

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/MED.2015.7158781

http://hdl.handle.net/10251/64735

IEEE

Guerrero López, D.; Román Moltó, JE. (2015). Improving accuracy of parallel SLICOT model
reduction routines for stable systems. 23rd IEEE Mediterranean Conference on Control &
Automation (MED 2015). IEEE. doi:10.1109/MED.2015.7158781.

Improving Accuracy of Parallel SLICOT Model Reduction Routines for
Stable Systems*

David Guerrero-López1 and José E. Román1

Abstract— This paper shows part of the work carried out
to develop parallel versions of the SLICOT routines for model
reduction of stable systems. In particular, the routines that have
been parallelised are those based on the solution of Lyapunov
equations. The goal is to be able to work with larger unreduced
models and also to obtain better performance in the reduction
process. New routines have been developed using standard
libraries to improve portability and efficiency. A preliminary
version was released previously by the authors, which achieved
high performance. However, accuracy improvements have been
necessary in order to make the new routines similar to the
sequential ones in this aspect. Routines presented in this paper
preserve good performance obtained by the previous parallel
implementation while maintaining high accuracy of sequential
SLICOT routines.

Keywords: parallel computing, control linear systems,
model reduction, Lyapunov equation

I. INTRODUCTION
In the area of system control, large systems appear fre-

quently. As technology advances, more accuracy is wanted
in the solution of problems arising from real world. This
desire of increased accuracy usually involves working with
larger and larger problems. However, high order systems are
obviously harder to manage than lower order ones. That is
why model reduction is so important in control theory. By
means of model reduction, large systems can be reduced to
a size that allows being processed in an easier or faster way.

However, the process of model reduction itself must deal
necessarily with the original unreduced system, thus becom-
ing a computationally demanding task. There are multiple
algorithms and libraries that implement reduction methods,
although most of them are sequential ones. Therefore, the
availability of parallel model reduction routines is a valuable
asset, enabling to work with larger systems in terms of both
memory and time requirements.

In [1], parallel routines for model reduction were pre-
sented. However, later work showed that, for some systems,
when large distribution block sizes are used, the accuracy
of the reduced models is far from that obtained using the
equivalent sequential routines of SLICOT [2].

A new approach has been adopted for the main kernel
of those parallel routines (the Lyapunov solver that obtains
the Cholesky factor of the solution), providing a solution
to the problem with high accuracy while maintaining good
performance. This new approach is described in this paper.

*This work was partially supported by the Spanish Ministry of Economy
and Competitiveness under grant TIN2013-41049-P.

1David Guerrero-López and José E. Román are with the D. Information
Systems and Computation, Universitat Politècnica de València, Cam de Vera
sn, 46022 Valencia, Spain {dguerrer,jroman}@dsic.upv.es

In the next sections, first a brief introduction to model
reduction is given. The importance of Lyapunov equations
for model reduction is discussed in section III, and var-
ious methods are described. Then, the developed parallel
algorithms are explained, focusing on the new approach for
improved accuracy. In the final sections, experimental results
are shown after describing the problems used in the tests.

II. MODEL REDUCTION OF STABLE SYSTEMS

Model reduction of stable systems is a necessary step for
model reduction of unstable systems. Most of the methods
to reduce unstable systems rely on first computing a reduced
model of the stable part of the system. Thus, when the
goal is to obtain new parallel implementations for model
reduction, the first thing to be accomplished is to obtain
parallel algorithms for model reduction of stable systems.

There exist many different methods that can be used
for model reduction of stable systems [2]. However, those
working with the state-space representation of the system
are usually more adequate for a parallel implementation.
As they work with matrices representing the system, these
methods are commonly based on algebraic operations with
these matrices. There are several parallel linear algebra
libraries that provide some of the most frequently used matrix
operations, thus helping to parallelise those methods.

In this kind of methods, truncation methods are specially
suitable since they can be applied to many types of systems.

