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THE DIRICHLET-BOHR RADIUS

DANIEL CARANDO, ANDREAS DEFANT, DOMINGO GARCÍA,
MANUEL MAESTRE, AND PABLO SEVILLA-PERIS

Abstract. Denote by Ω(n) the number of prime divisors of n ∈ N
(counted with multiplicities). For x ∈ N define the Dirichlet-Bohr radius
L(x) to be the best r > 0 such that for every finite Dirichlet polynomial∑

n≤x ann
−s we have∑

n≤x

|an|rΩ(n) ≤ sup
t∈R

∣∣∑
n≤x

ann
−it∣∣ .

We prove that the asymptotically correct order of L(x) is (log x)1/4x−1/8.
Following Bohr’s vision our proof links the estimation of L(x) with clas-
sical Bohr radii for holomorphic functions in several variables. Moreover,
we suggest a general setting which allows to translate various results on
Bohr radii in a systematic way into results on Dirichlet-Bohr radii, and
vice versa.

1. Introduction

The study of problems on absolute convergence of Dirichlet series (of the

form
∑

n ann
−s, where s is a complex variable) led H. Bohr to relate prop-

erties on absolute convergence with properties of boundedness (on the right

half-plane) of the holomorphic function defined by the Dirichlet series. One

of his first results in this direction is the following inequality [6, Satz XIII]:

for every Dirichlet series of the form
∑

p prime app
−s we have

(1.1)
∑
p prime

|ap| ≤ sup
Re s>0

∣∣∣ ∑
p prime

app
−s
∣∣∣ .

In his research [6, 7] he then established a close relationship between Dirich-

let series and power series in infinitely many variables (this relationship was

presented in a modern, systematic way much later by Hedenmalm, Lindqvist

and Seip [14]). Bohr then looked at holomorphic functions and proved his

well known power series theorem [8]: for every holomorphic function f on

the open unit disc D we have

(1.2)
∑
n

∣∣f (n)(0)

n!

∣∣ 1

3n
≤ ‖f‖∞ ,
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and that here moreover the number 1/3 is optimal. As a simple consequence

of the maximum modulus principle, it can be seen that for each Dirichlet

series
∑

n a2n2−ns we have

sup
z∈D

∣∣∣∑
n

a2nz
n
∣∣∣ = sup

Re s>0

∣∣∣∑
n

a2n2−ns
∣∣∣ .

Hence (1.2) can be reformulated as follows:

(1.3)
∑
n

∣∣∣a2n
1

3n

∣∣∣ ≤ sup
Re s>0

∣∣∣∑
n

a2n2−ns
∣∣∣ ,

for every Dirichlet series
∑

n a2n2−ns.

The work of Dineen and Timoney [13] renewed the interest on Bohr’s

theorem and Boas and Khavinson [5] defined the n-dimensional Bohr radius

Kn to be the best 0 < r < 1 such that∑
α∈Nn0

∣∣∣∂αf(0)

α!

∣∣∣r|α| ≤ sup
z∈Dn

∣∣∣ ∑
α∈Nn0

∂αf(0)

α!
zα
∣∣∣ ,

for every bounded, holomorphic function f on Dn. That was the starting

point of a long search on the optimal asymptotic behaviour of Kn as n grows

that was finally closed in [10] and [4] (see Section 3 for more details).

Because of the link between Dirichlet series and power series, each result

in either framework has an immediate translation into the other. This is of

course the case with the behaviour of Kn (a fact which is stated in more

detail in Example 3.6). But, as it happens, what is natural in one side may

not be as natural in the other; and while taking n variables (or, equivalently,

n-dimensional spaces) is natural in the side of holomorphic functions, in the

side of Dirichlet series we would rather take finite sums of (the first) n terms.

So, inspired by the Bohr radius for holomorphic functions, our main aim in

this note is to determine, for each x ≥ 2, the best r = r(x) ≥ 0 such that

for every finite Dirichlet polynomial
∑

n≤x ann
−s of length x∑

n≤x

|an|rΩ(n) ≤ sup
Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣ ,

where Ω(n) denotes the number of prime divisors of n ∈ N (counted with

multiplicities). We do this in our main result Theorem 2.1, that gives the

asymptotically correct order of this best radius.

