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Abstract

This paper presents a fractional flow model based on two-phase flow, resin and air, through a porous medium

to simulate numerically Liquid Composites Molding (LCM) processes. It allows predicting the formation,

transport and compression of voids in the modelling of LCM. The equations are derived by combining

Darcy’s law and mass conservation for each phase (resin/air). In the model, the relative permeability and

capillary pressure depend on saturation. The resin is incompressible and the air slightly compressible.

Introducing some simplifications, the fractional flow model consists of a saturation equation coupled with a

pressure/velocity equation including the effects of air solubility and compressibility. The introduction of air

compressibility in the pressure equation allows for the numerical prediction of the experimental behaviour

at low constant resin injection flow rate. A good agreement was obtained between the numerical prediction

of saturation in a glass fiber reinforcement and the experimental observations during the filling of a test

mold by Resin Transfer Moulding (RTM).

Keywords: B. Porosity; C. Computational Modelling; E. Resin Transfer Moulding (RTM)

1. Introduction

Understanding the formation of voids in LCM is necessary for proper manufacturing of composite struc-

tural parts. Many studies exist on void formation in LCM. A comprehensive review of these methods in [1]

and [2] confirms the interest of understanding void creation mechanisms and transport in order to develop
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new optimisation strategies. Despite continual progress in the last decades, still many unresolved issues and

limitations exist in current numerical approaches.

The resin flow in a partially saturated region can be modeled as a two-phase flow (resin and air) through a

porous medium. The numerical modeling and analysis of two-phase flows in porous media has arisen interest

for several years and different approaches have been developed. However few studies were carried out in LCM

with the multiphase approach. Pillai and Advani [3] were the first to propose a two-phase flow model in LCM

based on the Buckley-Leverett formulation. Later, Chui et al. [4] implemented the Buckley-Leverett model

numerically, using a front-tracking scheme, to predict the distribution of voids in RTM. They considered

the relative permeability to depend on saturation and pressure. More recently, Nordlund and Michaud [5]

have also applied a numerical multiphase flow model derived from soil mechanics to LCM processes. It is

based on the Richard’s equation, combined with van Genuchten expressions for the saturation and relative

permeability. In this case, an optimal combination of the parameters of van Genuchten’s equations has been

calculated from the experimental and numerical data using a curve fit optimization by the Response Surface

Method.

The equations of two-phase flow are derived from Darcy’s law and mass conservation for each phase

(resin/air). The property of the fluid fills up the volume and capillary pressure is given as a function of

saturation to close the system of equations. In this case, relative permeability depends on the degree of

saturation of the fibrous reinforcement and describes how each phase flows with respect to the other. Hence,

the choice of a constitutive relation between relative permeability and saturation represents a key issue in

LCM processes to describe the fluid flow.

In order to analyze the formation of voids during reinforcement impregnation, a one-dimensional solution

based on two-phase flow through a porous medium has been proposed by Gascon et al. [6]. This model is

based on a fractional formulation and leads to a coupled system of a nonlinear advection-diffusion equation

for saturation and an elliptic equation for pressure and velocity. In [6] permeability was assumed to be a

quadratic function of saturation and the continuity equation that governs the pressure distribution includes

a source term depending on saturation. Not only can the choice of relative permeability have a significant
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impact on the predicted saturation, but the quality of the approximation is also affected by the numerical

method used to solve the saturation equation. In [6] the elliptic pressure equation was approximated by

finite elements and a modified flux limiter technique [7] applied to solve the saturation equation.

In order to test and evaluate the ability of the proposed model, the numerical results of saturation were

compared to experimental injections carried out in a glass RTM mold under controlled manufacturing con-

ditions [8]. The experimentally observed saturation for different constant injection flow rates were compared

to numerical simulations. The validation of the mathematical model and of the numerical technique was

performed for a moderate constant resin injection rate of 0.1 ml/s [6, 9]. Numerical results in agreement

with experiments were obtained with the new fractional flow model with a quadratic power law to model

the relative permeability and a modified flux limiter technique to simulate the evolution of saturation in

the mold. However, the model did not reproduce the filling behaviour of the mold at lower constant injec-

tion flow rates when the effect of capillary forces becomes significant. As observed in Fig. 1 experimental

results show that the resin saturation increases at the beginning and then decreases in time at the break

points. This indicates the necessity to model a new behaviour connected with void formation and transport

in the numerical simulation of LCM processes. As described in detail in the sequel, it appears that air

compressibility plays an important role in this case.

