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ALGEBRABILITY AND NOWHERE GEVREY DIFFERENTIABILITY

F. BASTIN, J.A. CONEJERO, C. ESSER, AND J.B. SEOANE-SEPÚLVEDA

Abstract. We show that there exist c-generated algebras (and dense in C∞([0, 1])) every
nonzero element of which is a nowhere Gevrey differentiable function. This leads to results
of dense algebrability (and, therefore, lineability) of functions enjoying this property. In
the process of proving these results we also provide a new construction of nowhere Gevrey
differentiable functions.

1. Introduction and preliminaries

The work presented here is a contribution to the ongoing search for large algebraic
structures of functions on [0, 1] or R enjoying special properties. Given such a property,
we say that the subset M of functions which satisfies it is lineable if M ∪ {0} contains an
infinite dimensional linear (not necessarily closed) space. The concept of lineability was
coined by V. I. Gurariy and it first appeared in [1]. In a more general framework we have
the following.

Definition 1.1 (Lineability, [1]). Let X be a topological vector space, M a subset of X,
and κ a cardinal number.

(1) M is said to be κ-lineable if M ∪ {0} contains a vector space of dimension κ. At
times, we shall be referring to the set M as simply lineable if the existing subspace
is infinite dimensional.

(2) We also let λ(M) be the maximum cardinality (if it exists) of such a vector space.
(3) When the above linear space can be chosen to be dense in X we shall say that M

is κ-dense-lineable (or, simply, dense-lineable if κ is infinite).

Let us recall that (keeping the same notation as in the previous definition) we shall also
say that M is spaceable ([1]) if M ∪{0} contains an infinite dimensional closed subspace of
X.

Remark 1.2. (a.) Let us recall that the λ(M) from Definition 1.1 might actually not
exist. It is not difficult to provide natural examples of sets which are n-lineable for
every n ∈ N but which are not lineable. For instance, let j1 ≤ k1 < j2 ≤ · · · ≤
km < jm+1 ≤ . . . be positive integers and let M = ∪m{

∑km
i=jm

aix
i : ai ∈ R}. Since
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the sets {
∑km

i=jm
aix

i : ai ∈ R} (m ∈ N) are pairwise disjoint, M is finitely (but not

infinitely) lineable in C([0, 1]), the set of continuous functions in [0, 1].
(b.) Let us recall that, in [8], the authors introduced the lineability number of a set M

as follows
L(M) = min{κ : M is not κ− lineable}.

This number always exists and L(M) = λ(M)+ (the successor cardinal of λ(M)).

Since this concept appeared, it has attracted the attention of many authors, who became
interested in the study of subsets of RR enjoying certain special or, as they sometimes are
called, “pathological” properties (see, e.g., [1, 11, 13–15, 19] and references therein). Before
the publication of [1], several authors (when working with infinite dimensional spaces)
already found large linear structures enjoying these type of special properties (even though
they did not explicitly use the word lineability). We believe that the earliest result in this
direction (although negative!) was due to Levine and Milman (1940, [27]):

Theorem 1.3. The subset of C([0, 1]) of all functions of bounded variation is not spaceable.

On the other hand, in 1966, Gurariy [23] obtained the following (positive) result within
the framework of continuous nowhere differentiable functions (Weierstrass’ monsters).

Theorem 1.4. The set of continuous nowhere differentiable functions on [0, 1] is lineable.

Afterwards, Fonf, Gurariy, and Kadeč [20] showed that the infinite dimensional subspace
from Theorem 1.4 can be chosen to be closed in C([0, 1]). As a matter of fact, Rodŕıguez-
Piazza [29] showed that the space constructed in [20] can also be chosen to be isometrically
isomorphic to any separable Banach space. More recently, Hencl [25] showed that any sep-
arable Banach space is isometrically isomorphic to a subspace of C([0, 1]) whose nonzero
elements are nowhere approximately differentiable and nowhere Hölder. We refer the inter-
ested reader to the recent expository paper [13] where many more examples can be found
and the state of the art of this trend is presented.

Let us also recall that, recently, Bernal [12] introduced the notion of maximal lineable
(and that of maximal dense-lineable) meaning that, when keeping the above notation, the
dimension of the existing linear space is equal to dim(X). Besides asking for linear spaces
one could also study other structures, such as algebras, which motivated the following
concept.

