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Abstract

A complex square matrix A is called J-hamiltonian if AJ is hermitian where J is a normal
real matrix such that J2 = −In. In this paper we solve the problem of finding J-hamiltonian
normal solutions for the inverse eigenvalue problem.
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1. Introduction

Inverse eigenvalue problems arise as important tools in several research subjects, includ-
ing structural design, parameter identification and modeling [3, 5, 11], etc. The main goal
of the inverse eigenvalue problem is to construct a matrix A with a determined structure
and a specified spectrum. In the literature, this kind of problems has been studied under
certain constraints on A. For instance, the case when A is hermitian reflexive or anti-
reflexive with respect to a tripotent hermitian matrix was analyzed in [7]. Subsequently,
that problem was generalized to matrices that are hermitian reflexive with respect to a
normal {k + 1}-potent matrix [4]. By using hamiltonian matrices, in [1] Bai solved the
inverse eigenvalue problem for hermitian and generalized skew-hamiltonian matrices.

It is remarkable that hamiltonian matrices play an important role in several engineering
areas such as optimal quadratic linear control [8, 10], H∞ optimization [12] and the solution
of Riccati algebraic equations [6], among others.

The symbols M ∗ and M † will denote the conjugate transpose and the Moore-Penrose
inverse of a matrix M , respectively. As is standard, In will stand for the n × n identity
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matrix. We remind the reader that for a given complex rectangular matrix M ∈ C
m×n,

its Moore-Penrose inverse is the unique matrix M † ∈ C
n×m that satisfies MM †M = M ,

M †MM † = M †, (MM †)∗ = MM † and (M †M)∗ = M †M . This matrix always exists

[2]. We also need the following notation for both specified orthogonal projectors: W
(l)
M

=

In − M †M and W
(r)
M

= Im − MM †.
It is well known that a matrix A ∈ C

2k×2k is called hamiltonian if it satisfies (AJ)∗ = AJ
for

J =

[

0 Ik

−Ik 0

]

.

We extend this concept by considering the following matrices.

Definition 1. Let J ∈ R
n×n be a normal matrix such that J2 = −In. A matrix A ∈ C

n×n

is called J-hamiltonian if (AJ)∗ = AJ .

From now on, we will consider a fixed normal matrix J ∈ R
n×n such that J2 = −In. It

is clear that n = 2k for some positive integer k. For a given matrix X ∈ C
n×m and a given

diagonal matrix D ∈ C
m×m, we are looking for solutions of the matrix equation

AX = XD (1)

where the unknown A ∈ C
n×n must be normal and J-hamiltonian.

2. Inverse eigenvalue problem

2.1. General expression for matrices A

Let J ∈ R
n×n be a normal matrix satisfying J2 = −In. It is easy to see that J is

skew-hermitian and its spectrum is included in {−i, i} where both eigenvalues i and −i
have the same multiplicity, k = n/2. Then, there exists a unitary matrix U ∈ C

n×n such
that

J = U

[

iIk 0
0 −iIk

]

U∗. (2)

Using block matrices, we can analyze the structure of matrices A as follows. We parti-
tion

U∗AU =

[

A11 A12

A21 A22

]

(3)

according to the partition of J . From (2) and (3), equality (AJ)∗ = AJ yields

U

[

−iA∗
11 −iA∗

21

iA∗
12 iA∗

22

]

U∗ = U

[

iA11 −iA12

iA21 −iA22

]

U∗

from where we deduce

A∗
11 = −A11, A∗

22 = −A22, A∗
21 = A12. (4)

2



Since A must be normal, using expressions (4) we get that

AA∗ = U

[

−A2
11 + A12A

∗
12 A11A12 − A12A22

−A∗
12A11 + A22A

∗
12 A∗

12A12 − A2
22

]

U∗

and

A∗A = U

[

−A2
11 + A12A

∗
12 −A11A12 + A12A22

A∗
12A11 − A22A

∗
12 A∗

12A12 − A2
22

]

U∗

imply A11A12 = A12A22. We have obtained the following result.

Theorem 1. Let J ∈ R
n×n be partitioned as in (2). Then A ∈ C

n×n is a normal J-
hamiltonian matrix if and only if

A = U

[

A11 A12

A∗
12 A22

]

U∗ (5)

where A∗
11 = −A11, A∗

22 = −A22, and A11A12 = A12A22.

2.2. Existence and explicit solution

In order to solve the inverse eigenvalue problem we need the next result.

Lemma 1. Let M,N ∈ C
n×m. Then Y M = N has a skew-hermitian solution Y if and

only if
NW

(l)
M

= 0 and M ∗N is skew-hermitian.

In this case, the general solution is given by

Y = NM † − (NM †)∗W
(r)
M

+ W
(r)
M

ZW
(r)
M

(6)

where Z ∈ C
n×n is skew-hermitian.

