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Abstract

Sedimentation processes are generally modelled using an equivalent continuum approach based on the coupling of the
Navier-Stokes and the advection-dispersion equations; the sediment concentration within an elementary fluid volume is
the variable of interest. Continuous advances in computational capabilities have brought up a new type of modelling that
simulates the individual motion and contact interactions of grains: the Discrete Element Method (DEM). In this work,
DEM interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable
approach for the time-consuming numerical simulation of the ASTM-D422, buoyancy and pipette sedimentation tests.
These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates.

Five samples with different particle-size distributions are modelled by about six million rigid spheres projected on
two-dimensions, with diameters ranging from 2.5x 107% m to 70x 107® m, forming a water suspension in a sedimentation
cylinder. DEM simulates the particle’s movement considering laminar flow interactions of hydrostatic thrust, drag and
lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the
suspension.

The numerical simulation cannot replace the laboratory tests since it needs the final granulometry as initial data; but,
as the results show, these simulations can identify the strong and weak points of each method and eventually recommend

useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

Keywords:
drag-lubrication forces

ASTM-D-422, buoyancy pipette sedimentation tests, particle size distribution, discrete element method,

1. Nomenclature

List of symbols with sub- and supra-indices by order of
appearance in the article. The units of these symbols are
in the base-unit SI system.

2. Introduction

Numerical continuum approaches have traditionally
been employed to simulate the suspension sedimentation
of a large number (millions) of particles in a flow. The
concentration evolution is often analyzed using advection-
dispersion equations (see [1, 2, 3, 4]). The traditional con-
tinuum approach (see Fig. 1, right top) is a simplification
of reality, that nonetheless, has provided good results in
many applications [5, 6, 7, 8]; however, the real physics
of the problem is better represented by individual parti-
cles transported by a fluid, with flow interacting with the
particles that, in turn, interact among themselves.
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In this work, the granular media is analyzed as a discon-
tinuous structure with rigid particles and voids between
them, see Fig. 1, right bottom. The formulation of the
Discrete Element Method (DEM) [9] probably is the most
suitable to simulate the behavior of granular materials in
these situations, since it is based on the study of the indi-
vidual particles and their contact interactions. Addition-
ally, DEM can capture other information such as arrange-
ments of particles or global constitutive laws (contact al-
gorithms in this context, see [10]), aspects very difficult to
account for with numerical methods based on continuum
media.

Nowadays, and thanks to the increased computational
resources, it is possible to conceive the modelling of the
sedimentation of a large number of particles by addressing
the physics of the problem at —or approximately— the grain
scale. Next, we revise some of the methods that have been
developed to analyze the particle-fluid interaction and mo-
tion of particles inside a fluid.

Lagrangian computational fluid dynamics (CFD) meth-
ods are based on multiphase continuum techniques, see
[11], and are applied to analyze the behaviour of sprays,
small bubbles and dust particles; processes in which the
contact interactions are negligible. The Immersed Bound-
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Description

g Gap

N, N Normal vector or direction
Horizontal position/coordinate
Vertical position/coordinate
T,T Tangential vector/direction
Number, index
Displacement

Time

Force

Penalty stiffness

Mass

Weight

Inertia

Moment

% accumulated weight
Reynolds number
Coefficient

Area

Concentration

Empirical exponent
Aspect ratio

Gravity acceleration
Volume

Width

Height

Pressure

Unit vertical vector
Increment

Frictional Coulomb’s law
Friction coefficient
Friction angle

Angular rotation
Diameter

Density

Dynamic viscosity
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ary Method, see [12], simulates the fluid-particle interac-
tions: fluid and structure are represented by Eulerian and
Lagrangian coordinates, respectively. In turn, the Navier-
Stokes equations are solved in a structured grid so that
the effort needed to generate a body-fitted grid is avoided,
and, at the same time, body resistant forces are obtained.
The method requires an accurate discretization of particles
and fluid, therefore, its application is limited to problems
with a small number of particles. Stokesian Dynamics,
see [13, 14], simulates the flow and particles subjected to
stochastic Brownian forces, but again requires a high com-
putational cost for a relatively small number of particles,
see [15].

The computational cost for a large number of parti-
cles was recently reduced by the combination of DEM and
CFD, see [16]. In the CFD-DEM models of fluid-particles
systems, the solid motion is obtained by DEM but the
flow motion is described by locally averaged Navier-Stokes
equations solved using a CFD approach. The coupling be-

Symbol Sub- or supra-index
(o)'k Particle number indices
(o)t Total

(0)c Contact

©) Second-time derivative
(©)cg Center of Gravity

()a Drag

(o) Lubrication

(°)n Hydrostatic

() First-time derivative
(©)o Ordered

(°)hd Hydrometer

()bt Buoyancy test

(©)pt Pipette test

(O)f Fluid

() Terminal

(o)st Stokes

(©)p Particle

(o)'f Left

(o)™ Right

(©)ey Cylinder

()y Layer of cylinder

(©)jn Layer in contact w/ bulb
(0)co Column

(o)s Suspension

(o), Out-of-plane dimension
(Yo Initial

(0w Pure water

(©)sp Buoyancy test sphere
()a Pure air

()dem Discrete element method
(o)tst Experimental test

tween fluid and solid phases is modelled by Newton’s third
law.

Finally, the coupling of the Lattice-Boltzmann method
with DEM, see [17], is also suitable to simulate motion of
particles in a flow but requires an accurate and refined dis-
cretization, not computationally suitable for the problems
studied here as explained in [18].

In this work, flow and particles are coupled using the
one-way-coupling method, see [19]. This technique sub-
stantially reduces computation, considering that flow does
modify particle movement but particles do not substan-
tially modify flow: see [20] for the application of this tech-
nique to the analysis of inclined sediment beds. The as-
sumption is acceptable to simulate sedimentation of fine-
grained materials due to the small size and low deposi-
tion velocities of the particles. In addition, the action of
the flow is analytically represented by the flow-particle in-
teraction modelled by the drag force taking into account
concentration of the neighboring particles, see [21], and
by the squeezing of the intermediate flow when two par-
ticles are close, see [22, 23]. These two models permit
the calculation of forces other than the contact forces that
are included into DEM, allowing a good representation
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Figure 1: Granular medium (left). Equivalent continuum medium
model (top right) and discontinuous medium modelled with 2D pro-
jected spheres (bottom right).

of the long time deposition process at an affordable CPU
cost. Due to the dissipative character of the drag forces,
the equations are solved using the time integration scheme
from [24], which offers a stable and physically consistent
framework to model dissipation phenomena. Finally, the
contact interactions between particles are simulated using
the penalization technique from [25].