Definition 1.5 (Algebrability and Strong-algebrability, [3, 4] and [7]). Given an algebra
A and a subset B ⊂ A, we say that:

(1) B is algebrable if there is a subalgebra C of A so that C ⊂ B∪{0} and the cardinality
of any system of generators of C is infinite.

(2) When having A endowed with a topology, we would say that B is dense-algebrable
if (in addition) C can be taken dense in A.

(3) At times we shall say that B is, simply, κ-algebrable if there exists a κ-generated
subalgebra C of A with C ⊂ B ∪ {0} (where κ is some cardinal number).

(4) We also say that B is strongly κ-algebrable if there exists a κ-generated free algebra
C contained in B ∪ {0}.
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Of course, any algebrable set is, automatically, lineable as well. In general, the converse
is false. An example of this can be the set of (improper) Riemann integrable functions
on R (see, e.g., [30]) that are not Lebesgue integrable, denoted R(R) \ L(R). This set is
lineable (see [22]) but it is also clearly not algebrable. Indeed, for every f ∈ R(R), either
f2 /∈ R(R) or f2 = |f2| ∈ R(R) and, therefore, f2 ∈ L(R). Some of the first examples of
algebrable sets appeared in [4, 10].

Remark 1.6. As we did in Remark 1.2, (b.), one could also define the following algebra-
bility number:

min{κ : M is not κ− algebrable}.
Of course, the same definition can also be used for strong-algebrability.

Here we shall focus on a very particular class of functions, the so called nowhere Gevrey
differentiable functions. In what follows, C∞([0, 1]) denotes the Fréchet space of the func-
tions of class C∞ on [0, 1], endowed with the sequence (pk)k∈N0 of semi-norms defined by

pk(f) = sup
j≤k

sup
x∈[0,1]

|f (j)(x)|

or, equivalently, with the distance d defined by

d(f, g) =

+∞∑
k=0

2−k
pk(f − g)

1 + pk(f − g)
.

Following [17] we have:

Definition 1.7 (Gevrey differentiable function). For a real number s > 0 and an open
subset Ω of R an infinitely differentiable function f in Ω is said to be Gevrey differentiable
of order s at x0 ∈ Ω if there exist a compact neighborhood I of x0 and constants C, h > 0
such that

supx∈I |f (n)(x)| ≤ Chn(n!)s, ∀n ∈ N ∪ {0}.
Clearly, if a function is Gevrey differentiable of order s at x0, it is also Gevrey differen-

tiable of any order s′ > s at x0 (the case s = 1 corresponds to analyticity). On the other
hand:

Definition 1.8 (nowhere Gevrey differentiable function). A function f is said to be
nowhere Gevrey differentiable (NG from now on) on R if f is not Gevrey differentiable
of order s at x0, for every s > 1 and every x0 ∈ R.

Recall that (following [26]) a Borel set B in a complete metric linear space E is said to
be shy if there exists a Borel probability measure µ on E with compact support such that
µ(B + x) = 0 for any x ∈ E. A set is said to be prevalent if it is the complement of a shy
set. Also, if X is a Baire space, then a subset A ⊂ X is called residual (or comeager) if A
contains some dense Gδ subset of X.

Any nowhere Gevrey differentiable function is, in particular, nowhere analytic. The set
of nowhere analytic functions in C∞([0, 1]) is known to be prevalent ([9]), residual ([28]),
lineable ([11]), and even algebrable ([18]). In [9] it was also shown that the set of nowhere
Gevrey differentiable functions in C∞([0, 1]) is
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(i) a prevalent subset of C∞([0, 1]) and
(ii) a residual subset of C∞([0, 1]).

Thus (in [9]) the authors obtained “genericity” in both the measure-theoretical and the
topological senses. On the other hand nothing is known about the algebraic structure
of the set NG. One might think that since NG enjoys such a rich Borel structure, it
might also contains large algebraic structures (linear spaces, algebras, etc.) This is, in

general, not true. For instance, in [24] it was proved that if Ĉ([0, 1]) denotes the subset of
C([0, 1]) composed by the functions that attain the maximum exactly once in [0, 1], then

λ(Ĉ([0, 1])) = 1 and, contrary to what one might expect, Ĉ([0, 1]) is a dense Gδ subset of
C([0, 1]) (see [16, Proposition A]). Thus, there is no immediate implication between being
residual and containing large subspaces.