We then take a general point of view and, for a given subset J of N, we

define the Dirichlet-Bohr radius L(J) of J to be the best r = r(J) ≥ 0 such

that for every Dirichlet series
∑

n∈J ann
−s convergent on the open half-plane
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[Re s > 0], we have

(1.4)
∑
n∈J

|an|rΩ(n) ≤ sup
Re s>0

∣∣∣∑
n∈J

ann
−s
∣∣∣ .

With this, denoting by P the set of prime numbers, (1.1) and (1.3) can be

rephrased as

L(P ) = 1 and L
({

2k | k ∈ N
})

=
1

3
.(1.5)

Then, Theorem 2.1 gives the correct asymptotic order of L({n ∈ N |1 ≤ n ≤
x}). We will see that, following an idea of H. Bohr based on Diophantine

approximation, this study can be extended to other sets J of indices.

Finally, we mention another estimate which seems of relevance when

motivating our results: For every ε > 0 there is C = C(ε) ≥ 1 such that for

every x and finite Dirichlet polynomial
∑

n≤x ann
−s

(1.6)
∑
n≤x

|an|
e

(
1√
2
−ε
)√

logn log logn

n1/2
≤ C sup

Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣ .

This result is under several different aspects optimal, and it is the final

outcome of a long series of results due to [2, 9, 10, 15, 17, 18]. Our main

result, Theorem 2.1, can be considered to be a relative of (1.6).

1.1. Notations. As we have already mentioned, Ω(n) denotes, for n ∈ N,

the number of prime divisors of n, counted with their multiplicity. We de-

note by (pn)n the sequence of prime numbers. The set of multiindices α that

eventually become 0 is denoted by N(N)
0 . For α = (α1, . . . , αk, 0, . . .) we write

pα = pα1
1 · · · p

αk
k and |α| = α1 + · · ·+ αk.

Along this note π denotes the prime counting function, i.e., π(x) is the num-

ber of prime numbers less than or equal to x.

Given two real functions f and g we write f(x) � g(x) if there exists a

constant C > 0 such that f(x) ≤ Cg(x) for every x. If f(x) � g(x) and

g(x)� f(x) we write f(x) ≈ g(x).

For each N we denote by H∞(DN) the space of bounded, holomorphic func-

tions on DN . If f ∈ H∞(DN) and α ∈ NN
0 we write cα(f) = ∂αf(0)

α!
, the α-th

coefficient of the monomial expansion.

2. Main result

For any x ≥ 2, we write

L(x) = L
({
n ∈ N

∣∣ 1 ≤ n ≤ x
})
,
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where L is defined in (1.4), and call this number the x-th Dirichlet-Bohr

radius. The main result of this note then reads as follows.

Theorem 2.1. We have

L(x) ≈
4
√

log x

x1/8
.

In particular, there is a universal constant C > 0 such that∑
n≤x

|an|
(
C 4
√

log n

n1/8

)Ω(n)

≤ sup
Re s>0

∣∣∣∑
n≤x

ann
−s
∣∣∣

for every x ≥ 2 and every finite Dirichlet polynomial
∑

n≤x ann
−s.

The rest of this section is devoted to the proof of this result.

2.1. Reduction I. We start with a device which reduces the estimation

of Dirichlet-Bohr radii L(x) to the estimation of their homogeneous parts

Lm(x) which we are going to define now. For x ≥ 2 define the finite dimen-

sional Banach space

H(x)
∞ :=

{
D =

∞∑
n=1

ann
−s
∣∣∣ an 6= 0 only if n ≤ x

}
‖D‖∞ = sup

t∈R

∣∣∣∑
n≤x

an
1

nit

∣∣∣ = sup
Re s>0

∣∣∣∑
n≤x

an
1

ns

∣∣∣
together with its closed subspace

H(x,m)
∞ :=

{ ∞∑
n=1

ann
−s
∣∣∣ an 6= 0 only if n ≤ x and Ω(n) = m

}
.