This paper is centered on the numerical simulation of
the ASTM D-422 [26] sedimentation test; in addition and
for comparison purposes the less used buoyancy, [27, 28],
and pipette [29] tests are also studied. The three tests are
used in the laboratory to determine the particle size dis-
tribution of granular samples with diameters ranging from
25x10°% m to 70x 107 m; distributions that cannot be
easily measured by standard sieving methods as explained
n [30]. DEM incorporates the particle kinematics and
therefore the temporal and spatial distributions of den-
sities and concentrations of the suspension. These data
along with the laws of hydrostatics are used to numeri-
cally reproduce the measurements of a hydrometer 152-H,
a buoyancy sphere and a pipette.

The target of the work is to numerically replicate the
experiments, providing a better understanding of the sed-
imentation and of the data collected from the three tests.
A comparison of the results derived by the numerical sim-
ulation of the laboratory experiments to the five original
a-priori known distributions is performed with good agree-
ment, validating the simulations and identifying several
issues regarding the interpretation of the laboratory ob-
servations.

Although tests based in sedimentation are widely used
due to their simplicity and relatively low cost, it is im-
portant to remark that other expensive and sophisticated
techniques have been developed for the particle size anal-
ysis using x-rays, see [31] or a combination of x-rays and
centrifugation, see [32].

The remaining of the paper has the following struc-
ture: Sect. 3 introduces the DEM method, its formula-
tion and the terms necessary for the one-way coupling of
the particle-flow interaction. Section 4 analyzes the sed-

imentation test, and describes its numerical implementa-
tion, including the forces acting on the particles and how
to project the real axisymmetric geometry into a two-
dimensional (2D) one. Finally, Sect. 5 presents and an-
alyzes the results of the numerical simulations, with dis-
cussions on the accuracy of the laboratory experiments and
on the quality of the measurement techniques.

3. Discrete element method

DEM is a numerical tool that naturally simulates the
behaviour of particle materials. It is able to model the
geometry of each particle and to capture the mechani-
cal response without the necessity of complex constitutive
laws; the global response of a set of particles is a conse-
quence of multiple contact/friction interactions among a
large number of particles (micro-mechanics). Multiple si-
multaneous and long-lasting contacts might be produced
generating particle clusters; an appropriate technique to
simulate the contact interaction among particles is penal-
ization, see [25]. This technique does not increase the num-
ber of unknowns and produces only small particle overlaps,
see Fig. 2 left. In addition, these unphysical overlaps are
minimized by a proper tuning of the numerical parameters
used in the penalization approach.

The DEM detects contacts between particles through a
gap function giNk that measures the minimum distance or
maximum overlap between two particles numbered i and
Kk, as

gy = (X -Y) N, (1)
where X, Y are the coordinates of the two points, one in
each particle, that give the minimum distance (if parti-
cles are not in contact) or the maximum penetration (if
they overlap). The penetration, when happens, is always
minimal, although it has been exaggerated in Fig. 2 for
clarity. When this penetration occurs, or if the gap func-
tion is zero, we will say that the particles are in contact.
N*=—NX is the normal unit vector at the contact point,
see Fig. 2.

In case of contact, the relative motion between the con-
tact points in the tangential component is measured by
the tangential gap giTk as

gk = [x +U(X)-Y - Uk(Y)] Tik (2)

where U'(X) and UX(Y) are the displacements of the contact
points of i and K corresponding to a time increment At,
while T is the tangential unit vector at the contact point
as in Fig. 2.
The contact particle interactions are mechanically mod-
elled by defining the contact force as
Fl = 1 N g T ®)
where fc",ﬁl and fc'$ are the components of the contact force
that act against the interpenetration in the normal direc-
tion and control the motion in the tangential direction,



Figure 2: Top: Penetrating contact between two particles. Bottom:
g',\f defines maximum penetration, g'Tk tangential displacement. Over-
lapping magnified for better representation.

respectively. For spherical and rigid particles the contact
can be represented by a point force applied at a single
point. Defining
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where, according to Coulomb’s law u lfc'm is the maximum
friction force, with u = tang being the friction coefficient,
and ¢, the friction angle; we can distinguish between mo-
tion by rolling if ®* < 0 (lack of relative motion at the
contact point) or by sliding if ®¥ > 0.

The penalization technique used to determine the con-
tact forces between the two particles consists on introduc-
ing two virtual high stiffness elastic springs at the contact
points X, Y along the normal and tangential directions (see
Fig. 2 right) resulting in: fclh = Ky g;gk and fX = Ky g for
rolling, or fc'Kl =Kn ng and fcl‘kr = u fl for sliding. The Ky,
Kr and u coefficients are the constitutive parameters of the
model, the first two being artificial numerical parameters
representing the stiffnesses of the elastic springs. These
stiffnesses must be chosen according to the prescriptions
given in [33].

The governing equations of DEM for a system of ng par-
ticles are formulated by the translational and rotational
dynamic equilibrium (see Fig. 3) of each particle with mass
m and inertia I'

ma =L fl e f W 1"g =M, (5
where U' = {uix, uiy} and @ are the displacement of and ro-
tation around the center of gravity (cg) of each particle;
the supraindex () denotes second time derivative. The
force fr = Y, fX is the vectorial resultant of the contact
forces of all other particles acting on particle i; the rest of
forces fyy, f|, f},, W are the drag, lubrication, hydrostatic
and weight, all of them applied at the cg of i and defined
in the next section. In the second equation M' is the only

non-zero moment generated by the friction contact forces:
the other forces do not create moments for spherical par-
ticles.

Figure 3: Forces on spheres sedimenting inside a viscous fluid.

In 2D, Egs. (5) form a set of 3ny non-linear equations
with a right-hand side dependent on the displacement u'
through force f, and on velocity U' through f}. The left
hand sides inertial terms depend on the two unknowns,
translational and rotational accelerations U' and 6'.

The displacements U’ of any point (X,y) within i are
obtained by first order interpolation using

u
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where X'@ y'cg are the coordinates of the cg of i. Finally, the
time integration of Egs. (5) is carried out by an implicit
single-step algorithm proposed in [34, 24]. The choice is
based on the algorithm capability to simulate the dissipa-
tion produced by friction and drag forces in a physically
consistent manner.

4. The sedimentation tests

4.1. Description

This experiment is traditionally performed to obtain the
grading size distribution of samples with particles of diam-
eters of less than 70x 108 m. The standard ASTM-D422
describes the procedure to obtain the grading size distribu-
tion using the sedimentation test: a sample of total solid
(particles) mass my of 60x10° Kg is poured into a cylin-
der full of water. The cylinder is shaken during 60 s, so
that the particles are dispersed forming a suspension with
homogeneous concentration. Then, the cylinder rests in
vertical position and the particles start sinking with ve-
locities dependent to their sizes. The concentration of the
suspension progressively gradates in the vertical direction
as a function of the particles’ sizes. After several hours,
most of the large and intermediate particles settle at the
cylinder bottom, while the finer particles are still at the
top and middle.



