Document downloaded from:
http://hdl.handle.net/10251/64603
This paper must be cited as:
Gigola, SV.; Lebtahi Ep-Kadi-Hahifi, L.; Thome, N. (2015). Inverse eigenvalue problem for normal J-hamiltonian matrices. Applied Mathematics Letters. 48:36-40. doi:10.1016/j.aml.2015.03.007.

The final publication is available at
https://dx.doi.org/10.1016/j.aml.2015.03.007

Copyright Elsevier

Additional Information

Inverse eigenvalue problem for normal J-hamiltonian matrices

Silvia Gigola ${ }^{1}$ Leila Lebtahi ${ }^{2}$ Néstor Thome ${ }^{3}$

Abstract

A complex square matrix A is called J-hamiltonian if $A J$ is hermitian where J is a normal real matrix such that $J^{2}=-I_{n}$. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem.

Keywords: Inverse eigenvalue problem, hamiltonian matrix, normal matrix, Moore-Penrose inverse
AMS Classification: 15A09

1. Introduction

Inverse eigenvalue problems arise as important tools in several research subjects, including structural design, parameter identification and modeling [3, 5, 11], etc. The main goal of the inverse eigenvalue problem is to construct a matrix A with a determined structure and a specified spectrum. In the literature, this kind of problems has been studied under certain constraints on A. For instance, the case when A is hermitian reflexive or antireflexive with respect to a tripotent hermitian matrix was analyzed in [7]. Subsequently, that problem was generalized to matrices that are hermitian reflexive with respect to a normal $\{k+1\}$-potent matrix [4]. By using hamiltonian matrices, in [1] Bai solved the inverse eigenvalue problem for hermitian and generalized skew-hamiltonian matrices.

It is remarkable that hamiltonian matrices play an important role in several engineering areas such as optimal quadratic linear control [8, 10], H_{∞} optimization [12] and the solution of Riccati algebraic equations [6], among others.

The symbols M^{*} and M^{\dagger} will denote the conjugate transpose and the Moore-Penrose inverse of a matrix M, respectively. As is standard, I_{n} will stand for the $n \times n$ identity

[^0]matrix. We remind the reader that for a given complex rectangular matrix $M \in \mathbb{C}^{m \times n}$, its Moore-Penrose inverse is the unique matrix $M^{\dagger} \in \mathbb{C}^{n \times m}$ that satisfies $M M^{\dagger} M=M$, $M^{\dagger} M M^{\dagger}=M^{\dagger},\left(M M^{\dagger}\right)^{*}=M M^{\dagger}$ and $\left(M^{\dagger} M\right)^{*}=M^{\dagger} M$. This matrix always exists [2]. We also need the following notation for both specified orthogonal projectors: $W_{M}^{(l)}=$ $I_{n}-M^{\dagger} M$ and $W_{M}^{(r)}=I_{m}-M M^{\dagger}$.

It is well known that a matrix $A \in \mathbb{C}^{2 k \times 2 k}$ is called hamiltonian if it satisfies $(A J)^{*}=A J$ for

$$
J=\left[\begin{array}{cc}
0 & I_{k} \\
-I_{k} & 0
\end{array}\right] .
$$

We extend this concept by considering the following matrices.
Definition 1. Let $J \in \mathbb{R}^{n \times n}$ be a normal matrix such that $J^{2}=-I_{n}$. A matrix $A \in \mathbb{C}^{n \times n}$ is called J-hamiltonian if $(A J)^{*}=A J$.

From now on, we will consider a fixed normal matrix $J \in \mathbb{R}^{n \times n}$ such that $J^{2}=-I_{n}$. It is clear that $n=2 k$ for some positive integer k. For a given matrix $X \in \mathbb{C}^{n \times m}$ and a given diagonal matrix $D \in \mathbb{C}^{m \times m}$, we are looking for solutions of the matrix equation

$$
\begin{equation*}
A X=X D \tag{1}
\end{equation*}
$$

where the unknown $A \in \mathbb{C}^{n \times n}$ must be normal and J-hamiltonian.

