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Abstract— Cloud Computing represents a new trend in the 

development and use of software. Many organizations are 

currently adopting the use of services that are hosted in the 

cloud by employing the Software as a Service (SaaS) model. 

Services are typically accompanied by a Service Level 

Agreement (SLA), which defines the quality terms that a 

provider offers to its customers. Many monitoring tools have 

been proposed to report compliance with the SLA. However, 

they have some limitations when changes to monitoring 

requirements must be made and because of the complexity 

involved in capturing low-level raw data from services at 

runtime. In this paper, we propose the design of a platform-

independent monitoring middleware for cloud services, which 

supports the monitoring of SLA compliance and provides a 

report containing SLA violations that may help stakeholders to 

make decisions regarding how to improve the quality of cloud 

services. Moreover, our middleware definition is based on the 

use of models@run.time, which allows the dynamic change of 

quality requirements and/or the dynamic selection of different 

metric operationalizations (i.e., calculation formulas) with 

which to measure the quality of services. In order to 

demonstrate the feasibility of our approach, we show the 

instantiation of the proposed middleware that can be used to 

monitor services when deployed on the Microsoft Azure© 

platform.  

Cloud Computing; Software as a Service; Monitoring; 

Middleware; Quality of Service; Models@run.time 

I.  INTRODUCTION 

Cloud Computing represents a new trend in the 
development and use of software systems. Cloud platforms 
allow the provision of infrastructure as a service (IaaS), 
platform as a service (PaaS), or software as a service (SaaS). 
The business model that cloud computing offers has a huge 
number of advantages (e.g., scalability, elasticity, 
availability, pay-as-you-go flexible charging). These 
advantages could be translated into quality requirements that 
should be fulfilled during the provision of the service. The 
provision of SaaS includes the delivery of software 
applications or services to clients via the Internet. A SaaS 
model may have a large number of tenants and each tenant 
may have hundreds of thousands of users, meaning that a 
SaaS infrastructure can support millions of users with 
scalable performance [1]. The terms under which a service is 
provided must be expressed by using Service Level 
Agreements (SLAs).  

Each service is typically accompanied by an SLA that 

defines the minimal guarantees that a cloud provider offers 
to its customers [2] (e.g., ensure web application server 
latency to be less than 100 ms). Cloud providers usually 
offer some performance guarantees for the provision of 
services and leave the detection of SLA violations to the 
customer [2]. Penalties are established when the service 
quality violates the SLA. Both the underestimation of 
provisioning and overestimation of de-provisioning lead to 
penalties [3]. Moreover, many cloud providers do not 
automatically credit the customer for SLA violations and 
leave the burden of providing evidence of any such violation 
to the customer [2]. The provision of an SLA violation report 
that helps both clients and providers to understand the real 
behavior of services and SLA compliance would be useful. 
Unfortunately, existing solutions have several drawbacks, as 
is reported by Muller et al. [4]: the SLAs that they support 
are not sufficiently expressive to model real-world scenarios; 
the monitoring configuration is coupled with a given SLA 
specification; and explanations of the violations are difficult 
to understand and potentially inaccurate.  

On the other hand, the deployment and execution of 
software systems in highly dynamic infrastructures (i.e., 
clouds) lead to a new set of challenges and requirements with 
regard to monitoring. A monitoring system should 
consequently have the flexibility to be adapted or changed 
according to new monitoring requirements and should keep 
up when a service scales up or down dynamically [5]. 