ASTM-D422 provides the grading size distribution at
different instants through the measurements of a hydrom-
eter, composed of bulb and stem. The hydrometer im-
mersed in a suspension measures the concentration around
the bulb, which sinks a certain depth. As particles con-
centrate towards the bottom, the hydrometer gradually
sinks deeper since the concentration around the bulb re-
duces. The depth of the hydrometer measured from the
bulb center to the water surface taken at different instants
provides and indirect measurement of the time variation of
fluid density (and consequently of particle concentrations)
at the bulb level; depth is related to fluid density using the
analytical laws of flotation from [35].

The buoyancy and pipette tests provide the grading size
distribution differently, measuring the concentration of the
suspension at different instants but at a fixed depth.

The buoyancy test measures the suspension concentra-
tion at a specific and constant depth yp as described in
[27]. A Teflon sphere of diameter 2.5x1072 m and weight
20x1073 Kg attached to a nylon line connected to a sensi-
tive scale is submerged into the liquid. The scale measures
the apparent mass of the sphere.

The pipette test is conceptually the most simple and
accurate test, see [29], although requires the additional
use of a drier and a precision scale. At prescribed times,
particle concentrations are measured by weighing the dry
residual resulting from 35 ml samples taken at a specified
and constant depth yp using a standard pipette.

In the three tests, limiting diameters and accumulated
weights are determined (as it will be explained later) up
to ten times, and with them an approximation of the par-
ticle size distribution is obtained. The limiting diameter
¢o is the maximum diameter of the particles above a cer-
tain depth. The accumulated weight Wy is the weight of
all particles with a diameter smaller than ¢,. The pairs
b0, Wo Observed at different times provide the particle size
distribution, commonly called granulometry of the sample.

The target of the numerical simulation described in this
section (and to the best of our knowledge not published by
other authors) is to numerically replicate the physics of the
three sedimentation tests: hydrometer ASTM D422, buoy-
ancy and pipette. The numerical simulations start with a
given grading size distribution and simulates the sedimen-
tation providing the position, velocities and accelerations
of all particles at all instants. From these results, it is
relatively simple to reproduce the measurements as they
would have been observed during each of the three tests.
The grain distributions resulting from the numerically-
reproduced test measurements differ only slightly from the
starting one, indicating that the experiments may not yield
an exact granulometry of the sample.

The remaining of this section describes the physics and
the numerical implementation of the experiments.

4.2. Fluid-particle interaction

The experiments simulated in this work include par-
ticles with small Reynolds numbers, more precisely, the

Reynolds numbers for the particles in all samples ana-
lyzed range from 1.2 x 107° to 0.28 as determined from
the observed minimum and maximum terminal velocities.
Therefore, the flow is laminar, a consequence of the small
size of the particles and their small depositional velocity.
We can assume that particles do not perturb the fluid,
although the fluid does affect the particles as they move.
This “one-way coupling” is a computationally affordable
assumption that allows the simulation of the interactions
between fluid and particles. The action of the fluid on the
particles is represented by the Stokes’ drag force, fy, and
by the squeezing force f|, which appear in the right hand
side of Eqs. (5). Their expressions are derived next.

4.2.1. Stokes’ drag forces

Forces created by fluid-particle interaction have tradi-
tionally been modelled using Stokes’ law, see [36], a sim-
plified model that does not take into account the interac-
tions of other particles in the surrounding. This law is not
completely valid to study sedimentation, but provides the
basis for the analytical formulation of the ASTM D-422,
buoyancy and pipette tests. For the numerical modeling,
the more sophisticated formulation from [21] solves the
previous deficiency, resulting in the drag force fy acting
on | as

fh=3 Chor Al —l @ -0) @ . (1)

This expression is the one used in the numerical simulation
of Eq. (5). The symbol Cj represents the drag coefficient
and depends on the particle Re. Both are given by

24 i Copr|Ul =0 ¢
Ci= 25 (0.63+4.8,/%] : Re':%,

(8)
where p¢, v¢ are the fluid density and dynamic viscosity,
respectively. The remaining symbols of Eq. (7) are: i,
particle concentration around i, A, area of projected par-
ticle with diameter ¢' into the plane perpendicular to the
flow, U velocity of the fluid around i (U} ~ 0 in this work)

and € is an empirically exponent given by

i\2
ed=- {3.7— 0.65 exp{—% (1.5 —log RT?) }} . (9)

In the numerical simulation, the concentration ¢ of par-
ticles around i is calculated by discretizing the space into a
regular grid and computing the volume of particles inside
each cell, see [37] and Sect. 4.4.

4.2.2. Lubrication forces

Each pair of approaching particles experience a repulsive
lubrication force due to the squeezing of the flow between
them. According to [22, 23], this force can be defined as

ogk) .
—gN] Nik (10)

fi =10 (})° exp(_ i
Ty



where the constant 10 is a parameter that represents the
intensity and the range of the repulsive force, valid for very
small spheres in water. The coefficient r:b =2¢"/(¢' +¢¥) is
the ratio between the particle diameter i and the average
diameter of the two interacting particles.

4.8. Simple model of sedimentation

While for the numerical modeling of sedimentation we
will use the more precise expression of the drag force given
by Eq. (7), the interpretation of the experiments is per-
formed using the same simplified analytical formulation as
in the sedimentation tests. We will review next this sim-
plified model, and the procedure to infer the particle grain
distribution. (Additionally, this simplified model allows
us to estimate the number of time steps to be used for the
numerical modeling.) The approach from [38] is based on
Stokes’ law for a single spherical particle, with a simplified
drag force given by

filg, =37 ¢ vi . (11)

Now, we can establish Newton’s second law for a single
sphere, assuming that the only forces at which is subjected
are weight, drag and buoyancy:

S @ gp-g @ gpi=3rvip g U =m U, (12)

where pp is the particle density and g is the gravity con-
stant. Had we included the lubrication forces or the con-
tact forces in Eq. (12), it would have been impossible to
obtain an analytical solution due to the high non-linearities
introduced by these two forces. As already mention, these
forces are accounted for in the numerical simulation, which
should give a more accurate physical model.

Equation (13) left is the general solution of Eq. (12), for
the initial condition u'(0) = 0.

(=P 9 @)

ul =
tr 18 v¢

ui(t) = [1 - exp(— 187t )} 0, ;

pp (@)2)]
(13)
The solution includes a negative exponential term that
vanishes for a sufficiently long t, at which time the velocity
reaches a constant terminal value Uh. Figs. 4 (top and
bottom) show sedimentation velocities computed using the
previous equation for particles with density 2500 kg/m?,
suspended in water of density 1000 kg/m? and viscosity
1073 N-s/m2. The time to reach a U' = 0.99U} is found by
iteratingin Eq. (13) left and it depends, quadratically, on
the particle size. Terminal velocities range from tj, = 3.2x
1073 s for the largest particle to almost zero for the smallest
one, with a value of 3x 107 s for an intermediate one, see
also Table 1. Once the terminal velocity has been reached,
the particle diameter can be estimated at a certain time

directly by Eq. (13) right

P 18 v¢ y

This expression is the one reported in the standard for the
interpretation of the experiments. Notice that to derive
the diameter from Eq. (14) an estimate of |U{r| is necessarys;
Sect. 4.5 describes how the diameters are derived.
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Figure 4: Particle sedimentation velocities |Ui| in water as a function
of time for several diameters. Notice how the terminal velocity is
quickly reached.

|¢><10‘6m | ty x 102 s | |ut,|><1cr5m/s|

70 313.4 400.5
50 104.0 204.3
25 26.0 51.09
10 4.16 8.17
) 1.04 2.04
2.5 0.26 0.51

Table 1: Terminal velocities |Uy| and time to reach them t; derived
from the approximate analytical expression for several particle diam-
eters.