2. Inverse eigenvalue problem

2.1. General expression for matrices A

Let $J \in \mathbb{R}^{n \times n}$ be a normal matrix satisfying $J^{2}=-I_{n}$. It is easy to see that J is skew-hermitian and its spectrum is included in $\{-i, i\}$ where both eigenvalues i and $-i$ have the same multiplicity, $k=n / 2$. Then, there exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
J=U\left[\begin{array}{cc}
i I_{k} & 0 \tag{2}\\
0 & -i I_{k}
\end{array}\right] U^{*}
$$

Using block matrices, we can analyze the structure of matrices A as follows. We partition

$$
U^{*} A U=\left[\begin{array}{ll}
A_{11} & A_{12} \tag{3}\\
A_{21} & A_{22}
\end{array}\right]
$$

according to the partition of J. From (2) and (3), equality $(A J)^{*}=A J$ yields

$$
U\left[\begin{array}{cc}
-i A_{11}^{*} & -i A_{21}^{*} \\
i A_{12}^{*} & i A_{22}^{*}
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
i A_{11} & -i A_{12} \\
i A_{21} & -i A_{22}
\end{array}\right] U^{*}
$$

from where we deduce

$$
\begin{equation*}
A_{11}^{*}=-A_{11}, \quad A_{22}^{*}=-A_{22}, \quad A_{21}^{*}=A_{12} \tag{4}
\end{equation*}
$$

Since A must be normal, using expressions (4) we get that

$$
A A^{*}=U\left[\begin{array}{cc}
-A_{11}^{2}+A_{12} A_{12}^{*} & A_{11} A_{12}-A_{12} A_{22} \\
-A_{12}^{*} A_{11}+A_{22} A_{12}^{*} & A_{12}^{*} A_{12}-A_{22}^{2}
\end{array}\right] U^{*}
$$

and

$$
A^{*} A=U\left[\begin{array}{cc}
-A_{11}^{2}+A_{12} A_{12}^{*} & -A_{11} A_{12}+A_{12} A_{22} \\
A_{12}^{*} A_{11}-A_{22} A_{12}^{*} & A_{12}^{*} A_{12}-A_{22}^{2}
\end{array}\right] U^{*}
$$

imply $A_{11} A_{12}=A_{12} A_{22}$. We have obtained the following result.
Theorem 1. Let $J \in \mathbb{R}^{n \times n}$ be partitioned as in (2). Then $A \in \mathbb{C}^{n \times n}$ is a normal J hamiltonian matrix if and only if

$$
A=U\left[\begin{array}{ll}
A_{11} & A_{12} \tag{5}\\
A_{12}^{*} & A_{22}
\end{array}\right] U^{*}
$$

where $A_{11}^{*}=-A_{11}, A_{22}^{*}=-A_{22}$, and $A_{11} A_{12}=A_{12} A_{22}$.

2.2. Existence and explicit solution

In order to solve the inverse eigenvalue problem we need the next result.
Lemma 1. Let $M, N \in \mathbb{C}^{n \times m}$. Then $Y M=N$ has a skew-hermitian solution Y if and only if

$$
N W_{M}^{(l)}=0 \quad \text { and } \quad M^{*} N \quad \text { is skew-hermitian. }
$$

In this case, the general solution is given by

$$
\begin{equation*}
Y=N M^{\dagger}-\left(N M^{\dagger}\right)^{*} W_{M}^{(r)}+W_{M}^{(r)} Z W_{M}^{(r)} \tag{6}
\end{equation*}
$$

where $Z \in \mathbb{C}^{n \times n}$ is skew-hermitian.
Proof. By Theorem 1, [2, pp. 52], the equation $Y M=N$ has a solution if and only if $N=N M^{\dagger} M$. Let Y be a skew-hermitian solution of $Y M=N$. It is easy to see that $M^{*} N$ is skew-hermitian. Now, if $M^{*} N$ is skew-hermitian then $N^{*} M$ and $Y_{0}=N M^{\dagger}-\left(N M^{\dagger}\right)^{*}+\left(N M^{\dagger}\right)^{*} M M^{\dagger}$ are skew-hermitian as well since $N M^{\dagger}-\left(N M^{\dagger}\right)^{*}$ and $\left(N M^{\dagger}\right)^{*} M M^{\dagger}=\left(M^{\dagger}\right)^{*}\left(N^{*} M\right) M^{\dagger}$ are skew-hermitian. Moreover, it can be easily shown that Y_{0} is a solution of $Y M=N$.

The general skew-hermitian solution can be obtained adding to Y_{0} the general skewhermitian solution of the homogeneous equation $Y M=0$. Hence, by Corollary 1 of Lemma 2.3.1 of [9] we deduce that in fact the solution is (6).