It is well known that multiphase flows in porous media exhibit hysteresis [10]. The relative permeability

and capillary pressure have long been recognized in multiphase processes to depend not only on saturation,

but also on the direction of saturation changes. This hysteretic behaviour is typically modeled by modifying

the model of relative permeability as a function of saturation and using different expressions of capillary

pressure, depending on the imbibition or drainage stages during the filling process (see Fig. 2).

The objective of this study is propose a new model to simulate LCM processes taking into account

void formation, and air compression and transport. This requires an hyperbolic conservation law for the

saturation equation coupled with an appropriate pressure equation. The numerical model presented here

introduces two parameters, related to air dissolution and compressibility, in the sink source of the pressure

equation, from which velocity is computed. The model also includes capillary effects in the saturation
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equation. By adjusting these parameters, it is possible to simulate the formation and transport of voids in

LCM and model the behaviour observed in Fig. 1 at low constant resin injection flow rate, namely 0.025

ml/s here, as an effect of air compressibility.

The paper is organized as follows. Firstly, a short description of the saturation experiments is presented.

After a brief introduction on the general conservation equations and the constitutive laws for two-phase flows

(resin and air), the new fractional flow formulation with pressure and resin saturation as primary unknowns

is introduced in Section 3. The predictions of the new model are validated in Section 4 by comparison with

the results of injection experiments at constant flow rate. Concluding remarks are presented in Section 5.

Finally, a short derivation of the equations is included in the Appendix.

2. Experimental study

In order to test and evaluate the new two-phase flow model proposed in this investigation to predict the

evolution of saturation, numerical results of saturation are compared with the experiments reported in [8],

where unidirectional RTM injections were carried out at room temperature and atmospheric pressure in a

rectangular mold with transparent glass cover. The geometry considered is a rectangular mold cavity of 360

mm in length, 105 mm in width and of thickness 3.175 mm. In order to analyze saturation, the flow domain

was divided in a grid of 21 by 5 Representative Elementary Volumes (REV) along the length and width,

respectively. Saturation was evaluated in each REV and an average value was calculated along the width of

the piece. Each REV has a dimension of 15 mm by 15 mm. Right after the inlet port and just before the

vent, two narrow bands of 22.5 mm long by 105 mm wide were not analyzed.

Saturation was evaluated by 2D tomographic reconstruction using a visible light transmission (VLT)

method. This experimental technique is based on fundamental relationships of optics. It allows a better

understanding of the mechanisms of void formation and transport in dual scale fibrous reinforcements [8, 11].

The 2D tomographic reconstruction method by visible light transmission is a non-intrusive technique allowing

the dynamic monitoring of saturation in transparent fibrous reinforcements such as the E-glass reinforcement

used in the current investigation. This monitoring technique is based on two fundamentals of optics, namely
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the Beer-Lambert’s law and the Fresnel’s law, and it takes advantage of the refractive index matching

between the E-glass filament and the translucent thermoset resin in order to increase the visual contrast of

entrapped voids. In this regard, these latter voids appear as zones of lower transmitted light intensity.

The Beer-Lambert’s law is relating the transmission of light to the properties of the medium through

which the light is travelling. As a matter of fact, this optical law states a logarithmic dependency between

the light transmission through a medium and the product of the distance the light travels through this

given medium with the absorption coefficient of the corresponding medium material. On the other hand,

the Fresnel’s law gives the light transmission factor at a diopter interface, assuming normal incidence. From

these two optical laws, a transfer function can be established between the transmitted intensity of visible

light Ix at a given location of the translucent reinforcement to its corresponding local saturation level Se
r as

follows:

Se
r =

ln

⎛⎝⎡⎣Iunsat −
(
Irefunsat

/
Irefdry

)
· Idry

Isat −
(
Irefsat

/
Irefdry

)
· Idry

⎤⎦ ·
[(

Isat −B

Idry −B

)
− Irefsat

Irefdry

]
+

Irefunsat

Irefdry

⎞⎠
ln

(
Isat −B

Idry −B

) (1)

where Idry, Iunsat and Isat are respectively the transmitted light intensities through the reinforcement for

the completely dry state, the unsaturated states and the fully saturated state. On the other hand, Irefdry,

Irefunsat, I
ref
sat and B are correction factors to account for light source noise and background noise based on

direct measurements of light source intensity as well as background intensity (i.e. the intensity when no

light is transmitted).

These experimental measurements of transmitted light intensity are carried out using a digital camera

with a wide-angle lens set under the transparent RTM mold, a white light source set over the mold, a

light diffuser and monochromatic filters inserted between the light source and the mold. In this specific

configuration, a transparent cavity frame gives direct visual access to the light source for the digital camera

as shown in Fig. 3. Details on this experimental investigation on saturation in fibrous reinforcements can

be found in [8].