4.4. Numerical generation of the sample

As mentioned in Sect. 4.1, after the cylinder is shaken,
the suspension of particles is homogeneous. Then, these
particles start sedimenting under the action of gravity and
interacts with the flow under drag and squeezing forces,
see Eq. (7) and Eq. (10). Prior to the beginning of the
simulation, a homogeneous distribution of particles has to
be defined as initial conditions for the numerical modelling.

The samples are composed of a set of particles, whose
sizes follow a specific distribution. The set is defined by:
i) several different diameters ¢, with n ranging from 1 to
Ny, = 220, and ii) the number of particles nl, associated
to each ¢@p.



log¢

b1 dn bn O dnn

Figure 5: Continuous (thick) and discretized piecewise (dotted line)
grading size distribution: accumulated weight w in % vs. particle
diameters.

Figure 5 schematizes the granulometry; the abscissa rep-
resents the diameter ¢ and the ordinate the percentage of
accumulated weight w (weight of particles with diameters
less than or equal to a given one defined by a subindex).
The figure plots with a thick line the particle size dis-
tribution of a generic sample. Since the real distribu-
tion is continuous but DEM must manage a finite num-
ber of sizes, the curve is discretized into ny, points repre-
sented by the solid black bullets. The weight above the
diameter ¢p is approximated by the average of V\}nf corre-
sponding to ¢n = (fn1 + ¢n)/2 and W corresponding to
a ¢t = (¢n + Pns1)/2 from the original distribution. These
left and right diameters are represented in the curve by
hollow circles. Given a sample of mass my and a set of ¢p,
the number of particles corresponding to each diameter is
obtained as

Wi - wh

—_— 15
! 100p, n¢3 (15)

n|¢n =6 My

where V\)nf, W are the accumulated weights (in percent) of
the left and right diameters around the midpoint. There-
fore, the original distribution is replaced by the discrete
(dotted line) defined by the relations ¢n <> Wy. The piece-
wise distribution tends to the original one as ny, increases.

In the laboratory test, a total of ng = Zzi”l Npg, Particles
representing the 60x1073 Kg of the sample is poured and
shaken in a standard cylinder of height H = 0.457 m and
diameter B = 0.0635 m with a geometrical ratio rey = B/H
= 0.14.

The particle motion in the three tests is approximately
vertical and axisymmetric due to the small size and the
negligible horizontal post-collision velocities of the parti-
cles. Therefore, a 2D rectangular model of the cylinder ver-
tical section is used for simulation, reducing the CPU cost
since a much lower number of particles is required, without
compromising the reproduction of the physics of sedimen-
tation. We choose to model the equivalent of two opposing
wedges of 1°, that is, 180" of the total volume; these two
wedges are projected onto a 2D rectangle of width B and
height H. The rectangle is divided onto a regular 2D ma-
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Figure 6: Two-dimensional rectangular matrix: particles randomly
located in cells (stratified random sampling). Positions represent the
homogeneous suspension after shaking.

trix of Npym X Nnum, With Nm equal to VN /180 rounded up
to the next integer (see Fig. 6 left). The cells have the
same aspect ratio as the cylinder. The particles, amount-
ing to a total mass of 60 gr/180°, are randomly stratified
inside the cells, see Fig. 6 right.

4.5. Simulation of tests

As particles settle they are progressively gradated in the
cylinder according to its size and therefore particle concen-
tration varies within the cylinder and in time. The one-way
coupled DEM computes the positions of the several-million
particles by integrating Eqgs. (5) at all time steps. At any
given time step particle concentrations can be computed
for specified volumes at given depths in the cylinder. Next,
we describe how the results from DEM are used to mimic
the laboratory tests.

4.5.1. Simulation of the ASTM-D422 hydrometer test

To measure fluid density (or equivalently particle con-
centration) at different instants, an ASTM-E100 hydrom-
eter model 152-H (dimensions in Fig. 7) is sunken in a
standardized cylinder full of water with a particle suspen-
sion. This type of hydrometer is suitable for measuring the
range of densities expected in the simulation. Although it
would have been possible to include the hydrometer itself
as another particle in the numerical model, it would have
required specific formulation for its equilibrium equation
and would increase the CPU time as explained in [39]. We
decide not to include it in the simulation since its presence
does not affect the particles’ sedimentation. (Including
the hydrometer in the simulation could help to optimize
its shape, weight, etc.)

Figure 8 depicts the physical functioning of the hydrom-
eter. In the real experiment, depicted in the left side, the
hydrometer would sink to a depth y, at certain t,. With
these two values a limiting diameter ¢, of all particles
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Figure 7: ASTM-E100 hydrometer model 152-H, dimensions in mm.

above Y, is determined by the following expression:

a 18 v¢ @
%= N -pnig \/T (16)

(An expression very similar to that in (3).) The accu-
mulated weight for all particles with diameters below this
limited diameter ¢, is given by

C
Wo = 100£ . (17)

with ¢y the particle concentration at time zero, which is
known, and C, the particle concentration at time to, which
is given by
_Pp (ps — p1)
Pp — Pt

where ps is the suspension density, which is read at the
hydrometer stem as a function of yp.

Combining the previous expressions, the accumulated
weight equation of the projected parallelepiped is obtained
by

Co

V(
wo = 100 L2LE Yo 1y (18)
Pp — Pt My
where rg = ps/pt, given by [40]

" M= A Vou—Yo) pr

where A is the cross-sectional area of the hydrometer stem
and Yow the depth at which the same hydrometer would
sink in pure water.

As a summary, to obtain the diameter ¢o and the asso-
ciated accumulated weight W, it is necessary to measure,
in the laboratory, the depth of the center of gravity of the
bulb and the density of the suspension around the bulb.

The standard prescribes that depths y, must be mea-
sured at ordered instants t, = {2,5,15 30, 60,250 1440
min, and the resulting pairs (¢o, Wo) obtained after equa-
tions (16) and (17) the granulometric curve is established.