We believe that Model-Driven Engineering (MDE) may 
be a solution that provides the flexibility required to monitor 
cloud services. However, establishing the whole set of Non-
Functional Requirements (NFRs) to be monitored at design 
time is not always possible owing to renegotiations of SLAs 
or the addition of new NFRs to be monitored. It is therefore 
not sufficient to set requirements statically because they may 
change at run-time [6]. Baresi and Ghezzi [7] advocate that 
future Software Engineering research should be focused on 
providing intelligent support for software at run-time, thus 
crossing the current rigid boundary between development-
time and run-time. It is therefore necessary to define 
approaches that will permit the run-time monitoring of cloud 
services, the addition of new quality requirements to be 
monitored, and the selection of the most appropriate metric 
operationalization 1  depending on the cloud capabilities, 

                                                           
1  The operationalization of a metric consists of establishing a 

mapping between the generic specification of the metric and the 

concepts that are represented in the software artifacts to be 

measured [20]. 



without interrupting the execution of services. This challenge 
can be tackled by using models@run.time [8] [9], which, by 
means of dynamic reflection mechanisms, allows the 
calculation formula used for specific metrics to be changed 
in order to satisfy quality requirements as well as to define 
new quality requirements at run-time.  

In previous studies, we have proposed the definition of a 
monitoring process for cloud services by using 
models@run.time [10]. This monitoring process provides an 
SLA violation report, which contains the non-compliance 
with the SLA and additional NFRs that may be of interest to 
the service provider. In this paper, we propose the design of 
a platform-independent monitoring middleware for cloud 
services, which supports the monitoring of SLA compliance 
and provides a report containing SLA violations that may 
help stakeholders to make decisions regarding how to 
improve the quality of cloud services. Furthermore, our 
middleware definition is based on the use of 
models@runtime, which allows the dynamic change of 
quality requirements and/or the dynamic selection of 
different metric operationalizations (i.e., calculation 
formulas) with which to measure the quality of services. In 
order to demonstrate the feasibility of our approach, we show 
the instantiation of the proposed middleware that can be used 
to monitor services when deployed on the Microsoft Azure© 
platform.  

The paper is organized as follows. In Section II, we 
discuss existing approaches and platforms that are used to 
monitor cloud services. In Section III, we describe the 
monitoring process and introduce the problem that the 
proposed middleware is addressing. In Section IV, we 
present the architecture of the platform-independent 
monitoring middleware. In Section V, we present the 
instantiation of the proposed middleware for monitoring 
services that are deployed on the Microsoft Azure © 
platform. Finally, in Section VI, we present our conclusions 
and further work. 

II. RELATED WORK 

Recent research and industry efforts have focused on 
developing monitoring techniques, platforms, and 
frameworks that can assist cloud providers in tracking the 
SLA violations of certain service quality requirements. In 
this section, we analyze the flexibility and maintainability of 
these solutions when a monitoring requirement needs to be 
added or modified. 

Currently, many public cloud providers provide their 
consumers with the ability to monitor their cloud services 
using available monitoring tools for CPU, storage, and 
network [11].  These tools are often tightly integrated with 
their other cloud solutions. For example, CloudWatch 
(offered by Amazon) is a monitoring tool that enables 
consumers to manage and monitor their applications residing 
on AWS EC2 (CPU) services. However, this monitoring tool 
does not have the ability to monitor a service component that 
may reside on the infrastructure of other cloud providers 
such as GoGrid and Azure. Another limitation of tools of this 
kind is that they are only concerned with monitoring the 
quality of the service attributes for hardware resources (CPU, 

storage, and network) and lack the ability to monitor 
application-specific QoS attributes and SLA requirements 
(i.e., latency, performance, security). In addition, the 
majority of these commercial tools (e.g., CloudWatch, 
LogicMonitor) are not flexible enough to allow a service 
provider to extend the provided QoS attributes in order to 
monitor the fulfillment of SLAs. 

Some research works have also focused on surveying the 
current state of monitoring tools [12] or providing solutions 
for cloud service monitoring [4], [13], [14]. Fatema et al. 
[12] survey the range of monitoring tools that are currently in 
use in order to gain an insight into their technical 
capabilities. They also identify the desired capabilities of 
monitoring tools used to serve different cloud operational 
areas from the perspective of both providers and customers; 
the authors then present a taxonomy of the capabilities 
identified and analyze the tools available using these 
capabilities as a basis. They conclude that the monitoring 
tools were mostly not designed with the cloud in mind and 
must be extended or redesigned to be useable in cloud 
environments. Consequently, there is a lack of support for 
monitoring desirable capabilities that are specific to cloud 
platforms (e.g., elasticity, scalability).  