Then

L(x) = sup
{

0 ≤ r ≤ 1
∣∣∀D ∈ H(x)

∞ :
∑
n≤x

|an|rΩ(n) ≤ ‖D‖∞
}
,

and therefore for m ∈ N we define the m-homogeneous x-th Dirichlet-Bohr

radius by

(2.1) Lm(x) := sup
{

0 ≤ r ≤ 1
∣∣∣ ∀D ∈ H(x,m)

∞ :
∑
n≤x

|an| ≤ r−m‖D‖∞
}
.

The following result is the announced reduction theorem.

Proposition 2.2. With the previous notation, we have

1

3
inf
m
Lm(x) ≤ L(x) ≤ inf

m
Lm(x) for all x ≥ 2 .
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We start with a reformulation in terms of holomorphic functions. Note

that if n = pα and 1 ≤ n ≤ x then clearly α has at most the first π(x)

coordinates different from zero; in other words α ∈ Nπ(x)
0 . Then, by Bohr’s

fundamental lemma (see [18]) we know that for every finite Dirichlet poly-

nomial
∑

n≤x ann
−s we have

sup
t∈R

∣∣∣∑
n≤x

ann
−it
∣∣∣ = sup

z∈Dπ(x)

∣∣∣ ∑
α∈Nπ(x)0
1≤pα≤x

apαz
α
∣∣∣ .(2.2)

With this identity in mind we define the Banach space

H(x)
∞ :=

{
f ∈ H∞(Dπ(x))

∣∣∣ cα(f) 6= 0 only if pα ≤ x
}
,

(the norm clearly given by the right side of (2.2)) and its closed subspace

H(x,m)
∞ :=

{
f ∈ H∞(Dπ(x))

∣∣∣ cα(f) 6= 0 only if pα ≤ x and |α| = m
}
.

Identifying Dirichlet series
∑

n≤x ann
−s with functions

∑
α∈Nπ(x)0
1≤pα≤x

apαz
α we

then obtain the following isometric equalities

H(x)
∞ = H(x)

∞ and H(x,m)
∞ = H(x,m)

∞ ,

and this in turn shows that

(2.3) L(x) = sup
{

0 ≤ r ≤ 1
∣∣∣ ∀f ∈ H(x)

∞ :
∑

α∈Nπ(x)0
1≤pα≤x

∣∣cα(f)
∣∣r|α| ≤ ‖f‖∞} ,

and

(2.4)

Lm(x) = sup
{

0 ≤ r ≤ 1
∣∣∣ ∀f ∈ H(x,m)

∞ :
∑

1≤pα≤x
|α|=m

∣∣cα(f)
∣∣ ≤ r−m ‖f‖∞

}
.

Proof of Proposition 2.2. The proof of the upper estimate is obvious, and

for the proof of the lower estimate we follow [11, Section 2]. Fix f ∈ H(x)
∞

with ‖f‖∞ ≤ 1, and write for its m-homogeneous part

fm(ω) =
∑

1≤pα≤x
|α|=m

cα(f)ωα , ω ∈ Dπ(x) ;

obviously, fm ∈ H(x,m)
∞ and using Cauchy inequalities we see that ‖fm‖∞ ≤ 1

for all m. We fix now some z0 ∈ Dπ(x) and θ ∈ T such that |c0(f)| = θc0(f),

and define

g : D→ C , g(ω) := f(ωz0) =
∞∑
m=1

fm(z0)ωm ,

h : D→ C , h := 1− θg .
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Since ‖g‖∞ ≤ 1, we have that Reh ≥ 0 on D, and by Caratheodory’s

theorem (for an elementary proof, see [1, Lemma 1.1]) we have for all m

(2.5)
∣∣fm(z0)

∣∣ =
h(m)(0)

m!
≤ 2 Reh(0) = 2(1− |c0(f)|) .

We take now some r < infm Lm(x). Then for all z ∈ Dπ(x) and all m we

have by (2.4) and (2.5)∑
1≤pα≤x
|α|=m

∣∣cα(f)(
r

3
z)α
∣∣ ≤ 1

3m
‖fm‖∞ ≤

1

3m
2(1− |c0(f)|) ,

and hence for all z ∈ r
3
Dπ(x)

∑
1≤pα≤x

∣∣cα(f)zα
∣∣ ≤ |c0(f)|+

∞∑
m=1

1

3m
2(1− |c0(f)|) = 1 .