In this paper we shall settle this question for the set of nowhere Gevrey differentiable
functions. First of all, we give a direct proof of the maximal-dense-lineability of NG in
C∞([0, 1]) (Section 2). To achieve this result we use any nowhere Gevrey differentiable
function (see for example [9] for an explicit construction). However, to tackle the problem
of algebrability, a more precise knowledge of a very particular “key” function in NG is
needed. Following some ideas from [17, 18] we are able construct a (real valued) infinitely
differentiable nowhere Gevrey differentiable function. This construction allows us to prove
the maximal-dense-algebrability of the set of nowhere Gevrey differentiable functions in
C∞([0, 1]) (Section 3). We also obtain that λ(NG) = c (the continuum), which is the best
possible result in terms of dimension since the set of continuous functions has cardinality
c.

Throughout this paper Ckj denotes the binomial coefficient j!
k!(j−k)! , N is the set of strictly

positive natural numbers and N0 = N∪{0}. Also, bxc stands for the largest integer smaller
than x. The rest of the notation shall be rather usual.

2. Algebrability of NG

The aim of this section is to prove that the set NG is, both, strongly-algebrable and
dense-lineable in C∞([0, 1]) and that λ(NG) = c. This result is, of course, a consequence of
the dense-algebrability of NG in C∞([0, 1]) (section 3). Nevertheless, the dense-lineability
is here directly obtained, using any function belonging to NG; this is the reason why we
show it here as well, to illustrate the differences that one might encounter when dealing
with dense-lineability and dense-algebrability.

Proposition 2.1. For every α ∈ R, let eα(x) = exp(αx), x ∈ R. If f is nowhere Gevrey
differentiable on R, if a1, . . . , aN ∈ C are not all equal to 0 and if α1 < · · · < αN are real
numbers, then the function

g =

N∑
j=1

ajfeαj

is nowhere Gevrey differentiable on R. It follows that NG is strongly-algebrable.
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The proof of this previous result employs the so-called exponential-like function method.
This method was used in [21], rediscovered in [5] and, recently, studied in depth in [6]. Using
the fact that the composition of Gevrey functions is still Gevrey (see [31]) and following
the lines of the proof of [6, Theorem 5.10], as well as the functions given in the statement
of the Theorem, the result follows (we spare the details of its proof to the interested reader,
since in Section 3 we shall give an improvement of this result).

Of course, as an immediate corollary, we have:

Corollary 2.2. NG is lineable in C∞([0, 1]).

Lemma 2.3. If P denotes the set of polynomials, then P+NG ⊂ NG.

Proof. Let us consider g ∈ NG and P a polynomial. We proceed by contradiction. Assume
that g+P is Gevrey differentiable of order s > 0 at x0 ∈ R. Since P is analytic at x0, P is
also Gevrey differentiable of order s at x0 and the same holds for g = (g+P )−P hence a
contradiction. �

In order to obtain the dense-lineability of NG in C∞([0, 1]) let us recall the following
result.

Proposition 2.4 (Theorem 2.2 and Remark 2.5, [2]). Let X be a metrizable topological
vector space and consider two subsets A, B of X such that A is lineable and B is dense-
lineable in X. If A+B ⊂ A, then A is dense-lineable in X.

With this result at hand, we can now infer the following.

Proposition 2.5. The set NG is dense-lineable in C∞([0, 1]).

Proof. It follows directly from Corollary 2.2, Lemma 2.3, and Proposition 2.4. �

Next, let us show that the lineability dimension of NG is the largest possible one.

Proposition 2.6. λ(NG) = c.

Proof. Let us fix a function f ∈ NG. As before, we consider

D = span{feα : α ∈ [0, 1]},

where eα(x) = exp(αx). From Proposition 2.1, we just have to show that dimD = c. For
this, it suffices to show that the functions feα, α ∈ [0, 1], are linearly independent. Let us
assume that it is not the case. Then there exist c1, · · · , cN ∈ C not all zero, and α1 < · · · <
αN in [0, 1] such that c1feα1 + · · ·+ cNfeαN = 0 on [0, 1], i.e., f(c1eα1 + · · ·+ cNeαN ) = 0
on [0, 1]. Since the functions eα1 , · · · , eαN are linearly independent ([11, Theorem 3.1]),
there exists x ∈ [0, 1] such that c1eα1(x) + · · ·+ cNeαN (x) 6= 0. By continuity, there exists
a subinterval J ⊂ [0, 1] such that c1eα1 + · · · + cNeαN 6= 0 on [0, 1]. It follows that f = 0
on J , which is impossible since f is nowhere Gevrey differentiable. �
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3. Dense-algebrability of NG

The strategy to tackle the algebrability problem will be different from that of the previous
section. Here, we shall need a very particular NG function. We can achieve this (see
Proposition 3.1) by means of a function defined as a series, in which the nth term is built
via a special function which is Gevrey differentiable of order n on R.