Keller and Ludwig [13] describe a framework named 
WSLA that can be used to specify and monitor SLAs for 
web services. They have developed a prototype of a WSLA 
compliance monitor. However, they do not study how to deal 
with different operationalizations in order to provide 
flexibility to their measurement service. 

Emeakaroha et al. [14] propose an application monitoring 
architecture named Cloud Application SLA Violation 
Detection architecture (CASViD). This architecture monitors 
and detects SLA violations at the application layer and 
includes tools for resource allocation, scheduling, and 
deployment. The monitoring infrastructure receives 
instructions to monitor applications from the SLA 
management framework and delivers the monitored 
information. It uses agents and an SMTP protocol to collect 
data from the cloud services. However, this approach does 
not have a flexible means to change the requirements and 
metrics to be monitored at run-time. Shao et al. [15] propose 
a runtime model for cloud monitoring (RMCM), which 
denotes a representation of a running cloud by focusing on 
common monitoring concerns. However, they do not 
mention specific non-functional characteristics for SaaS 
cloud environments and their metrics (e.g. scalability, 
availability, elasticity, etc.). Furthermore, they do not 
provide an SLA violation report and leave addressing non-
functional requirements from SLA as future work. Finally, 
Müller et al. [4] have designed and implemented 
SALMonADA, which is a service-based system for 
monitoring and analyzing SLAs in order to provide an 
explanation for violations. The SLA is described using a 
monitoring management document (MMD) to be consumed 
by the monitoring infrastructure; however, these authors do 
not help stakeholders in selecting alternative 
operationalizations depending on the platform, and require 
advanced users with knowledge about metrics and specific 
platforms. 



Overall, these monitoring solutions have focused on 
some specific quality attributes (e.g., performance) and some 
of them lack mechanisms to aggregate multiple quality 
attributes or parameters for a service consumer, which is a 
critical aspect of monitoring. To the best of our knowledge, 
there is a need for approaches that monitor the specific non-
functional characteristics of cloud services and that allow the 
flexibility of adding and modifying monitoring requirements 
at run-time. These changes in monitoring requirements can 
be due to the renegotiation of SLAs or result from the need 
to know the quality characteristics of a service that was not 
of interest when the monitoring requirements were 
established. 

III. MONITORING PROCESS OVERVIEW 

This section presents the process that is supported by the 
monitoring middleware. It contains a set of tasks that can be 
used to monitor, analyze, and report SLA violations. It may 
also be useful to service providers for monitoring additional 
NFRs that are not specified in the SLA but that might be of 
interest during the service provision (e.g., detecting 
variations in the service performance).  

Figure 1 provides an overview of the process. The first 
step of the process is the Monitoring Configuration task 
where the NFRS are specified as well as the procedure to 
collect data from the cloud service. The inputs for this 
activity are the NFRs to be monitored, which are represented 
by using a Monitoring Requirements Model. Since this 
model mainly contains the SLA terms, we use the WSLA 
Language [16] to express the SLA terms in a standardized 
manner.  The generation of the Monitoring Requirements 
Model can be supported by the SaaS Quality Model in order 
to classify and choose the appropriate operationalizations 
that are needed to monitor the NFRs contained in the SLA. 
The NFR classification is built in compliance with the SaaS 
Quality Model, which is aligned with the ISO/IEC 25010 
standard (SQuaRE) [17], and it contains all the 
characteristics, sub-characteristics, attributes, and metrics 
that are used to measure the quality of SaaS. The output of 
the Monitoring Configuration task is the Runtime Quality 
Model, which is a model@run.time that contains the 
monitoring directives. Also, the matching between non-
functional requirements and raw data to be obtained from the 
cloud takes place in the Monitoring Configuration task, and 
is included in the Runtime Quality Model. This latter model 
is used in the Measurement Process task to calculate all of 
the metrics that are involved in the monitoring process. The 
SaaS Quality Meta-model and the Runtime Quality Meta-
model have been designed by considering quality 
specifications and reports, which study the meta-classes that 
are involved in the quality measurement [18][19]. 

