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ABSTRACT 

Commercially 3mol% Y2O3-stabilized tetragonal zirconia (70-90 nm) compacts were 

fabricated using a conventional and a non-conventional sintering technique; microwave 

heating in a resonant mono-mode cavity at 2.45 GHz, at temperatures in the 1100-1400 

ºC range. A considerable difference in the densification behaviour between 

conventional (CS) and microwave (MW) sintered materials was observed. The MW 



2 
 

materials attain a full density of 99.9% of the theoretical density (t.d.) at 1400ºC/10min, 

while the CS reach only 98.0% t.d. at same temperature and 1h of dwelling time. 

Therefore, the MW materials exhibit superior Vickers hardness values (16.0 GPa) when 

compared with CS (13.4 GPa). 

 

Keywords: Microwave sintering; Grain size; Microstructure; Mechanical properties; 

ZrO2 

 

1. INTRODUCTION 

Due to the excellent properties of the Yttria-stabilized Tetragonal Zirconia 

Polycrystalline (Y-TZP) ceramic materials, such as low thermal conductivity, excellent 

biocompatibility, high fracture toughness and strength, high crack resistance and low 

wear rates are widely used for many applications [1], as solid oxide fuel cells, thermal 

barrier coatings and medical devices, among others. However the densification of 

nanostructured materials to near to theoretical density is difficult because of the strong 

tendency to agglomerate and the spontaneous grain growth occurring during sintering 

process [2,3]. Applying a promising sintering procedure is, therefore, of a great 

importance for the superior performance of zirconia bodies. Conventional sintering 

techniques (hot pressing, sinter forging, hot isostatic pressing, etc.) and non-

conventional sintering techniques (spark plasma sintering and microwave) represent an 

alternative approach to the densification of nanoparticles. In ceramic materials, the high 

temperatures required to fully densify ceramic powders result in large grain sizes due to 

Ostwald ripening when traditional sintering techniques are used. This makes it 

extremely difficult to obtain dense materials with nanometric and sub-micrometric grain 

sizes [4]. To overcome the problem of grain growth, microwave sintering has been 
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proposed in this work with an efficient technique for hindering the grain growth as well 

as producing a homogenous microstructure. 

 

Spark plasma sintering (SPS) is another known sintering technique suitable for the rapid 

consolidation of a variety of ceramic materials in a short sintering duration [5]. Some 

authors use this method for the fabrication of large sample of Y-TZP materials by using 

nanocrystalline zirconia powders [6-7].  

Microwave radiation for sintering of ceramic components has recently appeared as a 

newly focused scientific approach [8-15]. In recent years, microwave heating has been 

well employed in the field of sintering and joining of ceramics as a result of its 

advantages against conventional sintering. Microwave sintering has several advantages 

such as rapid end volumetric heating, improved production rate, enhancement in 

densification and grain growth prohibition of ceramics [16-19], and most importantly is 

that possible obtained directly Y-TZP materials without any carbon contamination. This 

supposes a significant advantage compared to the SPS rapid method. Microwave 

heating of dielectric materials, such as ceramics, results from the absorption by 

molecular vibration (rotating electric dipole/dipole reorientation), and ionic conduction 

of a portion of the energy transported by an oscillating electric field [11]. A genuine 

“microwave effect”, i.e. the acceleration of diffusion mechanisms by the oscillating 

electric field, was also proposed by some authors to explain the enhancement of the 

sintering process [15,20,21].  

Nightingale et al. [20], for instance, studied the influence of microwave heating on 

densification and grain growth of 3 mol.% yttria zirconia samples and then compared 

them to those samples subjected to the conventional sintering. Microwave heating was 

found to improve densification processes during the constant rate heating. Comparing to 
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the conventionally sintered samples, they observed a kind of shift for the sintering path 

of microwave-sintered specimens in the direction of increased density for the values of 

less than 96% of theoretical density (TD). 

Binner et al. [2] have studied the processing of 3 mol.% yttria partially stabilised 

zirconia nanopowder into components via slip casting low viscosity but high solids 

content nanosuspensions and subsequent pressureless sintering via one and two stage 

sintering involving both pure conventional heating and hybrid conventional-microwave 

heating. The materials achieved >99% of theoretical density using a two stage sintering 

technique whilst retaining a final average grain size of <100 nm. When a hybrid 

microwave conventional approach was used, the resulting average grain size was finer; 

the best sample to date had a value of just 64 nm whilst being ~99.5% dense. It is 

believed that the primary advantage offered by the hybrid heating approach is the ability 

to use a much faster initial heating rate. 