The conclusion now follows from (2.3) . �

2.2. The tool. The following proposition is our main tool – a reelaboration

of a result due to Balasubramanian, Calado, and Queffélec [2, Theorem 1.4]

(see also [12, Theorem 4.2]).

Proposition 2.3. Let m ≥ 2 and κ > 1. There exists C(κ) > 0 such that

for every m-homogeneous Dirichlet polynomial D =
∑

n≤x ann
−s in H(x,m)

∞

we have ∑
n≤x

|an|
(log n)

m−1
2

n
m−1
2m

≤ C(κ)mm−1(2κ)m‖D‖∞ .

Our proof follows from a careful analysis of the original proof of [2],

that allows us to obtain the constant C(κ)mm−1(2κ)m, smaller than the

original one. Since this fact is essential for our purpose, we for the sake of

completeness prefer to add the proof. Every m-homogeneous polynomial in

n variables admits two possible representations:

P (z) =
∑
α∈Nn
|α|=m

cαz
α =

∑
1≤j1≤···≤jm≤n

cj1,...,jmzj1 · . . . · zjm , for z ∈ Cn.

We need the following lemma [10, page 492] (see also [12, Lemma 4.3] or [3,

Lemma 2.6]).

Lemma 2.4. Let n ≥ 1, m ≥ 1 and κ > 1. Then there exists C(κ) > 0

such that, for every m-homogeneous polynomial P on Cn we have
n∑

jm=1

( ∑
1≤j1≤···≤jm

|cj1,...,jm|2
) 1

2 ≤ C(κ)
(
2κ
)m

sup{|P (z)| : z ∈ Dn} .
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Proof of Proposition 2.3 . We begin by fixing some finite Dirichlet polyno-

mial

D =
∑
n≤x

ann
−s ∈ H(x,m)

∞ .

Now we define the following m-homogeneous polynomial in π(x) variables

P (z) =
∑

1≤j1≤···≤jm≤π(x)

cizj1 · . . . · zjm , z ∈ Cπ(x) ,

where cj1...jm = an for 1 ≤ n = pj1 · · · pjm ≤ x and 0 otherwise. Then

∑
n≤x

|an|
(log n)

m−1
2

n
m−1
2m

=
∑

1≤j1≤···≤jm≤π(x)

|cj1,...,jm|
(

log(pj1 · · · pjm)
)m−1

2

(pj1 · · · pjm)
m−1
2m

≤
π(x)∑
jm=1

(m log pjm)
m−1

2

p
m−1
2m
jm

∑
1≤j1≤...≤jm−1≤jm

|cj1,...,jm|
(pj1 · · · pjm−1)

m−1
2m

≤
π(x)∑
jm=1

(m log pjm)
m−1

2

p
m−1
2m
jm

( ∑
1≤j1≤...≤jm−1≤jm

|cj1,...,jm |2
) 1

2

×

×
( ∑

1≤j1≤...≤jm−1≤jm

1

(pj1 · · · pjm−1)
m−1
m

) 1
2

,

where the last step follows from the Cauchy-Schwarz inequality. We use now

the fact that for 0 < α < 1 (see [16, Satz 4.2, p. 22])∑
p≤x

p−α � 1

1− α
x1−α

log x

to bound the last factor. By taking α = m−1
m

,( ∑
1≤j1≤...≤jm−1≤jm

1

(pj1 · · · pjm−1)
m−1
m

) 1
2

≤
(∑
j≤jm

( 1

pj

)m−1
m

)m−1
2

�
(
m

p
1
m
jm

log pjm

)m−1
2
.

With this we have

∑
n≤x

|an|
(log n)

m−1
2

n
m−1
2m

� mm−1

π(x)∑
jm=1

(log pjm)
m−1

2

p
m−1
2m
jm

( p
1
m
jm

log pjm

)m−1
2

( ∑
1≤j1≤...≤jm−1≤jm

|cj|2
) 1

2

.
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Finally, by Lemma 2.4 and (2.2), there exists C(κ) > 0 such that∑
n≤x

|an|
(log n)

m−1
2

n
m−1
2m

≤ C(κ)mm−1(2κ)m‖P‖ = C(κ)mm−1(2κ)m‖D‖∞ .