The second step of the process is the Measurement 
Process task, which captures raw data by using different 
retrieval scenarios based on the suitability of the technique 
for gathering quality data from cloud services (e.g., 
performance counters, custom counters, wrappers, APIs). In 
the Measurement Process Task, the metrics are calculated 
and the process is fed with useful and filtered information, 
which is used by the Analyze Results task. In the third step, 

the Analyze Results task uses the information generated by 
the Measurement Process, compares it with the non-
functional requirement thresholds specified in the 
Monitoring Requirements Model, and creates an SLA 
Violations Report in which any non-compliances are 
described. Further information on the monitoring process can 
be found in [10]. 
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Figure 1.  Monitoring Process Overview 

IV. MONITORING MIDDLEWARE ARCHITECTURE 

This section presents the platform-independent 
middleware architecture. This architecture allows the 
identification of SLA violations of cloud services by 
decoupling the specification of the quality attributes that 
must be evaluated from the monitoring process itself. Figure 
2 shows the different elements of the monitoring 
architecture.   
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Figure 2.  Monitoring Configurator & Middleware 

Three models are used to configure the monitoring 
middleware (i.e., the Monitoring Requirements Model, the 
SaaS Quality Model, and the Runtime Quality Model). The 
Monitoring Requirements Model (see Figure 2 (1)) contains 
all the NFRs that will be monitored. This model contains the 
constraints established in the SLA together with the 
corresponding thresholds, which should be evaluated. The 
SaaS Quality Model (see Figure 2 (2)) represents the 
decomposition of SaaS quality characteristics into 
measurable quality attributes and the different metric 
operationalization alternatives that can be used during the 
service monitoring process. The operationalization of a 
metric consists of establishing a mapping between the 
generic specification of the metric and the concepts that are 
represented in the software artifacts to be measured [20]. The 
possibility of having several operationalizations allows the 



most appropriate formula to be selected (by considering the 
availability of raw data in a specific platform). This model 
contains the actual parameters and instructions that are 
inherent to the platform, which can be retrieved by using 
different methods (e.g., agents, APIs, platform tools, 
libraries). Figure 3 shows an excerpt from the SaaS quality 
metamodel in which different operationalizations of a metric 
are specified.  

The Runtime Quality Model (see Figure 2 (3)), which is a 
model@run.time, specifies all of the monitoring 
requirements, metrics, calculation formulas, and 
configurations that are needed to access the services to be 
monitored during their execution.  

Figure 2 (4) shows the Middleware Configurator, which 
is an important component of the architecture. This 
component allows the definition of the Runtime Quality 
Model by matching the metrics that are specified in the 
Monitoring Requirements Model with the platform-
dependent formulas that are contained in the SaaS Quality 
Model. 

Attribute

name : EString

definition : EString

NFR

name : EString

description : EString

mandatory : EBoolean
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Figure 3.  SaaS Quality Model Excerpt 

Finally, Figure 2 (5) shows the Monitoring & Analysis 
Middleware containing two elements: the Measurements 
Engine, which calculates the monitoring values; and the 
Analysis Engine, which compares the calculated values with 
the thresholds that are specified in the Monitoring 
Requirements Model in order to be able to generate the SLA 
Violations Report. Since this approach has been proposed as 
a middleware, it will be implemented and deployed as a 
service in order to interact with the cloud services to be 
monitored. Moreover, it is possible to use ways to gather 
information from services deployed on any platform by 
mean of wrappers that allow the extension of a service to 
provide quality information. The main benefits of this 
architecture are its ability to monitor application-specific 
quality requirements and the flexibility and maintainability 
of the Monitoring & Analysis Middleware when new NFRs 
need to be added or modified or when a different metric 
operationalization is needed for a given quality attribute 
(e.g., using a more precise calculation formula to determine 
the probability of failure of a given cloud service). This 
advantage exists thanks to the Runtime Quality Model, 
which decouples those NFRs that will be evaluated and 

states how the calculation formulas from the Monitoring & 
Analysis Middleware will be applied. Another potential 
benefit is its ability to detect faults before they occur. 