In this study, saturation results are taken for two experimental injections carried out at different con-

stant flow rates, at 0.025 ml/s and 0.1 ml/s, which correspond to capillary numbers of 0.00225 and 0.009
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repectively. The intrinsec permeability K, the resin viscosity μ and porosity φ have been set to 7.9× 10−10

m2, 0.4788 Pa.s and 0.614, respectively.

Fig. 1 shows the experimental saturation measured at different times during mold filling. Each curve

represents the evolution of saturation in a different strip of 5 REVs along the width of the grid. As seen in

Fig. 4, the shape of each saturation curve in time is divided in two distinct areas by a break point. The

slope and position of the break points will be used for the numerical validation of the proposed saturation

models. When resin saturation increases from one break point to the next one on the right the process can

be considered to be in a secondary imbibition stage. On the contrary, when resin saturation decreases after

the break points, a secondary drainage process rather takes place in terms of saturation.

3. Numerical modeling

The resin flow in a partially saturated region can be modeled as a two-phase flow (resin and air) through

a porous medium. Equations describing immiscible two-phase isothermal flows in a fixed mold cavity and

within an undeformable and immobile reinforcement are given by the mass balance equation and Darcy’s

law for each of the phases, respectively:

φ
∂

∂t
(ραSα) +∇ · (ραqα) = 0 , α = r, a (2)

qα = −λα (Sα)∇pα , α = r, a (3)

where r denotes the wetting phase (resin) and a the non wetting phase (air). The porous medium is

characterized by its porosity φ and intrinsic permeability K; the phase velocity qα is defined by Darcy’s law

and ρα, Sα , μα and pα are, respectively, the density, saturation, viscosity and pressure of the α phase. The

other porous medium properties are the relative permeability and capillary pressure, which are given as a

function of saturation. The mobility of the phase α is defined as

λα (Sα) =
Kkr,α (Sα)

μα
(4)
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where kr,α (Sα) is the relative permeability of the porous medium for phase α. Additionally, the system

satisfies the following volume constraint:

Sr + Sa = 1 (5)

which assures that the two-phases fill all the available pore space. Hence in the sequel, we note Sr = S and

Sa = 1− S. The capillary pressure defined by

pc(S) = pa − pr (6)

depends on saturation. Following the standard definitions of the literature, the capillary pressure on the

pore scale is defined as the difference between the non wetting (air) and wetting (resin) phase pressures.

However on the macroscale level, the capillary pressure has been commonly considered to be a function

of the wetting phase saturation only. Finally, to complete the system, constitutive relationships between

saturation, relative permeability and capillary pressure are needed. In this work, following the results of [6],

a quadratic power law has been chosen to express the relative permeability dependency upon resin saturation

as follows:

kr,r (S) = S2 , kr,a (S) = (1− S)2 (7)

Furthermore, the resin is incompressible (ρr is constant) and the air density is given by the ideal gas law.

Hence, we set

c̃a =
1

ρa

∂ρa
∂pa

(8)

where c̃a is the air compressibility coefficient, given by a positive constant. In this work, the viscosity of the

air and of the resin is supposed constant and gravity is neglected.

The mass conservation equations for each phase form a system of equations which can be coupled in

different ways. Summing Eqns. 2 and regrouping the terms, a fractional flow formulation is obtained with

pressure and resin saturation as primary unknowns [12]. Hence, the total mass conservation writes as follows

(see Appendix)

∇ · qt = −φ
∂

∂t
(ρrS + ρa(pa)(1− S)) (9)
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where the total flow is defined as

qt = ρrqr + ρa(pa)qa (10)

The resin phase equation for saturation takes the following form

φρr
∂S

∂t
+∇ · (qt f(S)) = −∇ · (Dc(S)∇S) (11)

where the resin fractional flow function f(S) and the diffusive coefficient Dc(S) depend on resin saturation

as follows:

f(S) =
ρrλr (S)

ρrλr (S) + ρa(pa)λa (S)
(12)

Dc(S) = f(S)ρa(pa)λa(S)
∂pc
∂S

(13)

Equations (9), (10) and (11) form a system of nonlinear partial differential equations, strongly coupled

through the dependence on saturation in the pressure equation and through the dependence of the total

flow appearing in the saturation equation.