For any s > 1, let fs denotes the function defined on R by

fs(x) =

 exp
(
−x−

1
s−1

)
if x > 0,

0 otherwise.

In [17], it is proved that fs is Gevrey differentiable of order s on R. Let us consider the
function ψs defined on R by

ψs(x) = fs(x)fs(1− x).

The function ψs is Gevrey differentiable of order s on R, analytic on ]0, 1[, the support
of ψs is [0, 1] and Dpψs(0) = Dpψs(1) = 0 for every p ∈ N0 (i.e. ψ is flat at 0 and 1).
Consequently, for every n ≥ 2, there exist Dn > 0 and hn > 0 such that

sup
x∈R
|Dpψn(x)| ≤ Dn(hn)p(p!)n ∀p ∈ N0 .

Keeping the previous notation, we have:

Proposition 3.1. The function ρ defined by

ρ(x) =
+∞∑
n=2

Cnψn
(
2nx− b2nxc

)
for every x ∈ R, where Cn =

(
Dn(hn2nn!)n

)−1
, is nowhere Gevrey differentiable on R.

Proof. Due to the flatness of ψn at 0 and 1, the function x 7→ ψn(2nx− b2nxc) belongs to
C∞(R) for every n ≥ 2. Moreover, for every p, from the choice of the coefficients Cn, the
series

∑+∞
n=2Cn2np supx∈R |Dpψn(x)| converges. Therefore, we obtain that the function ρ

belongs to C∞(R).

Let us show that ρ is nowhere Gevrey differentiable. The set Q of all points of the form
2−mk, where m ≥ 3 is a natural number and k is an odd number, is dense in R. Therefore,
it suffices to show that ρ is not Gevrey differentiable of any order at each point of Q. On
the contrary, assume that ρ is Gevrey differentiable of order s > 1 at some point x0 ∈ Q.
Let x0 = 2−m0k0. Then for n ∈ {2, . . . ,m0 − 1}, the function ψn(2nx− b2nxc) is analytic
at x0 and hence Gevrey differentiable of order s at x0. Consequently, the function

Θm0(x) :=
+∞∑
n=m0

Cnψn(2nx− b2nxc) = ρ(x)−
m0−1∑
n=2

Cnψn(2nx− b2nxc)
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is also Gevrey differentiable of order s at x0. Since Θm0 is periodic of period 2−m0 , we can
assume that x0 = 0. Then, there exist ε > 0, C > 0 and h >0 such that

sup
|x|≤ε
|DpΘm0(x)| ≤ Chp(p!)s ∀p ∈ N0 .

Since each derivative of Θm0 at 0 is equal to 0, Taylor’s formula gives that for every x ∈ R
and every p ∈ N, there exists a real number ξ between 0 and x such that

Θm0(x) =
DpΘm0(ξ)

p!
xp.

Then, we have

0 ≤ Θm0(x) ≤ Cxphp(p!)s−1 ∀p ∈ N, ∀ 0 < x ≤ ε,
and it follows that

0 ≤ Cnψn (2nx− b2nxc) ≤ Cxphp(p!)s−1

for every p ∈ N, n ≥ m0 and 0 < x ≤ ε. Let us fix n large enough such that n ≥ s, n ≥ m0

and h2−ne < 1. For every p ∈ N, we define then xp := 2−np−(n−1). For p sufficiently large,
we have 0 < xp < ε and we obtain then

0 ≤ Cnψn
(
p−(n−1)

)
≤ Chp2−npp−p(n−1)(p!)s−1,

where ψn
(
p−(n−1)

)
= e−pfn

(
1− p−(n−1)

)
. Consequently, we have

Cnfn

(
1− p−(n−1)

)
≤ Chp2−npep(p−pp!)s−1.

for every p large enough. The left-hand side converges to Cnfn(1) = Cne
−1 > 0 and the

right-hand side converges to 0 when p→ +∞. This leads to a contradiction. �

The following proposition improves Proposition 2.1. It is the second key of the main
result in this section.