V. INSTANTIATING THE MONITORING MIDDLEWARE IN 

MICROSOFT AZURE © 

In this section, we show how the platform-independent 
monitoring middleware can be instantiated. Despite the fact 
that the design and implementation of the middleware has 
been applied to monitor cloud services that are deployed on 
Microsoft Azure, similar actions can be taken to apply this 
solution to monitor cloud services that are deployed on other 
platforms like Amazon Web Services or Google App Engine. 

In our monitoring architecture, the Measurements Engine 
must gather and calculate data regarding the behavior and 
performance of the cloud services, while the Analysis Engine 
determines whether the SLA and other NFRs for the services 
of interest are fulfilled. Figure 4 shows the Measurements 
Engine with three possible data-gathering scenarios. Each 
scenario is numbered and colored in the picture to show its 
context of use. The first scenario (1) shows the case in which 
raw data is gathered directly. This direct gathering of raw 
data can be achieved by using the Microsoft Azure 
Diagnostics Service as the platform data retrieval 
mechanism. The data sources should be configured and 
directly retrieved from a set of Performance Counters 
(provided by the Microsoft Azure Diagnostics Service). This 
service is an extension service that provides support for data 
extraction for roles and virtual machines that are deployed on 
Azure Platforms [21]. The Microsoft Azure Diagnostics 
Module has to be imported and the data source in which the 
raw data will be stored and later manipulated should be set. 
In other platforms like AWS-EC2, performance counters can 
be obtained from the Performance Monitor Counter [22] or 
from other mechanisms, depending on how each platform 
retrieves performance counters from cloud services.  

The second scenario (2) is the case in which there are no 
Performance Counters for direct use. It is therefore necessary 
to build Custom Performance Counters by combining Azure 
Performance Counters or other Custom Performance 
Counters. In this case, the Measurements Engine calculates 
Custom Performance Counters and the result can be 
managed by the Microsoft Azure Diagnostics Service. This 
scenario represents indirect metrics in quality terms. It can be 
applied in any platform since monitoring data is a result of 
measurements that are calculated from data that is gathered 
using scenarios (1) and (3).  

Finally, the third scenario (3) is the case in which data 
regarding the service quality cannot be obtained directly 
from the Azure platform or any other platform and the 
corresponding cloud service has to be extended to provide 
the information needed. This can be done by means of 
wrappers that encapsulate the corresponding cloud service. 
The mechanism used to produce the data needed from the 
service is hard coded in these wrappers, which can also be 
considered to be Custom Performance Counters, and store 
the gathered data in any storage solution. Here, we have used 
Azure Storage. 



The following shows the implementation of the 
Monitoring & Analysis Middleware for the Microsoft Azure 
platform shown in Figure 5, which is based on the 
architecture presented in Figure 2. 

First, the Middleware Configurator allows the service 
monitoring directives to be prepared. It is assumed that the 
SLA has been defined for the service to be monitored. The 
NFRs are contained in the Monitoring Requirements Model. 
These NFRs can be seen as a subset of the NFR 
categorization contained in the SaaS Quality Model. The 
SaaS Quality Model includes associated parameters that are 
specific to the platform to facilitate the selection of the 
appropriate metrics depending on the platform. The user 
must therefore use the Middleware Configurator to match the 
NFRs with the Azure Performance Counters (see Figure 6) 
(i.e., Azure Performance Counters, Custom Performance 
Counters, and Wrappers defined as Custom Performance 
Counters). Finally, the Middleware Configurator is able to 
use this information to generate the Runtime Quality Model. 
When the Runtime Quality Model has been generated, it is 
used by the Monitoring Middleware. In this example, we 
provide a detailed description of how we have developed 
both the Configurator and the Monitoring & Analysis 
Middleware. 