Given a linear-time invariant system in its state space rep-
resentation (a continuous time system is shown, the process
for discrete time systems is similar)

ẋ(t) = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t), (2)

truncation methods for model reduction are based on com-
puting a similarity transformation matrix S which leads the
system to an equivalent representation[

S−1AS S−1B
CS D

]
=

 A11 A12 B1

A21 A22 B2

C1 C2 D

 . (3)

In this new (but still equivalent) representation, the system
concentrates its most valuable state variables in the leading
submatrix, A11. Then a truncation is done, neglecting the
effect produced by matrices A12, A21, A22, B2, C2 and their
associated state variables. The remaining system becomes

ẋr(t) = A11xr(t) + B1u(t), (4)
yr(t) = C1xr(t) + Du(t). (5)

The criterion by which a state variable is considered to be
more/less valuable than others depends on the properties that
want to be preserved in the reduced model. This produces
several different truncation methods. Typical ones are based
on what is known as a balanced representation of the
system. In this representation, the system is expressed in
such a way that its Grammians are equal and diagonal. The
Grammians of observability and controllability of a system
can be seen as two matrices representing the weights of each
state variable over these important properties. The truncation
method that uses the balanced realisation of the system tries
to preserve these important properties in the reduced model.
This truncation method is known as the square root method
(SR) and is one of the methods implemented in the sequential
library SLICOT that have been parallelised in this work.

A. SLICOT routines for model reduction of stable systems

SLICOT1 is a collection of routines for control theory [3],
that was partly developed under a European project with
the aim of formalising and extending existent collaboration
with respect to robust numerical software for control systems
analysis and synthesis.

SLICOT provides Fortran 77 implementations of numer-
ical algorithms for computations in systems and control
theory. Based on numerical linear algebra routines from
BLAS and LAPACK, SLICOT provides methods for the
design and analysis of control systems. The basic ideas
behind the library are usefulness of algorithms, robustness,
numerical stability and accuracy, performance with respect to
speed and memory requirements, portability and reusability,
standardisation and benchmarking.

The main routines of the SLICOT library for model
reduction of stable systems are:
• AB09AD computes reduced (or minimal) order balanced

models using either the Square-Root or the Balancing-
Free Square-Root Balance & Truncate method.

• AB09BD computes reduced order models using the
Balancing-Free Square-Root Singular Perturbation Ap-
proximation method.

• AB09CD computes reduced order models using the
optimal Hankel-Norm Approximation method based on
Square-Root balancing.

• AB09DD computes a reduced order model by using the
Singular Perturbation formulas.

We have developed parallel version of routines AB09AD,
AB09BD and AB09DD, whose main operations are the so-
lution of Lyapunov equations (obtaining the Cholesky factor
of the solution) and the singular value decomposition.

III. SOLUTION OF STANDARD LYAPUNOV
EQUATIONS

All these methods have in common that they need to
compute the solution of standard Lyapunov equations (Gram-
mians of stable systems can be obtained as the solutions of
two Lyapunov equations).

1Software Library for Control Theory, http://slicot.org

The standard Lyapunov equation is presented in two forms,
one for continuous-time systems (6) and one for discrete-time
systems (7),

AT X + XA = −E, (6)
AT XA−X = −E. (7)

Here, A and E are real square matrices of size n. Matrix
E is symmetric, as well as the solution matrix X when
unique. The most commonly-used method for solving these
equations is due to Bartels and Stewart [4]. However, when
the solution is going to be used in the model reduction
methods mentioned previously, it is the Cholesky factor of
the solution that is desired. This Cholesky factor can be
obtained in an efficient manner by using the method due to
Hammarling [5]. We have focused in this method, because
it is the one used in the sequential SLICOT routines. In case
the matrices of the equations were sparse, iterative methods
could be more appropriate [6].

A. Hammarling’s method

Hammarling’s method [5] is an alternative for solving
Lyapunov equations when their right-hand side is positive
semidefinite and matrix A is stable. In these cases, the right-
hand side of the equation is usually in the form of the product
of a matrix by its transpose, and the Cholesky factor U of the
solution matrix X is the desired output. The above equations
become

AT UT U + UT UA = −BT B, (8)
AT UT UA− UT U = −CT C. (9)

This method produces the Cholesky factor of the solution
directly without explicitly computing the product in the
right-hand side of the equation. It is similar to Bartels-
Stewart method in that both of them work by transforming
the equation to a reduced form, then solving this reduced
equation and later obtaining the solution to the original
equation by a back transformation.