As described in Appendix, the proposed model introduces simplifications which allow reproducing the

saturation behaviour observed in the experimental results and weakens the coupling between Eqns. (9),

(10) and (11). The resulting equations written in a fractional flow formulation lead to a coupled system

which consists of a nonlinear advection-diffusion for saturation and an elliptic equation for pressure. In this

formulation, the pressure p and the resin saturation S are chosen as primary variables. Hence, the numerical

simulation of the filling process involves the following operations at each time step:

1. The saturation distribution from the previous step (or initial data) is used to compute the saturation

dependent coefficients in the following pressure equation

∇ ·
(
K

μr
∇p

)
= φ (1− χ)

∂S

∂t
− φca (1− S)χ (14)

Two parameters have been included in the sink source of the pressure equation: χ which controls air

dissolution and ca which takes into account air compressibility. Note that, in general, these functions

depend on pressure although excellent numerical results have been obtained with constant terms.
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2. Calculate the velocity field from equation

q = − (
M−1

) Kkr,r

(
Ŝ
)

μr
∇p (15)

where

Ŝ = S + (Mχ)
1/2

(1 − S) (16)

with

M =
ρa
ρr

μr

μa
(17)

denoting the inverse of the endpoint mobility ratio.

3. Update saturation using a numerical method based on a modified flux limiter technique to solve the

following equation

φ
∂S

∂t
+∇ · (q f(S)) = −∇ · (D∇S) (18)

where f(S) represents the resin fractional flow

f(S) =
S2

S2 +M(1− S)2
(19)

The diffusive term in Eqn. (18) includes capillary effects as follows:

D(S) =
K

μr
M(1− S)2f(S)

∂pc
∂S

(20)

Standard boundary conditions are used with no pressure gradient in the normal direction to the mold walls,

specified flow rate on the inflow boundary and zero pressure in the empty part of the mold.

The pressure equation was solved by a standard Galerkin finite element method on the same mesh as

in the fluid volume technique used to find an updated approximation of saturation at each time step. The

domain is divided in N uniformly spaced elements with cells
[
xj−1/2,, xj+1/2

]
of width h. At each time step,

the pressure at the nodes xj+1/2 is calculated by standard finite elements. After pressure is determined,

the velocity at the centre of the finite elements is computed by differentiating the nodal fluid pressure in

Eqn. (15). Then, using the velocity field derived from the solution of the pressure equation, saturation is

calculated explicitly. The saturation S is assumed constant in each element and is determined by a flux
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limiter technique. Hence the following discretization of the saturation equation is proposed

Sn+1
j = Sn

j − Δt

h

(
F̂+
j+1/2 − F̂−

j+1/2

)
− (Δt)Cn

j (21)

where Δt denotes the uniform time step; F̂±
j+1/2 and Cn

j are the numerical approximations on the time step

tn of the flux function F and the diffusive term C, which are defined by

F =
q

φ
f(S) , C =

1

φ
∇ · (Dc(S)∇S) (22)

The accuracy of the discretization will be mainly related to the computation of the fluxes F at the

interfaces. Hence, a classical discretization for the diffusive term C can be considered while the numerical

fluxes are given by

F̂±
j+1/2 = F̂L±

j+1/2 + L
(
r±j+1/2

) [
F̂H
j+1/2 − F̂L±

j+1/2

]
(23)

where F̂L±
j+1/2 are upwind first order numerical fluxes defined as

F̂L+
j+1/2 =

1

2

{
Fj + Fj+1 − sign

(
q
∂f

∂S

)
j+1

(Fj+1 − Fj)

}
(24)

F̂L−
j+1/2 =

1

2

{
Fj + Fj+1 − sign

(
q
∂f

∂S

)
j

(Fj+1 − Fj)

}
(25)

and F̂H
j+1/2 denotes a second order numerical flux given by

F̂H
j+1/2 =

1

2

{
Fj + Fj+1 − Δt

hφ

(
q
∂f

∂S

)
j+1/2

(Fj+1 − Fj)

}
(26)

This numerical approximation is based on the flux limiter strategy described in [7] to calculate the void

fraction in LCM. The idea is to develop a numerical algorithm with the smoothing capability of a lower

order scheme when necessary and the accuracy of a higher order scheme when possible (see [7, 13] for more

details). Hence, Eqn. (23) is defined as a hybrid scheme that uses high order fluxes in smooth regions of

the solution with a limitation on the numerical fluxes to avoid numerical oscillations in the vicinity of the

discontinuous values. The flux limiter function L in Eqn. (23) is a smoothness indicator that prevents non

monotone behaviour at the expense of a certain loss of accuracy. In this work, the superbee limiter has been

used

L (r) = max {0,min (2r, 1) ,min (r, 2)} (27)
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and the coefficients r± in Eqn. (23) have been defined as a function of the ratio of consecutive gradients of

saturation following a similar reasoning as in [7].