The numerical simulation of the experiment proceeds
first by computing the depth at which the hydrometer
would sink, establishing the equilibrium of the hydrome-
ter weight Wpg and the resultant of hydrostatic forces frj] as
schematized in Fig 8 right. The density of the suspension,
and therefore the pressure exerted on the hydrometer, is
not constant as explained in [35]. For this reason, the com-
putation of the Yy, is not straightforward; it is computed
from the positions of the particles as described next

Ygo

Ps

Figure 8: ASTM D422 test: hydrometer sunken in suspension with
particles artificially enlarged. Distribution of densities (left); pres-
sures and force equilibrium (right).

e Discretization of H in ny equally spaced layers of
height hyy, see Fig. 8 left.

Each layer must contain a statistically representative
number of particles; by trial and error we choose ny =
4000 with a resulting hy = H/ny = 115x 107 m, that is,
each layer is as thick as about 46 particles of the mini-
mum diameter and as about 1.5 particles of the maximum
per layer. For the purpose of computing solution den-
sities, it is necessary to assign a thickness h, to the 2D
projection of the two lo wedges, this thickness must be
such that the total volume of the resulting parallelepiped
coincides with that of the two wedges, which results in
h, = 1B/720= 2.26x 10m.

e For layer j (j = 1,...,ny, counting down from the
liquid free surface), the density of the suspension p.
is given by

j j
Pp Vp +pf Vi
IR LRy (20)
Vit

where Vi = B hy h; is the total volume of the layer, and
Vp = V}—V} is the volume of the particles in the layer, which
is calculated using DEM. The density of the suspensions
only has to be calculated for the layers that comprise the
bulb.

e The vertical hydrostatic force is the resultant of the
pressures acting on the hydrometer bulb.

For a layer j, the pressure is the weight of a unit-area
column from the bottom point of the layer to the liquid



free surface, which is computed by adding up the weights
of all layers above

j n
i_ Ps Voo 19l
p‘; Bh,

where V], is the volume of layer n. This pressure is a vector
orthogonal to the bulb surface.

The hydrostatic force acting on the bulb is the summa-
tion of the pressures exerted by each layer on the hori-
zontal projection of the intersection of the layer with the
hydrometer bulb. Therefore, for a hydrometer with its tip
immersed in j, and with its bulb intersecting nj, layers the
total hydrostatic force is

njh—l

fh= () [T - (0],
n=1

where ] is the unit vertical vector, the dot - represents the
scalar product and b" the bulb radii at the intersection
with the layer boundaries.

e In equilibrium, the tip of the hydrometer sinks to Yo
(located inside a layer j), and the hydrometer weight
Whg balances fllw.

The equilibrium depth is found iteratively varying the
position of the bulb tip until ’fr’;l' < |Whg| < 'fr’]', corre-
sponding to a depth Yy, between (j — 1) hy and | hy. If
the number of layers is large (as is the case of this experi-
ment), that is, the thickness of the layers is small, we can
assume that the tip of the hydrometer is at the bottom of
the layer, but if the layer thicknesses are large it is best
to assume a varying pressure within the layer and linearly
interpolate the position of the tip as

Yo=] hly+ W (|th| — ’frj;l') . (21)

Once the depth of the tip of the hydrometer is known,
the depth of its center of gravity is computed, and the
density of the solution is obtained using (20) considering a
single layer extending the height of the bulb. From these
two parameters, the pairs (¢o, Wo) are obtained as in the
standard.

During the DEM simulation, particle positions are
stored every 10 s. Therefore we could simulate the posi-
tion of the bulb, and the suspension density at any instant
after the initial shaking.

4.5.2. Simulation of the buoyancy test

In this variation of the previous test, a precision dy-
namometer (Fig. 9 left) measures the tensile force f; act-
ing on the line, which must be equal to wgp — fy,, where
Wsp is the sphere weight, and fj, = —Vsp ps g is the (time
varying) hydrostatic force at the depth of the sphere Yy,

where Vgp is the volume of the sphere and ps is the sus-
pension density at that depth. The apparent mass of the
sphere is therefore mgy = |fbt| /19l. The suspension density
is numerically computed by DEM following the same pro-
cedure described for the previous test and Eq. (20). Again,
to reduce the CPU cost, the sphere is not simulated as an
additional particle for the same reasons as we did not sim-
ulate the hydrometer in the ASTM test.

The apparent mass Mgp(to) is measured in this test at the
ordered instants t, = {0.5,1,2 4,15 30,60,120 240 480
min. At each time, a diameter ¢, is determined with equa-
tion (16) but replacing Ygo by Yit, which remains constant
through the experiment. And the percentage of accumu-
lated weight of particles with diameter < ¢q is given by

m5p|w — Msp

w, = 1002%

® (B -1) (ml, - mol,)

. (22)

where msplw is the apparent mass that the sphere would
have if immersed in pure water to the same depth, and
mspla is the mass of the sphere in air.

In the numerical simulation, we determine the apparent
mass of the sphere by subtracting from the mass of the
sphere, the mass of the solution which occupies the same
volume as the sphere.
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Figure 9: Buoyancy test (left): force equilibrium and scale measuring
apparent mass Mgp of an immersed sphere at constant depth ypt.
Pipette test (right): extraction of 35 ml suspension subsample at
constant ypt around circle. Particles artificially enlarged for clarity.

4.5.8. Simulation of the pipette test

This test measures the concentration C, of the suspen-
sion at a fixed depth yp and at the axis of symmetry of
the cylinder for several ordered instants t, by extracting a
small amount of suspension with a standard pipette, see
Fig. 9 right; we have not found in the literature any data
of the times that should be used for the sampling. The
subsample is dried and the mass my weighted; then, the



concentration is directly calculated dividing this weight by
the subsample volume.

The accumulated weight is calculated with the same ex-
pressions as those of ASTM-D422 with Ygo = ypt. Again, a
set of data pairs (¢o, Wo) provides the particle size distri-
bution as in Fig. 5.

In the numerical simulation, The composition of the sus-
pension is calculated from the simulation of DEM by sam-
pling the particles’ position and diameters inside a circle
centered at the vertical centerline of the cylinder and at
the prescribed position of the pipette tip yu, see Fig. 9
right. The circle radius is chosen so that the sampling vol-
ume is equivalent to that of the experiment accounting for
the fact that we simulate only two wedges of one o of the
whole cylinder.

4.6. Numerical solution

The procedure to obtain the numerical solution starts
with the input of material, numerical parameters and the
initial location of particles described in Sect. 4.4. The ini-
tial velocity is set to zero;, the computer code simulates
the sinking through changes of positions and velocities for
all particles taking into account gravity‘vvi, drag fj, con-
tact fy, lubrication f| and hydrostatic f}, forces acting on
all particles.

DEM detects contacts applying Eq. (1) to all particles
to compute the corresponding contact fick and lubrication
f:k forces. Traditionally this contacts are computed for all
possible data pairs in order to reduce computational time.
In this work, the efficient procedure described by [41] has
been used, checking particle contacts only with the closest
particles and/or boundaries.