Proof. By Theorem 1, [2, pp. 52], the equation Y M = N has a solution if and
only if N = NM †M . Let Y be a skew-hermitian solution of Y M = N . It is easy
to see that M ∗N is skew-hermitian. Now, if M ∗N is skew-hermitian then N ∗M and
Y0 = NM † − (NM †)∗ + (NM †)∗MM † are skew-hermitian as well since NM † − (NM †)∗

and (NM †)∗MM † = (M †)∗(N∗M)M † are skew-hermitian. Moreover, it can be easily
shown that Y0 is a solution of Y M = N .

The general skew-hermitian solution can be obtained adding to Y0 the general skew-
hermitian solution of the homogeneous equation Y M = 0. Hence, by Corollary 1 of Lemma
2.3.1 of [9] we deduce that in fact the solution is (6). �

Now we consider the following partition of X

X = U

[

X1

X2

]

(7)

where X1, X2 ∈ C
k×m.
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Substituting (5) and (7) in AX = XD we get
[

A11 A12

A∗
12 A22

] [

X1

X2

]

=

[

X1

X2

]

D.

This matrix equation can be equivalently written as
{

A11 X1 + A12 X2 = X1D
A∗

12 X1 + A22 X2 = X2D
. (8)

Clearly, from the first equation we have

A11 X1 = X1D − A12 X2. (9)

By Theorem 1 in [2, pp. 52], equation (9) has a solution in A11 if and only if

(X1D − A12 X2)W
(l)
X1

= 0. (10)

The condition (10) is equivalent to

A12 X2W
(l)
X1

= X1DW
(l)
X1

. (11)

Again, by Theorem 1 in [2, pp. 52], equation (11) has a solution in A12 if and only if

X1DW
(l)
X1

W
(l)

X2W (l)(X1)
= 0. (12)

In this case, the general expression for A12 is

A12 = X1DW
(l)
X1

(X2W
(l)
X1

)† + Y12W
(r)

X2W
(l)
X1

(13)

for arbitrary Y12 ∈ C
k×k.

If we now substitute A12 by (13) in equation (9) we obtain

A11 X1 = X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W (l)(X1)
X2. (14)

Using Lemma 1, equation (14) has a skew-hermitian solution in A11 if and only if
[

X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W
(l)
X1

X2

]

W
(l)
X1

= 0 (15)

and

X∗
1

[

X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W
(l)
X1

X2

]

(16)

is skew-hermitian. In this case the general solution of (14) is given by

A11 =

[

X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W
(l)
X1

X2

]

X†
1 −

−(X†
1)

∗

[

X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W
(l)
X1

X2

]∗

W
(r)
X1

+ W
(r)
X1

Y11W
(r)
X1

,
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for arbitrary skew-hermitian Y11 ∈ C
k×k. The properties of the Moore-Penrose inverse

provide the following expression:

A11 =

[

X1D − X1DW
(l)
X1

(X2W
(l)
X1

)† X2 − Y12W
(r)

X2W
(l)
X1

X2

]

X†
1 +

+(X†
1)

∗X∗
2W

(r)

X2W
(l)
X1

Y ∗
12W

(r)
X1

+ W
(r)
X1

Y11W
(r)
X1

. (17)

In order to determine A22, we substitute expression A12 given by (13) in the second
equation of (8) and we obtain

A22 X2 = X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1. (18)

Equation (18) has a skew-hermitian solution in A22 if and only if
[

X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1

]

W
(l)
X2

= 0 (19)

and

X∗
2

[

X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1

]

(20)

is skew-hermitian. In this case, its general solution is given by

A22 =

[

X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1

]

X†
2 −

−(X†
2)

∗

[

X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1

]∗

W
(r)
X2

+ W
(r)
X2

Y22W
(r)
X2

,

for arbitrary skew-hermitian Y22 ∈ C
k×k, which can be also written as

A22 =

[

X2D − (W
(l)
X1

X∗
2 )†W

(l)
X1

D∗X∗
1X1 − W

(r)

X2W
(l)
X1

Y ∗
12X1

]

X†
2 +

+(X†
2)

∗

[

X∗
1X1DW

(l)
X1

(X2W
(l)
X1

)† − X∗
1Y12W

(r)

X2W
(l)
X1

]

W
(r)
X2

+ W
(r)
X2

Y22W
(r)
X2

. (21)

Summarizing, we have obtained the following result.

Theorem 2. Let X ∈ C
n×m, D ∈ C

m×m be a diagonal matrix and J ∈ R
n×n be a normal

matrix such that J2 = −In. Consider the partition X = U
[

X∗
1 X∗

2

]∗
as in (7) where

X1, X2 ∈ C
k×m. Then there exists a J-hamiltonian, normal matrix A ∈ C

n×n such that
AX = XD if and only if conditions (12), (15), (16), (19), (20) and A11A12 = A12A22

hold. In this case, the general solution can be written as

A = U

[

A11 A12

A∗
12 A22

]

U∗

where A11, A12 and A22 are given by (17), (13) and (21), respectively.
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