Now we consider the following partition of X

$$
X=U\left[\begin{array}{l}
X_{1} \tag{7}\\
X_{2}
\end{array}\right]
$$

where $X_{1}, X_{2} \in \mathbb{C}^{k \times m}$.

Substituting (5) and (7) in $A X=X D$ we get

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]=\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] D .
$$

This matrix equation can be equivalently written as

$$
\left\{\begin{array}{l}
A_{11} X_{1}+A_{12} X_{2}=X_{1} D \tag{8}\\
A_{12}^{*} X_{1}+A_{22} X_{2}=X_{2} D
\end{array} .\right.
$$

Clearly, from the first equation we have

$$
\begin{equation*}
A_{11} X_{1}=X_{1} D-A_{12} X_{2} \tag{9}
\end{equation*}
$$

By Theorem 1 in [2, pp. 52], equation (9) has a solution in A_{11} if and only if

$$
\begin{equation*}
\left(X_{1} D-A_{12} X_{2}\right) W_{X_{1}}^{(l)}=0 \tag{10}
\end{equation*}
$$

The condition (10) is equivalent to

$$
\begin{equation*}
A_{12} X_{2} W_{X_{1}}^{(l)}=X_{1} D W_{X_{1}}^{(l)} \tag{11}
\end{equation*}
$$

Again, by Theorem 1 in [2, pp. 52], equation (11) has a solution in A_{12} if and only if

$$
\begin{equation*}
X_{1} D W_{X_{1}}^{(l)} W_{X_{2} W^{(l)}\left(X_{1}\right)}^{(l)}=0 \tag{12}
\end{equation*}
$$

In this case, the general expression for A_{12} is

$$
\begin{equation*}
A_{12}=X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger}+Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} \tag{13}
\end{equation*}
$$

for arbitrary $Y_{12} \in \mathbb{C}^{k \times k}$.
If we now substitute A_{12} by (13) in equation (9) we obtain

$$
\begin{equation*}
A_{11} X_{1}=X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W^{(l)}\left(X_{1}\right)}^{(r)} X_{2} \tag{14}
\end{equation*}
$$

Using Lemma 1, equation (14) has a skew-hermitian solution in A_{11} if and only if

$$
\begin{equation*}
\left[X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} X_{2}\right] W_{X_{1}}^{(l)}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{1}^{*}\left[X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} X_{2}\right] \tag{16}
\end{equation*}
$$

is skew-hermitian. In this case the general solution of (14) is given by

$$
\begin{aligned}
A_{11}= & {\left[X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} X_{2}\right] X_{1}^{\dagger}-} \\
& -\left(X_{1}^{\dagger}\right)^{*}\left[X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} X_{2}\right]^{*} W_{X_{1}}^{(r)}+W_{X_{1}}^{(r)} Y_{11} W_{X_{1}}^{(r)},
\end{aligned}
$$

for arbitrary skew-hermitian $Y_{11} \in \mathbb{C}^{k \times k}$. The properties of the Moore-Penrose inverse provide the following expression:

$$
\begin{align*}
A_{11}= & {\left[X_{1} D-X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger} X_{2}-Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} X_{2}\right] X_{1}^{\dagger}+} \\
& +\left(X_{1}^{\dagger}\right)^{*} X_{2}^{*} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} W_{X_{1}}^{(r)}+W_{X_{1}}^{(r)} Y_{11} W_{X_{1}}^{(r)} . \tag{17}
\end{align*}
$$

In order to determine A_{22}, we substitute expression A_{12} given by (13) in the second equation of (8) and we obtain

$$
\begin{equation*}
A_{22} X_{2}=X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1} . \tag{18}
\end{equation*}
$$

Equation (18) has a skew-hermitian solution in A_{22} if and only if

$$
\begin{equation*}
\left[X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1}\right] W_{X_{2}}^{(l)}=0 \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{2}^{*}\left[X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1}\right] \tag{20}
\end{equation*}
$$

is skew-hermitian. In this case, its general solution is given by

$$
\begin{aligned}
A_{22}= & {\left[X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1}\right] X_{2}^{\dagger}-} \\
& -\left(X_{2}^{\dagger}\right)^{*}\left[X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1}\right]^{*} W_{X_{2}}^{(r)}+W_{X_{2}}^{(r)} Y_{22} W_{X_{2}}^{(r)},
\end{aligned}
$$

for arbitrary skew-hermitian $Y_{22} \in \mathbb{C}^{k \times k}$, which can be also written as