Mazaheri et al. [8,16] have studied the effect of the conformation method (dry pressing 

and slip casting) as well as sintering technique (conventional, two-step (TSS) and 

microwave-assisted sintering with two different heating rates, lower rate (LMS) and 

high rate (HMS)) on the densification and grain growth of nanocrystalline 8 mol.% YSZ 

nanopowder. Nearly full dense bodies with a grain size of ~300 nm were obtained with 

TSS, while fast densification via HMS resulted in a fully dense sample with an average 

grain size of ~0.9 µm, compared to CS (2.14 µm) and LMS (2.35 µm) procedures. The 

authors claim that the reason may be the homogenous microstructure resulting from the 

fast firing process. 

The present work has, on one hand, aimed at exploring the general effect of microwave 

heating on the sintering procedure of nanocrystalline 3Y-TZP and, on the other hand, at 

revealing the major contribution of high heating rates on the microstructural 
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improvement and the mechanical properties of microwave-sintered samples. A 

rectangular mono-mode cavity at 2.45 GHz equiped with an optical pyrometer was 

used. This device and its susceptor have been custom-designed and fabricated ad-doc 

for this study by microwave sintering of various kinds of ceramic powders. A 

comparison with conventional sintering is also presented. 

 

2. EXPERIMENTAL PROCEDURE 

2.1. Microwave sintering 

 

The microwave setup consists of a microwave source of 1 kW at 2.45 GHz connected to 

a mono-mode rectangular cavity (Figure 1). This resonant cavity is coupled by an iris 

which dimensions are optimized for this application. Between the cavity and the 

microwave power source there is a circulator with a water load to prevent high power 

reflections that can damage the source. And there is a six port reflectometer to measure 

the incident and reflected powers. This measurement system will allow the user to tune 

or detune the cavity in order to couple more or less power to follow the heating profile 

previously stated. 

The method to tune and detune the cavity consists of a sliding short circuit that can be 

moved electronically, depending on the reflected and consumed power and on the 

material temperature. The sample temperature is measured with a pyrometer through a 

circular hole (which fundamental TE11 mode cut-off frequency is above the working 

frequency to avoid leakage) located on the top of the cavity. 

 

During heating by this microwave, the distance between the iris and the specimen was 

set to 180 mm. In each test, a heating rate was controlled to 25 ºC min-1 and applied 
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from room temperature to the sintering temperature by adjusting the position of the 

movable reflector between 100-800 W of power. The cooling stage was also controlled 

to 50 ºC min-1. The maximum temperatures reached were 1100 ºC, 1200 ºC, 1300 ºC 

and 1400 ºC with a 5, 10 and 15-min of dwelling time at the maximum temperature. 

From room temperature to 600 ºC, the specimen remained cooler than the SiC susceptor 

due to its poorer dielectric properties (smaller loss tangent) at low temperature. 

Therefore, zirconia was mainly heated by thermal radiance from the susceptor. Above 

600 ºC, the specimen became hotter than the susceptor; its temperature followed more 

or less the prescribed thermal cycle from 600 ºC to 1000 ºC whereas the temperature of 

the susceptor remained approximately constant at 600 ºC. Thus, the compact was heated 

by both radiance from the susceptor and by coupling with the microwaves (hybrid 

heating). The dissipated power varied in the 150-250 W range. Above 1000 ºC, the 

dissipated power sharply increased to 800 W and the temperature reached 1400 ºC at the 

upper surface of the zirconia specimen. The control of the heating rate was well 

controlled and overheating was avoided. This is due to the control of the our microwave 

apparatus together with the design of the susceptor, which avoid to the strong changes 

in dielectric properties of zirconia between 400 ºC and 1000 ºC. The cooling rate of the 

microwave-heated samples was controlled by reducing the amount of power supplied to 

the controller. As a result, the samples were exposed to the microwave field during part 

of the cooling process, as well as during heating. By slightly prolonging the exposure to 

the microwave field, any microwave effects might have been slightly increased, but the 

possibility that this would be significant is unlikely. The effect of temperature on grain 

growth and densification is much greater. 