4. Results and discussion

In order to validate the mathematical model, the predicted saturation was compared with injection

experiments at constant flow rates of 0.1 ml/s and 0.025 ml/s, which correspond to capillary numbers of

0.009 and 0.00225 respectively.

Experimental and numerical saturation profiles for the injection at constant flow rate of 0.1 ml/s are

displayed in Fig. 5 as a function of position for different times. Numerical results in Fig. 5 have been

obtained using the model proposed in the above section (see Eqs. (14), (15) and (18)), for the following

parameter values:

M−1 = 1 , χ = 0.32 , ca = 0 (28)

As observed in Fig. 5, numerical results obtained at a constant flow rate of 0.1 ml/s match correctly

and show the same behaviour as experimental observations. The new fractional flow model calculates

saturation, pressure and velocity with a quadratic power law model for relative permeability and a flux

limiter technique to simulate the saturation equation. The numerical results exhibit an excellent agreement

with experimental solutions for this test, when capillary effects are ignored in the saturation equation. In this

case, air compressibility is not an important factor. However the parameter χ, which controls air dissolution,

has been adjusted in order to simulate the transport of voids.

A comparison between experimental and numerical saturation curves as a function of time is shown in

Fig. 6 at three different positions along the length of the test mold (REV3, REV10 and REV16) for the

injection at constant flow rate of 0.025 ml/s. Numerical results represented by straight lines have been

obtained with the same numerical model as the one used to compute the results of Fig. 5. This means that

air compressibility and capillary effects have been ignored to compute the numerical solution of Fig. 6. In

order to reproduce the correct position of saturation curves in time the endpoint mobility ratio, defined as

the ratio between the maximum velocity of the displacing fluid (resin) and the maximum velocity of the
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displaced fluid (air) by the density ratio, has been taken with values greater than unity. In this simulation,

the following parameters have been used:

M−1 = 1.2 , χ = 0.32 , ca = 0 (29)

The position of the break points in the numerical simulation in Fig. 6 always decreases in time, indicating

only void formation and transport are numerically simulated, which corresponds to a secondary drainage

process at the flow front. Numerical results show the necessity to incorporate in the model the physical

phenomena of air compressibility and capillary effects at low flow front velocity. As matter of fact, in this

case capillary forces play an important role. Fig. 7 shows numerical results when the fractional flow function

f(S) in the saturation equation has been modified to include capillary effects following a typical imbibition

capillary pressure function for a two-phase flow [14], given by

pc(S) = pi (1 − S)−1/2 (30)

Numerical results of Fig. 7 have been computed using the following parameters:

M−1 = 1.2 , χ = 0.32 , ca = 0 , pi = 200 (31)

As seen in Fig. 7, numerical results can reproduce saturation when the break point is maximum. However

the model cannot predict the change of behaviour observed in experiments. A comparison between Figs. 6

and 7 illustrates that the different evolutions of saturation can be numerically simulated. However, in order

to take into account the change between these two different behaviours, air compressibility must also be

included in the model.

The numerical results of Fig. 8 show how air compressibility changes the predicted saturation. The figure

shows the experimental saturation as a function of time for three REVs considered and the comparison with

the numerical solution for the injection at constant flow rate of 0.025 ml/s simulated using the fractional

flow model with the following parameters

M−1 = 1.2 , χ = 1 (32)
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Here, the air compressibility coefficient ca has been adjusted by

ca =

⎧⎪⎪⎨⎪⎪⎩
7× 10−4 , p1 < p < p2

0 , else

(33)

where p1 and p2 are critical pressures between which the voids are compressed. In the case of low injection

flow rates, mesoscopic voids are created at the flow front during mold filling. Experiments show that initially

the saturation at the break points tends to decrease at the flow front during the first iterations (before 500

s approximately) because of the formation of voids. As the flow front moves, some voids remain entrapped

in the fiber bed, while others move with the resin flow [4]. Once the voids are created at the flow front,

the resin pressure rises with time as the injection proceeds. Hence, some entrapped air bubbles decrease in

sizes due to the progressive increase in pressure. Therefore there is a critical pressure, named p1 in Eqn.

(33), above which voids are compressed and decrease in size until another critical pressure p2 is reached for

which voids can be mobilized again. Note that the introduction of a critical pressure for void mobilization

has been also considered in [15]. After this second pressure level is reached, saturation at the break points

decreases until the end of mold filling. Hence, air compression has been included in the model for the two

critical pressure levels p1 = 2800 Pa and p2 = 6800 Pa to compute the numerical results in Figs. 8, 9 and

10.