Transformation to reduced form
The transformation to reduced form is performed to obtain

the equation (working in the continuous case)

AT
s Xs + XsAs = −BT

s Bs, (10)

where Bs is an upper triangular matrix of size n × n,
and As is an upper quasi-triangular matrix of the same
dimensions (that is, upper triangular with the exception of
some nonzero elements in the first subdiagonal). This form
of the equation is obtained by reducing matrix A to the real
Schur form As, via computing the orthogonal matrix Z that
verifies As = ZT AZ. As can be seen as an upper block
triangular matrix, whose diagonal is formed by 1×1 or 2×2
blocks corresponding to real or complex eigenvalues of A,
respectively.

In this transformation to reduced form (10), matrix Bs

is obtained as the upper triangular matrix R from the QR
factorisation of the product BZ.

Solution of the reduced equation
To solve equation (10) for Us, the Cholesky factor of

the solution (Xs = UT
s Us), the involved matrices As,

Bs and Us are partitioned in a way that yields a 2 by
2 or 1 by 1 Lyapunov equation and two other equations.
This small Lyapunov equation is solved as a linear system
of equations (by Kronecker products). Then the other two
equations are updated. One of them is solved as a reduced
Sylvester equation in which the involved matrices are upper
quasi-triangular. The other equation is transformed by a QR
decomposition and matrix products to a reduced Lyapunov
equation that can be solved by this same procedure [5], [7].

The solution of this reduced equation in parallel has been
treated previously for the generalised case [8] and for the
standard case [9].

Back transformation
Once the solution of the reduced equation has been

computed, another transformation is required to obtain the
solution of the original equation. In Hammarling’s method,
this transformation consists in obtaining the QR factorisation
of the product of Us, the solution of the reduced equation,
and the transpose of matrix Z coming from the transforma-
tion to real Schur form, that is, computing UsZ

T = QUU .
With this transformation, the upper triangular matrix U ,

the Cholesky factor of the solution X of equation (6), is
obtained.

IV. PARALLEL IMPLEMENTATIONS

In order to obtain parallel versions of SLICOT routines
for model reduction of stable systems, sequential routines
have been taken as the starting point. Each routine has
been parallelised, including also parallel versions for other
routines used by it.

In the best case, a sequential routine makes use of routines
for which a parallel version is available. In these cases, a
simple modification has been needed. Calls to sequential
routines from the standard libraries BLAS and LAPACK
have been replaced by calls to the equivalent parallel routines
from PBLAS and ScaLAPACK, respectively.

However, there have been several routines in which this
process is not adequate. Some sequential routines did not
have the equivalent ScaLAPACK counterpart, thus requiring
parallelisation. Moreover, some routines made operations
over very small matrices, making it a bad idea just replacing
calls to sequential routines by calls to parallel ones. Some of
these routines have required a complete re-design in order to
be efficient. This re-design has usually consisted in a block
orientation of the algorithm before parallelising.

The process of parallelisation has generated these new
routines:
• Parallel driver routines for model reduction, including

routines that work with the original system: PAB09AD,
PAB09BD, PAB09DDS, and those working with the
system in reduced form: PAB09AY, PAB09BY.

• The kernel dedicated to solve Lyapunov equations:
PSB03OU, PSB03OT, PSB03OR, PMB04OD,
PMB04ND.

• Parallel versions of some other SLICOT routines
used by the main ones: PTB01IDS, PTB01WD,
PMB01UD, PMB03UD.

• Some parallel versions of LAPACK routines which
are not yet present in ScaLAPACK: PDGEES,
PDLANV (related to Schur decomposition), PDORGHR,
PDORGBR (to generate orthogonal matrices from el-
ementary reflectors), PDBDSQR (related to the SVD
problem).