 

2.2. Powder characterization and mechanical properties 
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The raw material used in this study was commercial ZrO2 (3Y-TZP-B) nanopowders 

(Tosoh Corp., Japan) with average particle size of (50-60) nm. Green samples were 

prepared by uniaxial pressing at 200 MPa of pressure in a steel cylindrical die (2.5 mm 

thick, 10 mm ). The green density was approximately 2.9 g cm-3, i.e. 49% of 

theoretical density (6.08 g cm-3). Ten samples were tested for each property measured. 

Before sintering, the binder was burned out under air in an electric furnace by heating at 

5 ºC min-1 up to 600 ºC and by soaking for 3 h. The weight loss and shrinkage were 

about 0.5% and 20%, respectively. This preliminary debinding stage is necessary, since 

we observed cracks development during microwave heating for other specimens. This is 

due to a very heterogeneous temperature distribution, as already mentioned by Janney et 

al. [22]. Green samples were sintered by hybrid microwave heating, previously 

described setup, by SiC susceptor-assisted in the form of cylinders where the 

temperature was measured with an optical pyrometer (Optris GmbH, Germany) and by 

conventional heating in a vertical dilatometer (Thermolyne type 46100). Conventional 

sintering samples was carried out to 1400 ºC using the heating rate of 5 ºC min-1 with 1 

h of holding time at the maximum temperature. 

The bulk density of the sintered samples was measured by Archimedes’ principle by 

immersing the sample into a water based liquid. Vickers hardness and fracture 

toughness assessments were carried out using the indentation method. Sintered samples 

were longitudinally cut in half cylinders with a diamond saw. The samples were 

previously polished (Struers, model RotoPol-31) with diamond to 1 μm roughness. The 

hardness of the materials was determined using the indentation technique (Buehler, 

model Micromet 5103) with a conventional diamond pyramid indenter. The diagonals 

of each indentation were measured using an optical microscope. Measuring conditions 
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for the Vickers hardness, Hv, were an applying load of 5 N for 10 s and the standard 

specification ASTM E92-72. The value of Hv is the relationship between applied load P 

and the surface area of the diagonals of indentation [23].  

To estimate the indentation fracture toughness KIC, 306 N Vickers indentations were 

performed on the surface of the samples, inducing Palmqvist cracks, from which the 

indentation fracture toughness was obtained by the method of Niihara [24]: 

 

                                                                             (1) 

 

where a is the half-length of the resultant indentation, c is the total crack length at the 

surface, H is the Vickers hardness and E is the Young’s modulus (typically ~220 GPa 

for 3Y-TZP). 

In order to investigate sample microstructure, polished sections were thermally etched 

between 30 min in an electrical furnace under air 100 ºC below their maximum sintering 

temperature to reveal their microstructure. These sections have been observed using a 

field emission scanning electron microscope (FEG-SEM, S4100 HITACHI). The grain 

size of the sintered samples was determined by multiplying the average linear intercept 

by 1.56 [25]. For each specimen, at least 15 lines were taken, and their average was 

reported. 

 

3. RESULTS AND DISCUSSION 

3.1. Final density and Microstructure 

 

The final relative density of the specimens sintered by the microwave (MW) and 

conventional (CS) processes is presented in Figure 2, as a function of their maximum 
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sintering temperature. The most-significant factors affecting the density of samples in 

microwave heating were final temperature, as expected. 

 

Concerning the results of microwave sintering, the first significant outcome of Figure 2 

is that the density of a microwave-sintered material is larger than the density of a 

material conventionally sintered at the same measured temperature. The conventional 

test reached the relative density of 98.3% at 1400 ºC. 

The final density of the microwave-sintered materials at different dwelling times 

increased sharply from 5 and 10-15 min, especially at 1200 ºC, where the relative 

densities of 5 and 10 min are 95.8% and 99.3%, respectively. It can be seen that at 1400 

ºC all of the samples sintered by MW show very similar densities (>99.4%). More 

importantly, it shows that relative densities of 95-99% may be obtained without any 

crack. 

Fully dense specimens were, therefore, obtained at significantly lower sintering times 

by MW. In other words, while the sintering time required to achieve relative densities 

above >98% is 350 min using CS, the MW leads to the similar dense specimens in only 

40 min. It is important to note that the final economic cost is very significant. 