The Middleware Configurator (shown at the top of 
Figure 5), was implemented in C# as an Azure Web Role by 
using Microsoft Visual Studio 2014. This configurator uses 
the Monitoring Requirements Model to specify the NFRs to 
be monitored. The specified NFRs must be matched with the 
formula that allows raw data to be collected from the 
services. The SaaS Quality Model is used to support the 
matching. 
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Figure 4.  Platform-Independent Raw Data Extraction Scenarios 

The Azure Service Counters must be matched with the 
NFRs that are contained in the Monitoring Requirements 
Model. When the matching is made, it is able to build the 
Runtime Quality Model. This model is consumed by the 
Measurements Engine allocated in the Monitoring & 
Analysis Middleware.  

The Monitoring & Analysis Middleware begins to gather 
the raw data with the quality information from the services 

using one of the three scenarios detailed above. The raw data 
obtained is stored in an Azure Storage Account. Two tables 
are used to store the monitoring information: (1) the 
WadPerformanceCounters Table where the raw data is 
gathered by the Diagnostics Service directly from the 
services; and (2) the CalculatedMetrics Table, which 
contains the calculated metrics that are generated by the 
Measurements Engine and passed to the Analysis Engine. 

It is also necessary to specify the sampling frequency of 
each Performance Counter, which may be different 
depending on the stakeholders settings, and the period of 
time in which the data is transferred to storage. Since the 
Runtime Quality Model can be changed, our example is able 
to handle updates of it at runtime, thus providing the 
monitoring infrastructure with flexibility. 

The Extractor class has been implemented in the 
Monitoring & Analysis Middleware to retrieve data from the 
tables to operate with it. Thus Extractor class (Figure 5) 
retrieves raw data in each period. Since Microsoft Azure bills 
per transaction, it is beneficial to retrieve all the necessary 
information in the fewest transactions possible. Therefore 
our solution saves on costs to the stakeholders.  
The Performance Counters provide two kinds of values: (i) 
counters, which specify a single value of a single data 
retrieval (e.g., the Request Execution Time of the last 
request); or (ii) accumulative data (e.g., the Total Number of 
Requests handled by the Service since it started). The client 
should therefore use the configurator to specify how to give 
meaning to the data retrieved in order to provide the highest 
quality measurements. 
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Figure 5.  Monitoring Solution for the Azure Platform 

Once the metrics have been calculated by the 
Measurements Engine, these values are stored in the 
Calculated Metrics Table (See Figure 5) to be analyzed by 
the Analysis Engine. The decision to use Windows Storage 
Tables was made because Windows Azure encourages the 



use of this kind of database, which is the most economic 
since it uses basic operations to store and retrieve data. 
However, the storage process is completely extensible to 
other databases if necessary.   

The monitoring takes place by default at the service 
level, which means that metrics represent the behavior of the 
set of roles that make up the service. Moreover, by using this 
proposal it is possible to maintain the measure of the metrics 
at the role level. This occurs if the stakeholder is interested in 
obtaining in-depth knowledge of the issues in order to find 
solutions (e.g., several roles performing at an excellent level 
could conceal one that is performing poorly, as the general 
results will be positive). However, although sometimes 
appropriate, this option will imply higher storage and 
computational costs. It is up to the user to accept the tradeoff 
because the Monitoring Middleware allows both 
possibilities. 

The monitoring middleware application has been 
exemplified through the use of a representative domain in 
which NFRs for SaaS architectures in cloud environments 
can be monitored and analyzed [23]. This example has been 
selected since it has been proposed for SaaS, thus permitting 
relevant NFRs to be monitored in cloud environments. The 
example is denominated as the Open Reference Case (ORC), 
which is used as an open source demonstrator to highlight 
the achievements of the European research project 
SLA@SOI. The ORC is an extension of the CoCoMe 
implementation [24] and provides a service-oriented retail 
solution that can be used in a trading system to handle the 
sales and stocking process [23]. For this running example, 
we have chosen Availability. We selected Availability 
because it is a relevant quality characteristic in cloud 
computing [25] and it clearly illustrates the use of the 
monitoring middleware when using both Azure Performance 
Counters and Custom Performance Counters. 