• Parallel implementations of some basic matrix opera-
tions, not present in PBLAS: PDGEMM2, PDTTMM.

• Some other operations which are trivial in the sequen-
tial case, but require careful treatment in their paral-
lel versions: PDSHIFT, PDSHIFT1, PDTRSCAL,
PDDIAGZ.

A. New approach to improve accuracy

All these new parallel routines have a good degree of
parallelism, that complements their block orientation, thus
achieving good performance. However, the Lyapunov solver
is critical from the point of view of accuracy. In the cases
where the Grammians are not markedly positive definite,
accuracy of the results is affected by the block size used.
The critical part is the treatment of auxiliary matrices M1 =
U11A11U

−1
11 and M2 = B11U

−1
11 that appear in the solution

of the reduced equation of Hammarling’s method [5], [7].
In the sequential routines (those present in SLICOT), the
algorithm is arranged by 1× 1 or 2× 2 blocks. This means
that auxiliary matrices M1 and M2 are of size 2 × 2 at
most. A very well designed algorithm deals with the problem
of computing these matrices when the solution is close to
singular.

However, for the parallel algorithms to be efficient, they
have to be oriented to larger block sizes. Generalizing the
computation of these matrices to a larger size is difficult or
not even possible. Thus, in the first parallel implementations
[1], the algorithms to compute these auxiliary matrices are
not as accurate as those used in the sequential routines. This
means that when working with systems in which Grammians
are close to singular, accuracy decreases. This does not
usually happen with small block sizes, since then matrices
are smaller and the process to compute them goes better.
But in the parallel case, large block sizes are frequently used
in order to increase performance by decreasing the number
of communications. In these cases, accuracy of the reduced
model could be affected.

After evaluating this problem, if the parallel algorithm fails
to be as accurate as the SLICOT sequential routines, it is
not a good algorithm. It does not matter if the algorithm can
reduce the time to compute the reduced model if it is not
as good as the one that can be obtained using the sequential
routines.

So, a special effort has been made in order to evaluate
how to improve accuracy of the parallel algorithms. After
some initial failed attempts, a new idea has been taken
into account, namely performing exactly the same operations
(except for their order) as in the sequential algorithm. This

means working with auxiliary matrices M1 and M2 of size
2 × 2 at most, exactly as in the sequential algorithms, thus
allowing to use the same good algorithm to compute them.

When first considering this new idea, it seems that it
will make the algorithm perform the same operations as the
sequential ones, thus serialising the process. This would be
terrible for parallel performance. Moreover, working with
such small matrix sizes would spoil the performance gain
obtained by block orientation.

However, in the proposed algorithm operations involving
matrices of sizes 1 × 1 or 2 × 2 are blocked in larger
sizes making it possible to obtain a special block oriented
algorithm. This algorithm is similar to the initial block
oriented algorithm in the sense that it continues to maximize
locality of operations to improve cache reutilization.

In the new approach, operations inside each block are
not homogeneous. Several different operations are grouped
together in a new sense of block oriented operations, thus
benefiting from good performance of block oriented algo-
rithms (both in sequential and parallel) and good accuracy
of the sequential original algorithms.

A significant part of the parallel routines developed in the
first versions are preserved. Only routines directly involved
in the main kernel in charge of solving Lyapunov equations
have been changed in this new approach. New versions of
those routines have been developed again:
• PSB03OT, in charge of solving Lyapunov equations by

Hammarling’s method, has been re-designed.
• SB03OT2 is a new sequential routine for solving Lya-

punov equations by Hammarling’s method. It is very
similar to SB03OT SLICOT routine, but it returns aux-
iliary matrices M1 and M2 (apart from other auxiliary
data), which are needed outside the routine in this new
approach.

• PSB03OR2 is a re-designed version of PSB03OR from
the previous release. It solves the reduced Sylvester
equation that appears in solving the reduced Lyapunov
equation. But now it does so in a way more similar
to the sequential unblocked algorithm, using auxiliary
matrices M1 and M2 of small sizes.