 

The relative density difference between the CS and MW samples are attributed to the 

different styles by which the samples are heated. The heating in CS corresponds to the 

conduction rule in which the surface of the material is heated sooner than the core. 

According to the surface heating in CS, the heat should penetrate from the surface of the 

material in to the bulk by the well-known conduction phenomenon. The heat conduction 

from the surface to the core, however, requires the time and such a trend can somehow 

delay the activation of densification mechanisms such as the thermally activated ones. 
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Microwave heating, on the other hand, is generated by the molecular or ionic 

interactions with an electromagnetic field via conversions of electromagnetic energy 

into thermal energy [26,27]. The heat is, thus produced in the whole bulk of the material 

at the same time and the activation of densification mechanisms are in need of much 

shorter times. Microwave sintering is, therefore, capable of providing denser specimens 

within the shorter sintering times compared to conventional sintering at the same 

heating rate. 

 

The average grain size of 3Y-TZP specimens sintered through microwave and 

conventional heating is displayed in Figure 3, as a function of final temperature. It can 

be seen that the grain growth is linear with sintering temperature. As indicated in Figure 

3, all sintered samples have a similar grain size. Small differences in MW process are 

shown as the dwelling time increases (5-15 min). The average grain size of the 

specimen sintered at 1100 ºC-5 and 15 min by MW reaches about 76 and 127 nm, 

respectively. While samples sintered at 1400 ºC-5 and 15 min yields a grain size of 216 

and 246 nm, respectively. The average grain size of the conventionally sintered 

specimen is about 270 nm at an identical temperature. Therefore, the graph indicates 

that the main parameter governing grain growth is the maximum sintering temperature. 

Moreover, these data show similar grain sizes in conventionally and microwave-sintered 

materials with high density suggesting that the microwaves had no direct effect on 

cation segregation at the grain boundaries during the phase partitioning process, which 

is known to be responsible for the sluggish grain growth during the final stage of 

sintering [28]. 

The higher heating rate used in MW results in grain refining, as can be seen from Figure 

3. Also, the faster heating through this method postpones access to the activation energy 
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required for grain boundary mobility. Consequently, a remarkable amount of absorbed 

energy during microwave heating is consumed for densification and not grain 

coarsening, as seen in Figure 3, where it is shown that a shorter sintering time as well as 

fast heating led to an increase of densification rate to grain growth rate. Therefore, the 

MW sample reaches the final grain size, with fully dense specimens, to the smaller 

values.  

To summaries despite the fact that the results of the final grain size of both methods, 

MW and CS, are very similar, the long heating-cooling time CS (~10 h) front MW (40 

min), sets important advantages on the industrial application of this method as an 

advanced process for new technological challenges. 

 

The microstructure of the sintered materials has been observed by FE-SEM in 

longitudinal sections along the axis of the cylindrical samples. The conventional-

sintered specimens exhibit a bimodal microstructure made of equiaxed grains with an 

average size of 270 nm at 1400 ºC-1h (Figure 4d). In the specimens sintered by 

microwave heating at 1200, 1300 and 1400 ºC-10 min (Figures 4a, 4b and 4c, 

respectively), the microstructure can be considered as homogeneous in the whole 

sample. For example, in the sample sintered at 1400 ºC (Figure 4c), the average grain 

size is 228 nm in the upper zone, 232 nm in the central and 235 nm in the bottom zone. 

Application of a heating microwave method has provided traces of improvement for the 

grain growth suppression in comparison with CS. 

 

The microwave device designed for this work with specific parameters enables the 

obtaining of materials with very high densities and, most importantly, a fully 

homogeneous microstructure. An important concept to consider in the MW designer is 
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the position of the system to measure the temperature of the sample. In our case, the 

necessary calculations have been made for the temperature measured by the optical 

pyrometer is exactly the same temperature as the specimen. Therefore, this shows that 

the temperature measured on the specimen top surface is representative of the bulk 

temperature. 

 

3.2. Hardness and fracture toughness 

 

Vickers hardness and fracture toughness of microwave and conventionally fabricated 

3Y-TZP materials are presented in Figures 5 and 6 as a function of sintering 

temperature. The experimental measurements show that the hardness values increase 

with the density data. 