The contact and lubrication forces are used in the gov-
erning Eqs. (5), forming a set of non-linear differential
equations, which are solved through time with an iterative
finite-difference algorithm. We have used a time integra-
tion scheme specifically designed for the consistent energy
dissipation of contact, drag and lubrication non-linearities,
see [42] and [34]. The CPU time is further reduced using a
variable time step At, with an upper limit to suppress spu-
rious oscillations in particle velocities. The terminal ve-
locity |U{r| and its related terminal time ti, from Sect. 4.3
defines the initial time increment used to integrate the
Eqgs. (5): At has to be smaller than the t, of the smallest
particle. Furthermore, to ensure accuracy besides stabil-
ity, we use At < 0.1 min(t},). At certain chosen time step,
a computer routine checks that all particles have reached
their Uy ; then, the At from the previous iteration is pro-
gressively increased until unstable changes in the velocity
appear again, then this At is reduced a small amount and
the check is repeated.

The set of equations is linearized with standard Newton-
Raphson iterative techniques.
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Figure 10: Particle size distribution (granulometry) for five repre-
sentative samples with diameters between 2.5x 107 m and 70x 10°®
m.

5. Numerical sedimentation and particle size dis-
tribution

This section presents the results of the numerical analy-
sis for the particle sedimentation and describes their most
important features. Additionally, the simulations provide
useful insight into the performance and quality of the three
test designs.

5.1. Initial granulometry

Five grading size distributions or “samples” have been
studied, see Fig. 10. A sample is taken from each distribu-
tion, all samples have the same mass, and contain particles
with diameters ranging from 2.5x 10 m to 70x 10° m
and at least one particle for each ¢, in which the grading
curve has been discretized; the range of sizes can be seen
in Fig. 10. The size distributions have been chosen to be
very different among them and to include discontinuities
in order to investigate the measurement capabilities of the
test methods.

The first sample is composed mostly of very small par-
ticles with diameters from 2.5x10°® m to 20x 107 m with
some large ones of minimum diameter of 60x 107 m; the
large particles amount for 40% of the total weight; two
rising limbs and a plateau in between can be observed in
the size distribution curve. In the second sample, large
diameters from 50x 10 m to 70x 10°® m are prevalent,
comprising 95% of the weight; the distribution has a single
rising limb. In sample 3, small particles from 2.5x 10°® m
to 15x 10® m are dominant, accounting for 95% of the
total weight; the distribution has a single rising limb. In
sample 4, 92% is composed by particles with diameters
between 25x 10 m to 35x 10°® m, 5% of the sample
has smaller diameters, and 3% larger ones. Finally, sam-
ple 5 has a smooth distribution with gradated diameters
of approximately equal contribution to the total weight.

Before carrying out the simulation, terminal velocities
and the times to reach them are calculated for several rep-
resentative particle sizes using Eqs. (13). Table 1 shows
|Ug| and ty for single particles sedimenting in water. It can



be appreciated that both quantities strongly depend on
size and that the highest velocity is three orders of mag-
nitude larger than the smallest one.

ASTMD-422 requires that measurements must be taken
once all particles have reached terminal velocity and tran-
sient phenomena have disappeared, prescribing that the
first measurement must be done after the first minute of
sedimentation.

5.2. General simulation

For all samples, the penalty parameters are Ky = Ky =
10° N/m, values based on trial and error to avoid numerical
ill conditioning due to the very small size of some particles.
As mentioned in Sect. 4.6, the initial At must be small
enough to capture the transient particle motion shown in
Fig. 4; thus, an initial At ~ 2.6 x 107" s is adopted. The
other parameters have been given in the previous sections.

In Fig. 11 the numerical sedimentation simulation is
shown for 60, 300 and 900 s (from top to bottom) and
for the five samples (from left to right); the long rectan-
gles represent the cylinder. For display purposes, a zoom
is made at the top, intermediate and bottom areas of the
cylinder, with magnification rates of 25, 25 and 62.5, re-
spectively, at 900 s; the smallest particles cannot be seen
due to limited resolution.

The grey scale in the cylinders represent the mass pro-
portion with respect to the total mass of 60 gr, averaged
every 100 layers out of the total 4000 in which the cylinder
was discretized, see Sect. 4.5.1. Right after the initial shak-
ing, the particles’ positions are equally distributed; for this
reason, at 60 s in most of the samples the grey intensity
is fairly uniform, except at the top where all intermediate
and large particles have sedimented and at the bottom,
where some of these particles rest without movement. The
exception is for sample 2, in which the prevalence of large
particles shows a small or very small concentration in the
upper half of the cylinder.

At 300 s (middle figures), sedimentation is in an inter-
mediate state, with particles distributed within most of the
cylinder except in sample 2 for which the sedimentation is
nearly finished. The granulometry of the samples starts to
be evident, for example in number 5 the gradation is linear
and in sample 3 most of the particles still fill the cylinder.

At 900 s (bottom figures), only small sizes remain at
the top and middle of the cylinder; at the bottom there
is a mixture of small, intermediate and large particles, the
latter the most abundant due to their high deposition ve-
locity. Therefore, and except for sample 3, most of the
mass is at the cylinder base as shown by the almost black
intensity.

In accordance to the experimental observations from
[43], the particles progressively gradate in horizontal lay-
ers. This can be visually verified in the first sample and
especially in the third one, in which large, intermediate
and small particles group in sets due to the similar depo-
sition velocity of similar sizes.
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During the simulation, the fluid interacts with the par-
ticles, mostly with the large ones due to their higher
Reynolds number. The contact interactions are also im-
portant, large particles sediment with higher terminal ve-
locity |Uy| (Fig. 4) and, therefore, overtake the smaller
ones. In this process, clusters of particles with different
sizes but with almost the same high velocity may form:
small particles are “trapped” by the large ones. Some clus-
ters can be appreciated in the middle zooms of samples
1 and 5 but, we have concluded that, for the sedimenta-
tion analyses considered here, there is no need for a spe-
cial treatment of the clusters since they occur towards the
lower part of the cylinder, away from the area in which the
experimental measurements are modeled.

Although the CPU time of each simulation is reduced
using incrementally larger time steps and restricted con-
tact search (see Sect. 4.6), this time is still very high when
the whole process is simulated. For sample 3, the simu-
lation takes about 420 hours in an Intel ®station Core
i7-4930K, with 12 cores running at 3.40 GHz and with 32
Gb of RAM memory. This is due to the large number
of small particles and time steps. The fastest simulation
occurs for sample 2, the one with the smallest number of
particles, which takes 60 hours.

Every 10 s the positions and velocities of all particles
are recorded, and they are used, together with the parti-
cle diameters, to compute the intermediate data, densities,
concentrations, depths and apparent masses needed to ap-
ply the analytical laws from Sects. 4.5.1, 4.5.2 and 4.5.3 to
infer the particle size distributions as if the experiments
had been carried out.