�

2.3. Proofs.

Proof of the lower estimate in Theorem 2.1. We fix some x ≥ 2. By Propo-

sition 2.2 we only have to control each m-homogeneous part, Lm(x). Note

first that if 1 ≤ n ≤ x is such that Ω(n) = m we have that 2m ≤ n ≤ x,

which gives m ≤ log x
log 2

. Then Hx,m
∞ = {0}, and hence Lm(x) = 1, for every

m > log x
log 2

. Thus

(2.6)
1

3
min

1≤m≤ log x
log 2

Lm(x) ≤ Lx.

By (1.5) we have L1(x) = 1 for every x. We fix then m ≥ 2 and observe

that, for every D =
∑

n≤x ann
−s ∈ H(x,m)

∞ we have a1 = a2 = a3 = 0. By

Proposition 2.3, for each κ > 1 there exists C(κ) > 0 such that∑
n≤x

|an| =
∑

4≤n≤x

|an| ≤
∑

4≤n≤x

|an|(log n)
m−1

2 ≤ C(κ)mm−1(2κ)mx
m−1
2m ‖D‖∞ .

This, using (2.1), gives

m−1x−
m−1

2m2 �
(
C(κ)mm−1(2κ)mx

m−1
2m

)−1/m

≤ Lm(x) .

But the sequence
(
x−

m−1

2m2
)∞
m=2

is increasing to 1 (recall that x ≥ 2). This

implies that for all m ≥ 3

m−1x−
1
9 � Lm(x) ,

and hence for all 3 ≤ m ≤ log x
log 2

(2.7)
4
√

log x

x
1
8

� log 2

log x

1

x
1
9

� Lm(x) .

We finish our argument by handling the case m = 2. We observe first

that f(t) =
√

log t

t
1
4

= eg(t) with g(t) = 1
2

log log t − 1
4

log t, t ≥ 2. Since

g′(t) = 1
2t

2−log t
2 log t

, we have that f is strictly decreasing for t > e2. Then the

sequence
(√

logn

n
1
4

)
is strictly decreasing for n ≥ 8. Thus there exists A > 0

such that for every 2 ≤ n ≤ x we have
√

log x

x
1
4
≤ A

√
logn

n
1
4
. Applying again

Proposition 2.3 we see that for every D ∈ H(x,2)
∞

√
log x

x
1
4

∑
n≤x

|an| ≤ AC(κ)8κ2‖D‖∞ ,
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and hence
4
√

log x

x
1
8

� L2(x) .

This equation combined with (2.7) and (2.6) proves the lower estimate. �

Proof of the upper estimate in Theorem 2.1. By Proposition 2.2 it suffices

to show that there is a constant C > 0 such that for all x

(2.8) L2(x) ≤ C
4
√

log x

x
1
8

.

According to (2.1), fix some x and assume that r > 0 satisfies

(2.9)
∑
n≤x

|an| ≤ r−2 sup
t∈R

∣∣∣∑
n≤x

ann
it
∣∣∣

for every Dirichlet polynomial
∑

n≤x ann
−s ∈ H(x,2)

∞ . We choose q to be the

biggest natural number ≤ π(
√
x)

2
. Consider the q × q matrix (ank)n,k defined

by ank = e2πink
q (sometimes called Fourier matrix). Then it is well known

(and a straightforward calculation) that for all n, k we have |ank| = 1 and∑
l alnalk = qδnk.

We define the Dirichlet series
q∑

n,k=1

ank
1

(pnpq+k)s
∈ H(x,2)

∞ .

Note that for every 1 ≤ n, k ≤ q we have pnpq+k ≤ p2
2q ≤ p2

π(
√
x)
≤ x and

the Dirichlet series indeed belongs to H(x,2)
∞ . Obviously, we have

q∑
n,k=1

∣∣ank∣∣ = q2 .