Experimental and numerical resin saturation profiles for the injection at constant flow rate of 0.025 ml/s

are given as a function of position for different values of time in Fig. 9. A good agreement was found between

the numerical and experimental solutions. As seen from experimental results, saturation data exhibit a non

monotone oscillatory profile, developing overshoots before the break points are reached. This could be

explained by a faster resin velocity as a consequence of a new distribution of pore sizes after the air has

been compressed. Therefore endpoint mobility values greater than unity are needed in order to reproduce

the correct positions of the saturation curves like in other two-phase flow problems.

Numerical results of Fig. 10 reproduce the experimental observations of saturation in Fig. 1. The

numerical results of Figs. 8, 9 and 10 show that the new fractional model, including air dissolution, air

compresibility and capillary effects in the saturation equation, represents correctly the critical experimental

13



phenomena. From the experiments carried out in [8] and as already observed by several researchers [1,

16] when looking at the experimental saturation curves in time for the two different injection flow rates

considered, it is clear that the impregnation velocity plays a key role on air entrapment at the flow front.

However, pressure is also important since it governs the compression and dissolution of air bubbles in the

resin flow. The numerical and experimental results obtained at lower injection flow rates are consistent with

these observations.

Finally, in order to validate the proposed model on another geometry, the 1D numerical solution of

saturation in the divergence nozzle of Fig. ?? has been computed (dimensions are expressed in mm).

Numerical results of saturation as a function of time at six different positions along the divergent nozzle are

illustrated in Fig. 12. Saturation curves correspond to the injection at constant flow rate of 0.1 ml/s, at the

left, and of 0.025 ml/s, at the right. The tests have been simulated using the same conditions and the same

parameters as in the previously considered cases. The numerical saturation distribution calculated with the

fractional two-phase flow at four filling times of 250 s, 600 s, 1200 s and 1800 s for the injection at constant

flow rate of 0.1 ml/s is plotted in Fig. 13. The conduct was divided in 24 elements where the area of each

element represents its volume. The next step would be the extension of the model to 2D or 3D complex

problems.

5. Conclusion

In the current work a new two-phase flow model (resin/air) was developed and implemented to study the

formation, compression and transport of air bubbles in LCM processes. The model is based on a fractional

flow formulation with pressure and resin saturation as primary unknowns and two coupled equations: a

nonlinear advection-diffusion equation for saturation (transport) and a new elliptic equation for pressure

and velocity (flow). The equations can be efficiently solved using the finite element method to approximate

the pressure equation and a flux limiter technique to solve the saturation equation. In this formulation, the

relative permeability and capillary pressure are assumed to depend on saturation. Two parameters have

been introduced to incorporate air dissolution and compressibility in the model.
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The model and the numerical scheme have been validated by comparing simulation results with experi-

mental data. Although some simplifications have been carried out from the original mass conservation and

Darcy equations describing the two-phase flow process in porous media, the agreement between experimen-

tal and numerical predictions for two different RTM injection flow rates demonstrates that the model can

successfully predict saturation in LCM. Furthermore, the numerical procedure incorporates the important

physical features of void formation and transport with the effect resulting from air compressibility that comes

into play in RTM injections at lower injection flow rates. This formulation opens up new opportunities to

improve LCM flow simulations and optimize injection molds.
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Appendix A. Governing equations

The basic equations describing two-phase flow in a porous medium are given by the mass balance equation

and Darcy’s law for each of the fluid phases, resin (r) and air (a) in this case. In addition, we also have the

property that the two phases fill the available pore space and the capillary pressure law given by Eqn. (6).

We start from Eqn. (2), which describes mass conservation for the resin and air phases, respectively

∇ · (ρrqr) = −φ
∂

∂t
(ρrS) (A.1)

∇ · (ρa(pa)qa) = −φ
∂

∂t
(ρa(pa)(1− S)) (A.2)

The total mass conservation is obtained by adding the two members of the above equations

∇ · qt = −φ
∂

∂t
(ρrS + ρa(1− S)) (A.3)

where the total flow is defined as

qt = ρrqr + ρaqa (A.4)
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Since resin and air velocities are governed by Darcy’s law from Eqn. (3),

qr = −λr (S)∇pr (A.5)

qa = −λa (S)∇pa (A.6)

in view of the capillary pressure law given by Eqn. (6) the total flow can be rewritten as

qt = − (ρrλr (S) + ρaλa (S))∇pr − ρaλa (S)∇pc (A.7)

Denoting the resin fractional flow function f(S) by

f(S) =
ρrλr (S)