The new codes are available from the authors under
demand, and will eventually be included in the SLICOT
repository.

V. EXPERIMENTAL RESULTS

The platform used for the performance evaluation is a PC
cluster with 6 nodes. Each node is a biprocessor computer
with two AMD Opteron processors (16 cores) at 2.1 GHz,
with 32 GB of RAM memory and Linux operating system.
Different nodes are interconnected by using an InfiniBand
QDR network.

When possible, processors of different nodes have been
used. This is done to avoid having different communications
among computing processes depending on whether they are
in the same node (communications via share memory) or not
(communications through the physical network).

A. Problems

Several test problems have been considered to evaluate the
new routines, in terms of performance as well as accuracy.

In order to see if the new algorithms can achieve good
performance in parallel, several problems have been gener-
ated synthetically. System matrices are generated in a similar
way as in [7] to test Lyapunov solvers, but specialised for
the standard equation as in [1].

The matrix A of size n × n, n = 3q, is generated as
A = W−1

n diag(A1, . . . , Aq)Wn, with

Ai =

 si 0 0
0 ti ti
0 −ti ti

 . (11)

Wn is a matrix of size n × n whose elements are all
one except those of the main diagonal which are zero.
The parameters si and ti determine the eigenvalues of the
generated matrix. They are chosen (in the continuous case)
as si = ti = ti, for a given value of t.

Matrices B and C of the system are chosen as square
randomly generated matrices, since no special features are
needed on these matrices by the implemented methods (this
is not very realistic but it is useful to have problems of large
size that help test performance of developed routines).

The order of the system used to test parallel routines has
been chosen to be 3000, which takes several minutes to solve
in the parallel platform used. Parameter t has been assigned
a value of 1.01.

When the goal of the test is to evaluate accuracy, things
change. In this case, it is better to work with problems with a
few number of inputs/outputs, so they can be easily checked
for time response. For this purpose, several real problems
taken from the SLICOT collection of benchmarks [10] have
been used. All of them have behaved similarly, so here only
one of them is shown. The chosen problem is known as
“eady” [10], and corresponds to the model of an atmospheric
storm track. It has 1 input, 1 output and 598 states. This
problem is an example of the kind of systems that produced
loss of accuracy when working with large block sizes in the
first parallel routines developed. This is the reason why it
is a good problem to test precision of the newly developed
routines. (Moreover, accuracy has also been assessed in the
large problems by observing a small number of randomly
selected inputs and outputs).

The routines PAB09AD and PAB09AY, that implement the
square-root model reduction method in parallel, have been
used in all the tests. Results obtained with these routines can
illustrate what can be expected with the other.

B. Timing results

The random system described above has been used in
different runs where it has been reduced by using PAB09AD
and PAB09AY routines. The measured parameter has been
the execution time.
PAB09AD is a driver routine that does all the necessary

operations to obtain a reduced model starting from an stable
system. Showing results of this routine would be enough

Fig. 1. Execution times of PAB09AD

to have an idea of the performance of the new parallel
routines. However, it is also interesting to show the results
of its auxiliary routine PAB09AY, that makes the same but
working with a system in a reduced form. This reduced form
is obtained by computing the Schur decomposition of the
matrix A of the system and applying it to the rest. PAB09AD
includes the computation of this transformation. However,
the main part of this transformation (obtaining the Schur
form of a matrix) spends an important part of the execution
time of the whole process, while not being a newly developed
routine. Thus, showing results without taking into account
that part of the computation is interesting in order to see
how the new routines perform.

Before testing the parallel routines, a block size has to be
chosen to be used in the parallel executions. For doing this,
the routines have been executed in only one processor using
block sizes varying from 32 to 150. The block size which has
required less execution time in the available platform (50) has
been used in the rest of parallel runs (although differences
have been small). This block size is not guaranteed to be
the best block size for the parallel algorithm (when running
with several processors), since in that case the block size also
affects the number and length of messages to be exchanged.
However, it can be considered to be a good approximation,
and it also allows to obtain the best sequential times for that
problem in the platform used.