On the other hand,

sup
t∈R

∣∣∣ q∑
n,k=1

ankp
it
np

it
q+k

∣∣∣ ≤ q1/2
(∑

k

∣∣∣∑
n

ankp
it
n

∣∣∣2)1/2

= q1/2
(∑

k

∑
n1,n2

akn1akn2p
it
n1
p−itn2

)1/2

= q1/2
( ∑
n1,n2

pitn1
p−itn2

∑
k

akn1akn2

)1/2

= q1/2
( ∑
n1,n2

pitn1
p−itn2

qδn1,n2

)1/2

= q
(∑

n

|pitn |2
)1/2

≤ q3/2 .

Then by (2.9) we conclude q2 ≤ r−2q
3
2 . But from the prime number theorem

we deduce that there is a (universal) constant C > 0 such that
√
x

log x
≤ Cq ,

and therefore

r ≤ C
4
√

log x

x
1
8

.

Clearly, this gives the desired estimate (2.8). �
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3. Dirichlet-Bohr radii

The main goal of the previous section was to find the correct asymptotic

order of the Dirichlet-Bohr radius L
({
n ∈ N | 1 ≤ n ≤ x

})
.

Analysing the ideas of our proof, we in the coming subsection show how

to reduce the study of Dirichlet-Bohr radii L(J) for index sets to the study

of Bohr radii for holomorphic functions in infinitely many variables with

lacunary monomial coefficients. Finally, we treat a series of old and new

examples.

3.1. Reduction II. Let Λ be a subset of N(N)
0 . Consider the Banach space

HΛ
∞(Bc0) :=

{
f ∈ H∞(Bc0)

∣∣∣ cα(f) 6= 0 only if α ∈ Λ
}
,

where as usual H∞(Bc0) denotes the Banach space of all bounded holomor-

phic (= Fréchet differentiable) functions on the open unit ball Bc0 of the

Banach space of all null sequences c0.

Now, the Bohr radius K(Λ) is defined to be the best r = r(Λ) ≥ 0 such

that for every f ∈ HΛ
∞(Bc0) we have∑

α∈Λ

|cα(f)|r|α| ≤ ‖f‖∞ .

Note that, with this notation, the classical Bohr radius Kn is just K(Nn
0 ).

The following result extends (2.3) to arbitrary index sets. Let us note

that the proof of (2.3) was based on Bohr’s fundamental lemma (2.2). We

need, then, an extension of this. Inspired by an idea of Bohr and based

on the fundamental theorem of arithmetic we here consider the following

bijection:

b : N(N)
0 → N , b(α) = pα .

We denote now by H∞ all Dirichlet series
∑

n ann
−s defining a bounded

holomorphic function on [Re s > 0]; this vector space together with the

sup norm on [Re s > 0] forms a Banach space. By [14, Lemma 2.3 and

Theorem 3.1] (a fact also essentially due to Bohr [6]) there is a unique

isometric and linear bijection Φ from H∞(Bc0) onto H∞ such Φ(zα) = n−s

with b(α) = n:

H∞(Bc0) = H∞ .
Using this general principle a simple translation argument from Dirichlet

series into holomorphic functions, and vice versa gives the following result.

Proposition 3.1. For each set J ⊂ N and Λ ⊂ N(N)
0 with J = b(Λ)

K(Λ) = L(J) .
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Our next device reduces the estimation of Dirichlet-Bohr radii of a given

index set J to the estimation of Dirichlet-Bohr radii of certain parts of J .

Given J ⊆ N and n,m ∈ N, the n-dimensional kernel of J is defined to be

J(n) =
{
k ∈ J

∣∣ ∀j > n : pj - k
}
,

and its m-homogeneous kernel

J [m] =
{
k ∈ J

∣∣ Ω(k) = m
}
.

Note that when J = N, then the n-dimensional kernel consists of all the nat-

ural numbers that factor through the first n primes and the m-homogeneous

kernel consists of those which have precisely m prime divisors (counted with

multiplicities). In other words

N(n) = {pα1
1 · · · pαnn

∣∣α ∈ Nn
0},

N[m] = {pα1
1 · · · p

αk
k · · ·

∣∣α1 + · · ·+ αk + · · · = m}.