One of the SLA terms contains a commitment to making 
the inventory service in the retail solution available 99.50% 
or more of the time in a given calendar month. If the service 
offered fails to meet this commitment, a service credit will 
be applied to the customer’s account. Availability is defined 
as the “ability of an IT service or other configuration item to 
perform its agreed function when required” [26]. Availability 
is mathematically expressed in (1), while the availability 
formula is defined in [27]: 

Availability =
Agreed Service Time - Outage Downtime

Agreed Service Time
    (1)

 

Agreed Service Time is the period during which the 
inventory service should be enabled. If downtime is 
permitted, the planned and scheduled downtime can be 
excluded from the Service Agreed Time. Outage Downtime 
is defined as “the sum, over a given period, of the weighted 
minutes, a given population of a systems, network elements, 
or service entities” [27]. It is sometimes necessary to provide 
different users with several different functions 
simultaneously, meaning that partial capacity and partial 
functionality outages are often more common than the total 
outages [28]. Prorating is achieved by using a portion of the 

capacity of the primary functionality that is impacted. In this 
example, we assume that the Outage Downtime of a Web or 
Worker Role in Azure affects the entire service provision, 
such that if a role fails, the service fails. 

The first step for monitoring a given service is to identify 
the NFR to be monitored. The Monitoring Requirements 
Model with the NFR to be monitored is therefore the first 
input of the Monitoring Configurator. Figure 6 shows an 
excerpt of the model in question. 

The SaaS Quality Model represents an important and 
necessary support for establishing the metrics of the 
requirements model. An excerpt from the meta-model, which 
contains the core of the SaaS Quality Model, is shown in 
Figure 3. However, the SaaS Quality Model itself is not 
shown due to space limitations. The SaaS Quality Model 
contains the metrics at a high level, along with the specific 
platform parameters that are used to obtain the measurement 
results. It therefore represents the next input for the 
Monitoring Configurator. 

 
Figure 6.  Requirements Quality Model Instance 

As an example, the SaaS Quality Model contains two 
operationalizations of Availability (2) (3). These 
operationalizations are independent of the platform. 

Availability =
Uptime

Agreed Service Time     (2)
 

The Azure Performance Counters can be employed to 
directly calculate the Operationalization of Availability by 
using (3), bearing in mind that the Outage Downtime is the 
sum of each period in which the service has not been 
available.  

In order to calculate Availability, the Agreed Service 
Time is the initial period from which Availability must be 
guaranteed and specified in the SLA until the report date. 
However, all the historical data can be retrieved for the 
future reporting of the stakeholders’ needs. When the 
formula used to capture raw data is set as in (4) and the 
matching between (3) and the formula using the Agreed 
Service Time minus the sum of (4) between a period has 
been employed, the configurator is able to generate the 
model@run.time, which in our approach is denominated as 



the Runtime Quality Model. This model is consumed by the 
middleware in order to capture the raw data from the cloud 
services and to apply the metrics. 

Availability =
(Agreed Service Time - Σ Downtime)

Agreed Service Time
    (3)

 

The SLA violations regarding availability are reported by 
storing Downtime in the Calculated Metrics table. Downtime 
is calculated by using the Azure Performance Counter “\Web 
Service(_Total)\ Service Uptime”. This counter represents a 
cumulative value, which stores the service uptime. If the 
service is restarted, the uptime is a negative value. Thus, if 
ServiceUptimePreciseTimeStamp1 > ServiceUptimePrecise 
TimeStamp2, then downtime is calculated by using (4). 

Downtime = (Uptime2.PreciseTimeStamp - Uptime1.