5.8. Preliminary measurements

Figure 12 shows, for different times, the limiting diam-
eter of all particles above depth Yy as given by Eq. 16
together with the minimum diameter of the particles ac-
tually above Yg as modeled numerically. Depth varies
from the free surface y¢y = O to the bottom of the cylinder
Yoy = H = 0.457m, (geometry in Fig. 6) and the times dis-
played are 60 s, 120 s, 300 s, and 900 s. Since the samples
have the same maximum diameter the curves will coincide
for the five of them.

The agreement between the values given by Eq. (16) and
the maximum diameter observed in the numerical exper-
iments is remarkable, with the following exceptions. At
60 s, the numerical values are below the analytical results,
but this is consistent with the fact that Eq. (16) does not
pretend to give the exact value but an upper bound (see
Sect. 4.5), and, therefore, it can overestimate the actual
value. For instance, this equation predicts that at a depth
of 0.4 m, the limiting diameter is 90x 10°® m, but we do
not have any sample with such a diameter, so the numer-
ical results are bounded by the maximum diameter in the
sample.

Finally, at 300 s and at 900 s, the agreement is good
for the upper part of the cylinder, but it fails at the bot-
tom, because sediment accumulate and Eq. (16) is for a



Figure 11: Numerical simulation of the ASTM-D422 experiment for the five samples. Gradation of particles at 60, 300 and 900 s. The grey
scale represents the proportion of mass with respect to the total mass. Zooms of particles with amplification of 25 (top and middle) and 62.5
(bottom).
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bottomless cylinder, and it does not account for a possible
accumulation of sediments.

For later times the three curves become flatter since only
very small particles would remain in suspension. They also
would tend to collapse to the minimum diameter except
close to the bottom zone, in which the numerical method
“knows” that all particles are accumulating there.

Figure 13 shows the variability of the suspension den-
sity along the height of the bulb, from top to bottom
0 < hpg < 0.14 (see Figs. 7 and 8 for geometry), for the
different samples and at different times. The average sus-
pension density along the height of the bulb is the key
variable in Eq. (18) to determine the weight percentage of
the particles above the limiting diameter associated to the
bulb-center depth. Also notice that since the bulb sinks as
the experiment progresses, the curves correspond to differ-
ent depths in the sedimentation cylinder. The curves at
time t = 0 are approximately horizontal and equal for all
samples corresponding to the density of a homogeneous
suspension of density 1015 kg/m3 For t = 900 s, the
curves are again almost horizontal and with densities get-
ting closer to the fluid density, samples 1, 3 and 5, which
contain a larger proportion of fine material than the other
two samples have a density higher than the fluid density
since the finest particles are still in suspension. For the
intermediate times, we can observe different density dis-
tributions: for sample 1, the coincidence of the curves at
times 60 s and 180 s is associated to the discontinuity in the
particle size distribution; for sample 2, at time 60 s, there
is an approximately linear variability along the bulb, all
particles have already passed the upper part of the bulb,
and a few of the smaller ones are still sedimenting around
the bulb center and below; for sample 3, the coincidence of
the curves at times 0 and 60 s is due to the small diameter
of the larger particles in the sample, at time 60 s, at the
depth of the bulb there has not been a differentiation of
the particles, at times 180 s and 300 s it is when a linear
variability of the density can be observed, corresponding
to a moment in which the small and intermediate parti-
cles are passing by the bulb; for sample 4, the behavior
is exactly the same as for sample 3, at the beginning, all
particles are too small and have not displayed their dif-
ferential velocities at the bulb depth, sometime between
60 s and 180 s, the suspension should have displayed a
linear variation similar to the one observed for sample 3,
but which was not captured given the larger diameters of
the particles for this sample; for sample 5, it is at time 60
s when the linear variability of the suspension density is
observed, after that the density diminishes with time in an
almost constant distribution along the bulb.

Comparing the average densities about the bulb com-
puted by averaging the curves in Fig. 13 and those ob-
tained by the approximate expression given by Eq. (19),
their values are almost exactly equal except for samples
3 and 4, for which there are some deviations as shown
in Fig. 14. The differences are due to the fact that the
approximate expression assumes a homogenous suspen-
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sion density, whereas, as discussed above, in the curves
in Fig. 13 the suspension density varies approximately lin-
early for some time steps.

5.4. Tests measurements

This subsection presents relevant intermediate results
for the three tests described in Sect. 4.5. In Fig. 15 the
hydrometer depth Yy, limiting diameter ¢o and accumu-
lated weight percentage Wy computed after the numerical
simulation of the ASTM hydrometer test are shown for
the five samples. Through the duration of the test, the
suspension density ps decreases at the top and middle of
the cylinder and increases at the bottom, with the cor-
responding spatial variation of pressure and hydrostatic
force (see Fig. 8) on the bulb. Due to the progressive de-
crease of ps around the bulb, the hydrometer sinks with
time (Ygo increases), since to reach equilibrium, a higher
depth is needed to balance the weight with the decreasing
hydrostatic force. The slope of the curves in the top graph
defines the sinking velocity.

Samples 2 and 3 show the highest and lowest sinking ve-
locities at early times, due to their respective preeminence
of largest and smallest particle diameters. For sample 1
the slope is zero in the interval 80 to 400 s, for its lack
of intermediate particles; during this time interval there is
short stationary situation in which similar concentrations
of small and large particles are traveling by the bulb. The
curve of sample 4 is similar to that of 2 and lies between
those of samples 2 and 3. Finally, for sample number 5, the
hydrometer sinks progressively, due to its particle size gra-
dation. After a sufficient time, yqo asymptotically tends to
Vw, the depth at which the hydrometer would sink in clear
water, meaning that most of the particles are concentrated
at the cylinder bottom, with the solution density about the
bulb approximately equal to that of water, ps ~ pf. When
Yw is reached, quickly for sample 2 and slowly for 3, the
hydrometer stops sinking.

The progressiveness of sedimentations is also observed
in Fig. 15, middle. As particles sink, the large ones rapidly
overpass the center of gravity of the bulb, ygo due to their
high deposition velocity; this fact can be appreciated with
the high slope of the curves at the initial instants, up to
100 s. The values of ¢, are calculated with Eq. (16); at
any given time, the resulting limiting diameters are dif-
ferent for the different samples since they vary according
to the square root of yg. Again all curves are delimited
by those of samples 2 and 3 with the largest and smallest
sizes, respectively. Although out of scale in the figure, the
asymptotic value slowly approaches the minimum diame-
ter.

The curves in Fig. 15, bottom, show the opposite vari-
ation from that observed in the top one. Initially, the
concentration is homogeneous and no particle has sedi-
mented and the accumulated weight is the total one. As
time passes, the concentration decreases above Yqo, very
fast for samples 2 and 4 and slowly for 1 and 3; therefore
the weight percentage of particles that are in suspension
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Figure 13: Suspension density ps along hydrometer bulb at several instants and for the five samples ordered from left to right, top to bottom.
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Figure 15: Depth of hydrometer center of gravity (top), limiting
diameters (middle) and accumulated weight (bottom) from the sim-
ulation of the ASTM-D422 test.

decreases (see Eq. (17)). The value of w, asymptotically
tends to zero with time since all particles sediment pass
the hydrometer. Again in sample 1 and now in 3 there is
a zone of zero slope: a negligible amount of mass passes
the bulb in this interval.