Once the block size has been chosen, these routines
have been tested from 1 to 16 computing processors. For
each number of processors all possible configurations of
the processors mesh have been used, showing only the best
execution times obtained for a given number of processors.
Generally, square meshes (those in which the number of
rows and columns are similar) have worked better with both
algorithms (e.g., for 6 processors, possible meshes are 1×6,
2× 3, 3× 2 and 6× 1, the mesh of 3× 2 giving the lowest
execution time).

Figure 1 shows execution times obtained when reducing
the system via the PAB09AD routine.

Figure 2 shows execution times obtained when reducing
the system via the PAB09AY routine (starting from the same
system, but previously reduced to Schur form outside the
routine).

Fig. 2. Execution times of PAB09AY

As it can be seen, execution times reduce considerably as
the number of processors increases, but differences are larger
in the left portion of the figures corresponding to less pro-
cessors. This is usual in parallel algorithms. With increasing
number of processors, if the problem size remains constant,
the computational work to be done by each processor is
reduced thus decreasing the efficiency of the whole process.
It is expected that by increasing the problem size, efficiencies
will go up.

Moreover, in the platform used, when using more than 6
processors some of them will be in the same node, thus
communicating via shared memory and not through the
physical network. Our currently installed message-passing
library is optimised for communications through the physical
network, but has a poorer performance when communicating
inside one node. This can be the reason of the decay of
performance from that number of processors up, added to
the usual previously commented one. And moreover, the first
case with this decay is with 8 processors which suffers also
of a poorly square mesh (2×4 and 4×2 are the most ”square”
meshes that can be used for this).

Table I shows speed-ups and efficiencies of both routines.
This parameters have been computed using the execution
time of the parallel algorithm in one processor as the ‘best
sequential time’. This can be done, since this time is much
smaller than the execution time of the original SLICOT rou-
tines. The reason for this is that the corresponding SLICOT
routines are not block oriented, as opposed to the parallel
algorithm. Moreover, it should be noted that the block size
has been chosen trying to obtain the best execution time in
1 processor.

C. Accuracy results

The control system referred to as “eady” has been reduced
using PAB09AD routine and compared to the reduced sys-
tem obtained by its equivalent sequential SLICOT routine
AB09AD.

As explained previously, the first implementations of these
parallel model reduction routines presented loss of accuracy
for some problems when large block sizes were used. Thus,
an interesting test is to look at the accuracy results obtained
for increasing block sizes.

TABLE I
PARALLEL SPEED-UP (Sp = t1/tp) AND EFFICIENCY (Ep = Sp/p) FOR

VARYING NUMBER OF PROCESSES (p) FOR THE COMPLETE MODEL

REDUCTION (PAB09AD) AND STARTING FROM SCHUR FORM (PAB09AY)

PAB09AD p=2 p=4 p=6 p=8 p=12 p=16
Sp 2.02 3.85 5.45 5.22 7.55 8.33
Ep 101.19 96.26 90.84 65.21 62.95 52.03

PAB09AY p=2 p=4 p=6 p=8 p=12 p=16
Sp 2.07 3.87 5.60 4.95 7.26 8.35
Ep 103.44 96.63 93.41 61.83 60.47 52.21

Fig. 3. Bode plot for “eady” problem reduced using different block sizes

Since reducing a model is a complex process involving
several operations, some of them iterative (e.g. Schur de-
composition), executions with different number of processors
or different block sizes lead to different final results, while
being equivalent representations of the same system. This
makes it difficult to verify the correctness of the results.
Comparing the matrices of the resulting systems is not
adequate.

In this cases, an adequate method to compare the systems
obtained from different executions is to look at their time
response. Of course, this can only be done when working
with problems with a few number of inputs/outputs. This is
not a problem in this test.

Thus, Bode diagrams have been used to check visually for
the similarity of the different obtained systems.

In Figure 3, Bode diagrams of the original unreduced
system are shown together with the same diagrams for the
reduced systems obtained by the sequential SLICOT routine
and the new parallel routines executed with different block
sizes: 10, 20, 50 and 100.