PreciseTimeStamp) -  Uptime 2
    (4)

 

Downtime and Availability represent extraction scenario 
(2) since they are Custom Performance Counters. Downtime 
values are calculated using the uptime Azure Performance 
Counter. Moreover, we are monitoring cloud services at the 
SaaS level, so the availability is measured at that level; if the 
platform stops working, no data will be recorded by the 
middleware. Therefore, the last monitoring timestamp before 
the interruption and the first timestamp after the interruption 
are considered to measure the availability. Exceptions of this 
kind can be solved by the second scenario, using the same 
formula (4). The Downtime entries must be added in a 
determinate period. An excerpt from the Calculated Metrics 
Table is shown in Figure 7. This table shows the calculated 
downtime. From the downtime, availability is calculated. We 
have also monitored the latency, which can be calculated 
following the same steps. The results are presented in Table 
7. The NFR that has been calculated using the Calculated 
Metrics Table allows the Analysis Engine to compare the 
expected values with the real values and the NFR Violations 
Report can then be generated. 

Figure 8 shows the SLA violations report, which includes 
the monitoring results. In this case, if the SLA requires an 
availability of 99.50% in a period between two timestamps 
and the Measurements Engine of the Monitoring & Analysis 
Middleware uses the monitoring results to determine that the 
real availability of a service was 99.444%, there has been an 
SLA violation. The Measurements Engine calculates the 
metric by using the sum of the Downtime values (shown in 
Figure 7), and applies formula (3). Therefore, the Analysis 
Engine performs the comparisons and determines whether an 
SLA violation has occurred.  

Finally, it is important to bear in mind that the 
Monitoring Middleware can be developed for any platform 
by using the proposed architecture. The way in which the 
data will be retrieved from services is a key aspect to be 
considered. We have presented three different ways in which 
to obtain raw data on Azure Platforms. It is important to 
explore tools that are suitable for capturing data depending 
on the platform. The Diagnostic service has been used in this 

solution, although each platform presents APIs, tools, or 
libraries with which to capture raw data. If no way is 
established, the definition of Custom Performance Counters 
is always a valid option. 

 
Figure 7.  Calculated Metrics Table 

 
Figure 8.  SLA Violations Report Excerpt 

VI. CONCLUSIONS 

This paper presented a platform-independent monitoring 
middleware for cloud services that supports the monitoring 
of SLA compliance and provides a report containing SLA 
violations. This report may help service providers to 
understand the quality of the services with which their 
customers are provided and to make decisions regarding how 
to improve the quality of cloud services. In addition, we 
implemented the proposed middleware by using a runtime 
quality model. The application of models@run.time provides 
our solution with a high level of flexibility and 
maintainability; because changes essentially affect the 
runtime quality model rather than the entire infrastructure. 
We have instantiated our solution in the Azure Platform in 
order to be able to monitor any cloud service running in 
Azure. We have also defined three scenarios in which raw 
data is captured from the services: using Diagnostics Azure 
Service and its Performance Counters; using Diagnostics 
Azure Service and creating customized counters; and using 



“wrappers” to support customized information that cannot be 
captured by using the Azure Diagnostics Tools.  

Our current efforts focus on improving the usability of 
the monitoring middleware by providing consumers with 
facilities that can be used to specify the way in which a 
report should be viewed (e.g., chart or graph) and other 
facilities that will allow the monitoring results to be shared 
with others and the monitored historical data to be 
maintained. In addition, we are exploring the use of new 
techniques to be able to extract more valuable data from 
cloud services or to be able to cope with more complex 
quality attributes (e.g., security). 

As future work, we plan to perform an empirical 
evaluation of the efficiency, effectiveness, perceived ease of 
use, and perceived usefulness of end-users applying the 
monitoring middleware on different cloud platforms and 
with as many NFRs as possible. Furthermore, our approach 
does not yet reason about the interplay of service quality 
parameters and SLA requirements across multiple layers 
(software as a service, platform as a service, and 
infrastructure as a service). We plan to address this concern 
in future work. We also plan to explore the use of the 
monitoring middleware to detect faults in cloud services 
before they occur. This may imply the correlation of events 
with data from different sources (e.g., social media) in order 
to predict how external events can impact the quality of 
cloud services. 
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