Then, clearly J(n) = J ∩ N(n) and J [m] = J ∩ N[m]. We also have

b−1(J(n)) =
{
α ∈ Nn

0

∣∣ pα ∈ J},
b−1(J [m]) =

{
α ∈ N(N)

0

∣∣ pα ∈ J with |α| = m
}
.

In particular, b−1(N(n)) = Nn
0 and b−1(N[m]) =

{
α ∈ N(N)

0

∣∣ |α| = m
}

. Let

us finally observe that

N(n)[m] = {pα1
1 · · · pαnn

∣∣α ∈ Nn
0 and α1 + · · ·+ αn = m} = N[m](n)

and from this J(n)[m] = J ∩ N(n)[m] = J ∩ N[m](n) = J [m](n) for every

J ⊆ N and every n,m. We can now give our announced reduction device.

Proposition 3.2. Let J be a subset of N. Then

(i) L(J) = infn L(J(n))

(ii) 1
3

infm L(J [m]) ≤ L(J) ≤ infm L(J [m])

Proof. The proof of the second statement follows from a word by word copy

of the proof of Proposition 2.2. The argument of the first statement is easy

after a translation to holomorphic functions by Proposition 3.1. �

Of course, (i) and (ii) can be combined to show that the infimum over(
L(J [m](n))

)
m,n

and
(
L(J(n)[m])

)
m,n

, respectively, up to the constant 1/3

equals L(J).
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3.2. Examples. We first recover with this systematic language the funda-

mental examples (1.5) that were already mentioned in the introduction.

Example 3.3.

(i) L
(
N[1]

)
= L

({
p | p prime

})
= 1

(ii) L
(
N(1)

)
= L

({
2k | k ∈ N

})
= 1

3

We remark that (i) here is nothing else than Bohr’s inequality (1.1), whereas

(ii) is just a reformulation via Proposition 3.1 of Bohr’s power series theorem

(1.2) (see also (1.3)). Basically, these and the one in the following example

are the only precise values of Dirichlet-Bohr radii we know.

Example 3.4. L
({
pk`
∣∣ k, ` ∈ N

})
=

1

3
.

This turns out to be an immediate consequence of the following more general

result. Given a subset A of N, we will denote its cardinal number by |A|.

Proposition 3.5. Let Pk , k ∈ N, be disjoint sets of primes such that

n = max
k
|Pk| <∞ .

Define JPk to be the set of all natural numbers which are finite products of

primes in Pk, that is

JPk =
{
pα |αj = 0, if pj /∈ Pk

}
.

Then

L
(⋃

k

JPk

)
= L

(
N(n)

)
.

Clearly, Example 3.4 is an immediate consequence of this result: put Pk =

{pk} (the k-th prime) and apply Example 3.3 together with Proposition 3.5.

Proof. Define the sets Λk = b−1(JPk) ⊂ N(N)
0 . Looking at Proposition 3.1,

since Nn
0 = b−1(N(n)), it suffices to prove that

K
(⋃

k

Λk

)
= K

(
Nn

0

)
.

Let Ik =
⋃
α∈Λk

supp α ⊂ N be the support of Λk. Clearly, we have nk :=

|Ik| = |Pk| for all k. We identify span{ei : i ∈ Ik} with Cnk .

By considering bounded holomorphic functions with support in any Ik of

length n, we get that K
(⋃

k Λk

)
≤ K

(
Nn

0

)
. We have to prove now the

reverse inequality

(3.1) K
(
Nn

0

)
≤ K

(⋃
k

Λk

)
.
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Now, we want to show that∑
α∈

⋃
k Λk

|aα|K
(
Nn

0

)|α| ≤ sup
z∈Bc0

∣∣∣ ∑
α∈

⋃
k Λk

aαz
α
∣∣∣

for every function
∑

α∈
⋃
k Λk

aαz
α ∈ H∞(Bc0). Since the Λk’s are disjoint, we

have

sup
z∈Bc0

∣∣∣ ∑
α∈

⋃N
k=1 Λk

aαz
α
∣∣∣ ≤ sup

z∈Bc0

∣∣∣ ∑
α∈

⋃
k Λk

aαz
α
∣∣∣

for all N , and then it will be enough to show that

(3.2)
∑

α∈
⋃N
k=1

|aα|K
(
Nn

0

)|α| ≤ sup
z∈Bc0

∣∣∣ ∑
α∈

⋃N
k=1 Λk

aαz
α
∣∣∣ .