ρrλr (S) + ρaλa (S)
(A.8)

and the diffusive coefficient Dc(S) due to capillary effects by

Dc(S) = f(S)ρaλa(S)
∂pc
∂S

(A.9)

the following expression is derived when Eqn. (A.7) is multiplied by f(S)

f(S)qt = ρrqr −Dc(S)∇S (A.10)

which, combined with mass conservation for the resin (Eqn. (A.1)), leads to the saturation equation

φρr
∂S

∂t
+∇ · (qt f(S)) = −∇ · (Dc(S)∇S) (A.11)

The resulting system for pressure and saturation is given by Eqns. (A.3), (A.4) and (A.11) and it can be

summarized as

∇ · qt = −φ
∂

∂t
(ρrS + ρa(1− S)) (A.12)

qt = ρrqr + ρaqa (A.13)

φρr
∂S

∂t
+∇ · (qt f(S)) = −∇ · (Dc(S)∇S) (A.14)
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After dividing all equations by ρr (constant) and carrying out differentiation with respect to time on the

right hand side of the pressure equation, the system takes the following form

∇ · q̃t = −φ

(
1− ρa

ρr

)
∂S

∂t
− φ(1 − S)

ρa
ρr

c̃a
∂pa
∂t

(A.15)

q̃t = qr +
ρa
ρr

qa (A.16)

φ
∂S

∂t
+∇ · (q̃t f(S)) = −∇ ·

(
D̃c(S)∇S

)
(A.17)

where

f(S) =
λr (S)

λr (S) +
ρa

ρr
λa (S)

(A.18)

D̃c(S) = f(S)
ρa
ρr

λa(S)
∂pc
∂S

(A.19)

and

c̃a =
1

ρa

∂ρa
∂pa

(A.20)

denotes the air compressibility.

Our goal now is to introduce some simplifications in the equations so as to weaken the coupling be-

tween saturation and pressure/velocity in our model of LCM processes. For that purpose, three constant

parameters χ , M and ca have been introduced in the equations to capture the physical behaviour of the

original strongly coupled system. The parameter χ has been defined as the maximum void fraction in the

mold during the injection. Another important parameter in determining the effectiveness of two-phase flow

displacement is the endpoint mobility ratio defined as the ratio between the maximum velocity of the dis-

placing fluid (resin) and the maximum velocity of the displaced fluid (air) by the density ratio. The endpoint

mobility ratio is defined as the inverse of

M =
ρa
ρr

μr

μa
(A.21)

The value of M is very important to decide the correct position of the discontinuity in the resin saturation

at the flow front. Finally, in order to incorporate air compressibility effects included in the second term on

the right hand side of Eqn. (A.15) a third parameter ca is introduced.
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A detailed explanation of the equations ignoring air compressibility has been presented in [6]. For this

purpose, we have assumed that all air bubbles are transported in the flow and move at the same velocity as

the resin. The above assumptions result in an expression of the elliptic pressure equation similar to that of

the resin phase where the relative permeability used to calculate the velocity has been replaced by kr,r(Ŝ)

with

Ŝ = S + (Mχ)
1/2

(1− S) (A.22)

The fractional flow formulation to model LCM process proposed in [6] can be summarized as

∇ ·
(
K

μr
∇p

)
= φ (1− χ)

∂S

∂t
(A.23)

q = −Kkr,r(Ŝ)

μr
∇p , (A.24)

Ŝ = S + (Mχ)
1/2

(1− S) (A.25)

φ
∂S

∂t
+∇ · (q f(S)) = −∇ · (D(S)∇S) (A.26)

where f(S) represents the resin fractional flow

f(S) =
S2

S2 +M(1− S)2
(A.27)

and the diffusive term including capillary effects is given by

D(S) =
K

μr
M(1− S)2f(S)

∂pc
∂S

(A.28)

The definition of f(S) and D(S) is based on quadratic expressions of the relative permeability as a function

of saturation.

Numerical predictions of saturation based on this fractional two-phase flow formulation agreed well with

experiments for intermediate flow rates [6], as in the case of the injection at constant flow rate of 0.1 ml/s.

