedures. 
In the end, ANN is the best choice to create a mathematical model as it gives the best statistical 
results specially when a previous classification of the samples is done in three different Classes: low 
(class 1), medium (class 2), and high concentrations (class 3). In this specific case, Regression 
Coefficient value and P-Value are the best of all the studied models (R= 0.9998 and P-value=0.0) so 
we recommend this procedure for further development of mathematical models to predict Glyphosate 
concentrations in real water samples. 
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