It can be seen that all of them are very similar. In fact, the
reader will see only one plot with a very small noise in some
parts of it. But there are six different plots, corresponding
to the original unreduced system, reduced system obtained
by the sequential SLICOT routine and four reduced systems
obtained by the parallel routines with four different block
sizes.

When magnifying the image, it can be seen that all reduced

systems have coincident Bode plots, which are very similar to
the unreduced system (this did not happen with the previous
version of parallel routines, that presented differences at high
frequencies for large block sizes). All the runs have obtained
the same order for the reduced system (91).

VI. CONCLUSIONS
Model reduction is an important problem in control theory.

However, there are not many parallel algorithms for reduc-
ing systems. Parallel implementations for SLICOT model
reduction routines of stable systems have been previously
developed [1]. However, precision of the parallel routines
for some problems could be affected by the block size used
in the process, making the result not as good as that obtained
by the sequential SLICOT routines.

As presented in this paper, the main kernel of those paral-
lel implementations, related to solving Lyapunov equations
computing the Cholesky factor of their solutions, has been
re-designed. A new parallel algorithm has been developed,
which keeps both block orientation, which is needed to have
good parallel performance, and performs the same operations
as in the sequential routines, which allows preserving good
accuracy of SLICOT routines independently of the block size
used in the computations. Experimental results show that
these two desired features have been achieved.

Execution times are considerably reduced, making it pos-
sible to work with larger systems more quickly. Note that
even the execution time in 1 processor is reduced, thanks to
the block orientation of the parallel algorithms.

Moreover, precision of the new algorithm is similar to that
obtained by the original sequential SLICOT routines.

REFERENCES

[1] D. Guerrero, V. Hernández, and J. E. Román, “Parallel SLICOT model
reduction routines: the Cholesky factor of Grammians,” in 15th IFAC
World Congress on Automatic Control, Barcelona, 21-26 July, 2002.

[2] A. Varga, “Model reduction software in the SLICOT,” in Applied and
Computational Control, Signals, and Circuits. Springer, 2001, vol. 2,
pp. 239–282.

[3] P. Benner, V. Mehrmann, V. Sima, S. V. Huffel, and A. Varga, “Slicot–
a subroutine library in systems and control theory,” in Applied and
Computational Control, Signals, and Circuits. Springer, 1999, vol. 1,
pp. 499–539.

[4] R. H. Bartels and G. W. Stewart, “Solution of the equation AX +
XB = C,” Comm. ACM, vol. 15, pp. 820–826, 1972.

[5] S. J. Hammarling, “Numerical solution of the stable, non-negative
definite Lyapunov equation,” IMA J. of Numerical Analysis, vol. 2,
pp. 303–323, 1982.

[6] T. Stykel and V. Simoncini, “Krylov subspace methods for projected
Lyapunov equations,” Applied Numerical Mathematics, vol. 62, no. 1,
pp. 35 – 50, 2012.

[7] T. Penzl, “Numerical solution of generalized Lyapunov equations,”
Numerische Simulation auf massiv parallelen Rechnern, Technische
Universität Chemnitz-Zwickau, Tech. Rep. SFB393/96-02, May 1996.

[8] D. Guerrero, V. Hernández, J. E. Román, and A. M. Vidal, “Parallel
Algorithms for the Cholesky Factor of Generalized Lyapunov Equa-
tions,” in 5th IFAC Workshop on Algorithms and Architectures for
Real-Time Control, Cancun, Mexico, April 1998, pp. 237–242.

[9] D. Guerrero, V. Hernández, and J. E. Román, “Parallel Solution of
the Standard Lyapunov Equation by Hammarling’s Method,” Third
NICONET Workshop on Numerical Control Software, Louvain-la-
Neuve (Belgium), Tech. Rep., January 2001.

[10] Y. Chahlaoui and P. V. Dooren, “A collection of benchmark examples
for model reduction of linear time invariant dynamical systems,”
SLICOT Working Note 2002-2, Tech. Rep., February 2002.