However, new hypotheses are needed for slower and larger injection flow rates. Firstly, in order to allow

the resin and air to flow at different speeds, the total velocity has been multiplied by the endpoint mobility

ratio (M−1). Secondly, the right hand side of the pressure equation includes now a second term taking into

account air compressibility. Hence, the new fractional flow formulation for pressure and saturation to model
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LCM process can be summarized as follows:

∇ ·
(
K

μr
∇p

)
= φ (1− χ)

∂S

∂t
− φca (1− S)χ (A.29)

q = − (
M−1

) Kkr,r(Ŝ)

μr
∇p , (A.30)

Ŝ = S + (Mχ)
1/2

(1− S) (A.31)

φ
∂S

∂t
+∇ · (q f(S)) = −∇ · (D(S)∇S) (A.32)

Note that the introduction of the air compressibility in the pressure equation allows modelling the

behaviour observed in the experimental injections at low constant injection flow rates. However, this remains

a difficult numerical problem because the original pressure equation changes from elliptic to parabolic, when

air compressibility depends on pressure.
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[13] Garćıa JA, Gascón Ll, Chinesta F. A flux limiter strategy for solving the saturation equation in RTM process simulation.

Compos Part A: Appl Sci Manufact 2010; 41: 78-82.

[14] Brooks RH, Corey AT. Hydraulic properties of porous media. Colorado State University Hydrology Papers 1964; 1-37.

[15] Gourichon B, Binetruy C, Krawczak P. A new numerical procedure to predict dynamic void content in liquid composite

molding. Compos Part A: Appl Sci Manufact 2006; 37(11): 1961-1969.
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Figure 1: Schematic representation of experimental saturation at different times during mold filling for the injection at constant

flow rate of 0,025 ml/s.

Figure 2: Typical drainage and imbibition capillary pressure curves in two-phase flow.
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Figure 3: The complete optical setup: (a) RTM mold with transparent glass covers, a digital camera and a filtered light source;

(b) typical image acquisition of the dynamic saturation of the glass fibrous reinforcement; (c) calculations of dynamic saturation

on a REV based grid (21 REV by 5 REV).

Figure 4: Experimental saturation at different times during mold filling.
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Figure 5: Experimental and numerical resin saturation as a function of position at different times for the injection at constant

flow rate of 0.1 ml/s.

Figure 6: Experimental and numerical curves of saturation as a function of time for three REV for the injection at constant

flow rate of 0.025 ml/s. Numerical results are represented by straight lines. Air compressibility and capillary effects have not

been taken into account in the saturation equation.
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Figure 7: Experimental and numerical curves of saturation as a function of time for three REV for the injection at constant

flow rate of 0.025 ml/s. Numerical results, represented by straight lines, have been obtained without air compressibility, but

by considering the capillary pressure given by Eqn. (30) in the saturation equation.

Figure 8: Experimental and numerical curves of saturation as a function of time for three REV for the injection at constant

flow rate of 0.025 ml/s. Numerical results, represented by straight lines, include air compressibility as described by Eqn. (33)

and the capillary pressure given by Eqn. (30) in the saturation equation.
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Figure 9: Experimental and numerical saturation as a function of position at different times for the injection at constant flow

rate of 0.025 ml/s. Numerical simulation incorporates air compressibility effects, described by Eqn. (33), and the capillary

pressure given by Eqn. (30) in the saturation equation.
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Figure 10: Numerical curves of saturation as a function of time for the injection at constant flow rate of 0.025 ml/s. Numerical

results including air compressibility effects, described by Eqn. (33), and the capillary pressure given by Eqn. (30) in the

saturation equation, reproduce perfectly the experimental data of Fig. 1.
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Figure 11: Divergent nozzle dimensions (mm).

Figure 12: Numerical curves of saturation as a function of time at six different positions along the divergent nozzle of Fig. ??

injecting at constant flow rate of 0.1 ml/s, at the left, and injecting at constant flow rate of 0.025 ml/s, at the right.

Figure 13: Numerical saturation at four filling times of 250 s, 600 s, 1200 s and 1800 s for the injection at constant flow rate

of 0.1 ml/s.
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Nomenclature

α subscript for phase (r resin, a air)

qα velocity of the phase α

qt total flow

q total velocity approximation

pα pressure of the phase α

p pressure approximation

pc(S) capillary pressure

ρα density of the phase α

μα viscosity of the phase α

φ porosity

Sα saturation of the phase α (Sr = S)

K intrinsic permeability

kr,α(S) relative permeability of the phase α

λα(S) mobility of the phase α

χ parameter that controls the void fraction

M inverse of the endpoint mobility ratio

c̃a air compressibility coefficient

ca parameter that controls the air compressibility

f(S) fractional flow

F(S) flux function in saturation equation

C(S) diffusive fuction in saturation equation

D(S), Dc(S) diffusive coefficients in saturation equation

F̂L±
j+ 1

2

, F̂H
j+ 1

2

first and second order numerical fluxes

L(r±
j+ 1

2

) limiter function to avoid oscillations

p1, p2 critical pressures between which air is compressible

pi Leverett coefficient in capillary pressure27