Figure 16 shows the apparent mass Mgy of the sphere,
the limit diameter and the accumulated weight W, vs. time
computed for the buoyancy test. The difference between
this and the previous tests is that the sphere does not
change its position (at Y = 0.3H = 13.71x1072 m) and
its weight is balanced by the hydrostatic force and the
tension of the line. For reasons discussed in the previous
paragraphs, Msp increases when ps decreases and, there-
fore, the hydrostatic force decreases at the depth of the
sphere Yqo through time.

The top graph in Fig. 16 is similar to the top one in
Fig. 15 since both are based in force equilibrium of the
same samples, although the response is less smooth in
the second. For all samples, the first value is about 1.52
gr, which corresponds to the apparent mass of the sphere
submerged in a completely homogeneous suspension, and
tends to 1.62 gr, which is the apparent mass of the sphere
in clear water. The limiting particle diameters ¢, as given
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Figure 16: Apparent mass (top), diameters (middle) and accumu-
lated weight (bottom) computed from simulation of the buoyancy
test at a depth of 0.3H (see Figs. 6, 9).

by Eq. (16) reduce to a single value for all samples and
a given time since the depth is fixed. The bottom graph
in Fig. 16 is also very similar to the corresponding one of
Fig. 15 although the decrease in accumulated weight is, in
this case, faster for all samples, since the depth of the mea-
surement device is smaller than that of the hydrometer, see
again Eq. (16).

The first and last graphs in Fig. 16 show oscillations,
specially the top one since the method measures the den-
sity of a small portion of suspension close to the sphere,
a volume much smaller than that of the hydrometer. In
the top graph these oscillations are very visible for sample
3 since the effect of the small measurement area couples
with the small diameter of most particles.

Finally, Fig. 17 shows limiting diameters (top) and ac-
cumulated weights (bottom) computed with the pipette
test at a constant depth equal to the sphere depth in the
previous experiment Yp = Y. Both variables follow the
same tendency as that of the buoyancy test. The bottom
figure is almost equal to that of Fig. 16 although the oscil-
lations are more pronounced, due to the even more reduced
sampling volume.

Although not quantified in this work, the higher the



measurement point of buoyancy and pipette the better and
faster the obtained values are, since the gradation is faster
and the inhomogeneities also disappear faster.

Sample 1 ——

60 |

100

75 |
g L
£ A

25 [

1 1.5 2
Time x10° s

o
e
o

Figure 17: Diameters (top) and accumulated weight computed (bot-
tom) from simulation of the pipette test at a depth of 0.3H (see
Figs. 6, 9).

5.5. Final granulometry

Figs. 18 compare the original particle size distributions
with those numerically calculated, for the three tests and
the five samples. These figures are not a validation of the
numerical approach but rather a study of the precision of
the laboratory tests, since they are based on approxima-
tions of some of the physical laws governing the sedimen-
tation process of a group of particle as explained before.

The agreement between the numerically simulated dis-
tributions and the original one is very good for small and
medium particle sizes, but differences can be found for
the large particles since they are measured mostly at the
beginning of the experiment when the suspension is com-
posed of a homogeneously mixture of particles of all sizes.
This mismatch is an intrinsic shortcoming of the design of
these laboratory tests.

The hydrometer test “smoothes” the granulometry and
is not capable of capturing discontinuities or the abrupt
end of the curve, whereas the buoyancy and pipette tests
oscillates for large sizes. This oscillation is due to small
and local inhomogeneities at the initial stages of the ex-
periment: even if the particles are supposed to be homoge-
neously distributed these unavoidable inhomogeneities are
relevant in tests that measure locally. The effect is no-
ticeable for samples 4 and 5 that include a fair amount of
intermediate particles. The hydrometer test does not have
oscillation problems for any sample due to the relatively

large volume that it measures, but in exchange tends to
predict smaller sizes and slightly lower weights.

The intrinsic inhomogeneities at the beginning are also
the cause of the incorrect prediction of accumulated
weights above 100% for the buoyancy and pipette tests:
in the relation (17) introduced in Sect. 4.5.1, the local Co,
at the early stages, can be slightly larger than the aver-
age initial cyp. Note that for all tests, we can compute
the weight associated with particle diameters larger than
70x 10 m (in a real situation we do not know which is
the largest particle size), resulting always in percentages
of 100% except for the already mentioned fluctuations.

6. Conclusions

The Discrete Element Method (DEM) is a powerful tool
for the numerical modelling of systems of large number
of particles. Therefore, its application to the numerical
simulation of the sedimentation of granular materials is
natural and immediate using a “one-way coupling” between
fluid and particles. In this work, DEM has permitted to
mimic the determination of the particle size distribution
of several granular samples by the hydrometer, buoyancy
and pipette tests using numerical data and analytical laws
of hydrostatics.

The simulation uses the position and velocities of all
particles and the description of the real experiments. The
particle size distributions using the three tests have been
compared with the original ones obtaining a good agree-
ment and most importantly, identifying the strong and
weak points in the design of the tests. The detected er-
rors of the real experiment cannot easily be identified with
the experimental data. The numerical experiment could
be used to optimize the setup and monitor the sedimenta-
tion laboratory test in the future with the aim of defining
the duration of the experiment, the shape and size of the
recipient, or the mass of the sample. We can also envision
that this simulation approach could be used to retrieve the
exact distribution of the sample from the approximate one
obtained in the laboratory by an iterative process based
on inverse modelling.

It is worth to emphasize that this work does not intend
to supersede the laboratory experiments but permits to
understand better their strong and weak points.

The important conclusions from the numerical simula-
tions are:

e Inside the range allowed by the standards, small par-
ticles are easier to measure than large ones

e The hydrometer test smoothes the real granulometry,
the buoyancy, pipette tests give oscillatory predictions

e All tests tend to predict larger particles than in reality,
although with an associated small accumulated weight

e In the buoyancy and pipette tests, the higher the po-
sition of the measurement point, the more accurate
the prediction
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Figure 18: Numerical simulation of granulometry (particle grading size distribution) for samples 1 to 5 (left to right, top to bottom) as would
result from the ASTM-D422; buoyancy and pipette tests. Comparison with the original distribution after 40.000 s of sedimentation.

Although a large simulation time has been used, a
much smaller one can give reasonable results if a small
mass and only the initial instants are simulated

Finally, we believe that the use of DEM with sophisti-
cated couplings could be directly applicable to the study of
other fluid-particle interaction problems, such as sediment
transport, dune evolution or reservoir sedimentation.
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