We proceed now by induction on N . For N = 1, (3.2) is just a consequence

of the following: K(Nn
0 ) ≤ K(Nn1

0 ) = K(Λ1). For the inductive step, we

write ∑
α∈

⋃N
k=1 Λk

aαz
α = a0 + f1(u1) + · · ·+ fN(uN) ,

where uk is the projection of z in the Λk-coordinates and

fk(w) =
∑
α∈Nnk0
|α|≥1

akαw
α

for w ∈ Cnk . Note that fk(0) = 0 for every k. By inductive hypothesis we

know that

(3.3) |a0|+
N−1∑
k=1

∑
α∈Nnk0
|α|≥1

|aα|K(Nn
0 )|α| ≤ sup

u1∈Dn1 ,...,uN−1∈DnN−1

∣∣∣a0 +
N−1∑
k=1

fk(uk)
∣∣∣.

Fix now uk ∈ Dnk for k = 1, . . . , N − 1 and set ã0 = a0 +
∑N−1

k=1 fk(uk).

Since K(Nn
0 ) ≤ K(NnN

0 ) = K(ΛN), we have∣∣ã0

∣∣+
∑

α∈NnN0
|α|≥1

|aNα |K(Nn
0 )|α| ≤ sup

uN∈DnN

∣∣∣ã0 + fN(uN)
∣∣∣ ,

which just means that

(3.4)∣∣a0+
N−1∑
k=1

fk(uk)
∣∣+ ∑

α∈NnN0
|α|≥1

|aNα |K(Nn
0 )|α|≤ sup

uN∈DnN

∣∣∣(a0+
N−1∑
k=1

fk(uk)
)
+fN(uN)

∣∣∣ .
Combining (3.3) and (3.4) we obtain (3.2). �

In the following results we present asymptotically correct estimates on

Dirichlet-Bohr radii.
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Example 3.6.

(1) limn
L
(
N(n)
)

√
logn
n

= 1 ;

(2) There is a constant C > 1 such that

C−m
(m
n

)m−1
2m ≤L

((
N(n)

)
[m]
)
≤ Cm

(m
n

)m−1
2m

for n > m

C−m ≤L
((

N(n)
)
[m]
)
≤ Cm for n ≤ m.

Both results follow from Proposition 3.1 and their counterparts for Bohr

radii:

lim
n

K
(
Nn

0

)√
logn
n

= 1

and

C−m
(m
n

)m−1
2m ≤K

({
α ∈ Nn

0

∣∣ |α| = m
})
≤ Cm

(m
n

)m−1
2m

for n > m

C−m ≤K
({
α ∈ Nn

0

∣∣ |α| = m
})
≤ Cm for n ≤ m.

The first formula is due to Bayart, Pellegrino, and Seoane-Sepúlveda [4],

who improve an earlier result from [10]. The upper estimate in the second

result follows from [10], and the lower one is a consequence of the Kahane-

Salem-Zygmund inequality (or [11, Lemma 2.1 and (4.4)]). It would be of

particular interest to know the precise values of L
(
N(n)

)
, L
(
N[m])

)
and

L
((
N(n)

)
[m]
)

for all/some n,m > 1.

If Example 3.6 is combined with Proposition 3.2, then we see the follow-

ing examples.

Example 3.7.

(1) L
(
N
)

= 0 ;

(2) L
(
N[m]

)
= 0 for all m > 1 .
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[7] H. Bohr, Über die gleichmäßige Konvergenz Dirichletscher Reihen, J.

Reine Angew. Math. 143 (1913), 203–211.

[8] H. Bohr, A theorem concerning power series, Proc. London Math. Soc.

(2), 13 (1914), 1–5.
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