As indicated by the Figure 5, the highest level of hardness belonged to the specimens 

sintered by the MW method. In the CS sample at 1400 ºC, the values are close to the 

sample by MW sintering with 15 min of dwelling time (~13.7 GPa). The maximum 

hardness achievement is for the sample sintered by MW at 1400 ºC/10 min, 16.0 GPa. 

This is an excellent value compared with earlier studies on MW-sintered 3Y-TZP that 

reported a hardness of 14.5 GPa [10], 11.3 GPa [29] and 8.3 GPa [30]. In summary, at 

1400 ºC, the hardness values of the MW-sintered materials are higher than those of the 

conventionally fabricated materials at same temperature with 1 h of dwelling time. This 

is due to better and faster densification of the MW-sintered specimens. 

 

The fracture toughness of MW-sintered specimens with 10 and 15 min of dwelling time 

decreased slightly, with increasing sintering temperature. On the contrary, the fracture 
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toughness values of samples sintered with 5 min of dwelling time increased with the 

final temperature. 

The results show that the hardness of sintered samples has a strong dependence on grain 

size. On the contrary, the results of the fracture toughness of sintered samples do not 

show strong dependence on grain size. As shown in Figure 6, the fracture toughness 

values decreased from 4.43 for the MW sample sintered at 1100 ºC/10 min up to 4.01 

MPa m1/2 for 1400 ºC/10 min, and values of samples sintered by MW with 5 min 

increased slightly. The CS sample showed a high value of fracture toughness (4.48 MPa 

m1/2), the same as MW sintered samples at 1400 ºC/5 min. For CS samples, this 

behaviour can be attributed, on the one hand, the heating mode and the other hand the 

refining of microstructure, which is a well-known method for enhancing the mechanical 

properties of Y-TZP bodies [31]. The heating mode may cause a lower thermal stresses 

in the sintered material and this can help to not crack propagate. Therefore, we can 

conclude that can be obtained CS materials with grain size slightly larger than MW and 

similar fracture toughness values. 

 

4. CONCLUSIONS 

Sintering behaviour of 3 mol% TZP-B nanopowder compacts is investigated in the 

current study using conventional and microwave-assisted sintering designed ad-hoc 

specifically for this investigation. 

This device included an optical pyrometer with an emissivity perfectly calibrated for 

measuring the temperature of the top surface of the zirconia materials. Using this device 

we achieved a fine control of the heating rate, final temperature and holding time. In 

these experiments with a susceptor-assisted and controlled heating rate, the temperature 

of the compact surpasses the temperature of the susceptor above 600 ºC without any 
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crack, which proved that the heating of the hybrid type is correct to obtain materials as 

desired. These hybrid microwave sintering experiments provided a homogeneous 

microstructure specimens with a larger density compared to the specimen 

conventionally sintered at the same temperature. Concerning microstructure changes, 

our results proved that the grain size was only dependent on the maximum sintering 

temperature, whatever the heating mode. However, due to the positive effect of 

microwaves on the densification, a microwave heated specimen showed a slightly 

smaller grain size when compared to the grain size achieved by conventional heating. 

Microwave sintered 3Y-TZP materials exhibited superior hardness values when 

compared with conventional fired materials, as was expected from their higher 

densities. On the contrary, the fine microstructure of the specimens produced by CS 

(270 nm), makes the value of fracture toughness similar to those achieved by MW. 
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Figure Captions 

 

Figure 1. Microwave system setup. 

 

Figure 2. Variation of the final relative density vs. maximum temperature for 

microwave (MW) and conventional sintering (CS) sintered materials. 

 

Figure 3. The grain size variations of MW and CS samples as a function of final 

temperature and grain size versus relative density of nanocrystalline 3 mol% yttria-

stabilized zirconia (3Y-TZP) after conventional (with a heating rate of 5 ºC min-1) and 

microwave (with a heating rate of 25 ºC min-1) sintering. 

 

Figure 4. The FE-SEM micrographs of nearly full dense specimens sintered by MW at 

1200ºC/10min (a), 1300ºC/10min (b), 1400ºC/10min (c) and CS at 1400ºC/60min (d). 

 

Figure 5. Influence of sintering temperature on Vickers hardness of microwave and 

conventionally fabricated 3Y-TZP materials. 

 

Figure 6. Influence of sintering temperature on fracture toughness of microwave and 

conventionally fabricated 3Y-TZP materials. 