$$
\begin{align*}
A_{22}= & {\left[X_{2} D-\left(W_{X_{1}}^{(l)} X_{2}^{*}\right)^{\dagger} W_{X_{1}}^{(l)} D^{*} X_{1}^{*} X_{1}-W_{X_{2} W_{X_{1}}^{(l)}}^{(r)} Y_{12}^{*} X_{1}\right] X_{2}^{\dagger}+} \\
& +\left(X_{2}^{\dagger}\right)^{*}\left[X_{1}^{*} X_{1} D W_{X_{1}}^{(l)}\left(X_{2} W_{X_{1}}^{(l)}\right)^{\dagger}-X_{1}^{*} Y_{12} W_{X_{2} W_{X_{1}}^{(l)}}^{(r)}\right] W_{X_{2}}^{(r)}+W_{X_{2}}^{(r)} Y_{22} W_{X_{2}}^{(r)} . \tag{21}
\end{align*}
$$

Summarizing, we have obtained the following result.
Theorem 2. Let $X \in \mathbb{C}^{n \times m}, D \in \mathbb{C}^{m \times m}$ be a diagonal matrix and $J \in \mathbb{R}^{n \times n}$ be a normal matrix such that $J^{2}=-I_{n}$. Consider the partition $X=U\left[\begin{array}{ll}X_{1}^{*} & X_{2}^{*}\end{array}\right]^{*}$ as in (7) where $X_{1}, X_{2} \in \mathbb{C}^{k \times m}$. Then there exists a J-hamiltonian, normal matrix $A \in \mathbb{C}^{n \times n}$ such that $A X=X D$ if and only if conditions (12), (15), (16), (19), (20) and $A_{11} A_{12}=A_{12} A_{22}$ hold. In this case, the general solution can be written as

$$
A=U\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right] U^{*}
$$

where A_{11}, A_{12} and A_{22} are given by (17), (13) and (21), respectively.

Acknowledgements The authors thank the referees for their valuable comments and suggestions.

References

[1] Z. Bai, The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation, Inverse Problems 19 (2003) 1185-1194.
[2] A. Ben-Israel, T. Greville, Generalized inverses: theory and applications, John Wiley \& Sons, Second Edition, Springer, New York, (2003).
[3] M.T. Chu, Inverse eigenvalue problems, SIAM Review 40 (1998) 1-39.
[4] S. Gigola, L. Lebtahi, N. Thome, The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem, Submitted.
[5] K.T. Joseph, Inverse eigenvalue problem in structural design, AIAA J. 10 (1992) 2890-2896.
[6] A. Laub, Invariant subspace methods for the numerical solution of Riccati equations, S. Bittanti, A. Laub, and J. Willems, eds., Springer, Berlin, (1991).
[7] L. Lebtahi, N. Thome, The inverse eigenvalue problem for Hermitian reflexive matrices with respect to a tripotent Hermitian, Proc. Second ALAMA Meeting, Spain, (2010).
[8] V. Mehrmann, The autonomous linear quadratic control problem, theory and numerical solution, Lect. Notes Control Inform. Sci. 163, Springer, Heidelberg, (1991).
[9] C.R. Rao, S.K. Mitra, Generalized inverse of matrices and its applications, John Wiley \& Sons, New York, (1971).
[10] V. Sima, Algorithms for linear-quadratic optimization, Pure Appl. Math., 200, Marcel Dekker, New York, (1996).
[11] L. Zhang, A class of inverse eigenvalue problems of symmetric matrices, Numer. Math. J. Chin. Univ. 12 (1) (1990) 65-71.
[12] K. Zhou, J. Doyle, K. Glover, Robust and optimal control, Prentice-Hall, Upper Saddle River, NJ, (1995).

[^0]: ${ }^{1}$ Departamento de Matemática. Facultad de Ingeniería. Universidad de Buenos Aires. Buenos Aires, Argentina. E-mail address: silgig@yahoo.com.ar. This author was partially supported by Universidad de Buenos Aires Grant 20020130100671BA (EXP-UBA: 9.011/2013).
 ${ }^{2}$ Universidad Internacional de La Rioja. Logroño, Spain. E-mail address: leila.lebtabi@unir.net. This author was partially supported by Ministerio de Economía y Competitividad (DGI Grant MTM2013-43678-P).
 ${ }^{3}$ Instituto Universitario de Matemática Multidisciplinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail address: njthome@mat.upv.es. This author was partially supported by Ministerio de Economía y Competitividad (DGI Grant MTM2013-43678-P).