Proposition 3.2. If F1, . . . , FN are analytic on R and not all identically equal to 0, and
if ρ is the function from Proposition 3.1, then the function

g =

N∑
i=1

Fiρ
i

is nowhere Gevrey differentiable on R.

Proof. As previously, consider the set Q of all points of the form 2−mk, where m ≥ 3 is a
natural number and k is an odd number. Since Q is dense in R, we just have to show that
g is not Gevrey differentiable of any order at each point of Q. On the contrary, assume
that g is Gevrey differentiable of order s > 1 at some point x0 = 2−m0k0.

Recall that we do not necessarily have flatness of ρ at x0. This is the reason why we set

Am0(x) :=

m0−1∑
n=2

Cnψn
(
2nx− b2nxc

)
and Θm0(x) :=

+∞∑
n=m0

Cnψn
(
2nx− b2nxc

)
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for every x ∈ R. Then, Am0 is analytic at x0 and that Θm0 is flat at x0. Of course, we also
have

ρ = Am0 + Θm0

and it follows that

g(x) =
N∑
i=1

Fi(x)
(
Am0(x) + Θm0(x)

)i
=

N∑
i=1

Fi(x)
i∑

j=0

Cji
(
Am0(x)

)i−j(
Θm0(x)

)j
=

N∑
i=1

Fi(x)
(
Am0(x)

)i
+

N∑
i=1

Fi(x)
i∑

j=1

Cji
(
Am0(x)

)i−j(
Θm0(x)

)j
=

N∑
i=1

Fi(x)
(
Am0(x)

)i
+

N∑
j=1

 N∑
i=j

Fi(x)Cji
(
Am0(x)

)i−j(Θm0(x)
)j

=

N∑
i=1

Fi(x)
(
Am0(x)

)i
+

N∑
j=1

cj(x)
(
Θm0(x)

)j
,

where for every j ∈ {1, . . . , N}

cj(x) :=
N∑
i=j

Fi(x)Cji
(
Am0(x)

)i−j
.

Let us fix a neighborhood V of x0 and let us show that there exists j ∈ {1, . . . , N} such
that cj is not identically 0 in V . We proceed by contradiction. Assume that cj(x) = 0 for
every j ∈ {1, . . . , N} and x ∈ V . This would mean that

1 C1
2Am0(x) · · · C1

N (Am0(x))N−1

0 1 · · · C2
N (Am0(x))N−2

0 0
. . .

...

...
...

. . . CN−1N Am0(x)

0 0 · · · 0 1





F1(x)

F2(x)

...

...

FN (x)


=



0

0

...

...

0


for every x ∈ V . Since F1, . . . , FN are not all identically equal to 0, there is x ∈ V
and j ∈ {1, . . . , N} such that Fj(x) 6= 0, which gives a contradiction since the matrix is
invertible. Let k be the smallest element of {1, . . . , N} for which ck is not identically equal
to 0 on V . Then, in this neighborhood, we have

g(x) =
N∑
i=1

Fi(x)
(
Am0(x)

)i
+

N∑
j=k

cj(x)
(
Θm0(x)

)j
.
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Since
∑N

i=1 Fi(x)
(
Am0(x)

)i
is analytic at x0 and since g is Gevrey differentiable of order s

at x0, we have that the function

Φm0(x) :=
N∑
j=k

cj(x)
(
Θm0(x)

)j
is also Gevrey differentiable of order s at x0. Then, there exist ε > 0, C > 0, and h >0
such that

sup
|x−x0|≤ε

|DpΦm0(x)| ≤ Chp(p!)s ∀p ∈ N0 .

From the flatness of Θm0 at x0, we also get that Φm0 is flat at x0. Then, by Taylor’s
formula, for every x ∈ R and every p ∈ N, there is ξ between x and x0 such that

Φm0(x) =
DpΦm0(ξ)

p!
(x− x0)p.

Consequently, we have

|Φm0(x)| ≤ Chp(p!)s−1|x− x0|p

for every x such that |x− x0| ≤ ε and for every p ∈ N.

Recall that the function ck is analytic at x0 and not identically equal to 0 in a neigh-
borhood of x0. Thus, there exists J ∈ N0 and dk analytic at x0 with dk(x0) 6= 0 and such
that

ck(x) = (x− x0)Jdk(x)

in a neighborhood of x0. Let us fix n ∈ N such that n > s, n ≥ m0 and hek2−n < 1.
As before, we consider xp := x0 + 2−np−(s0−1) for every p ∈ N. Then, on one hand, we

have

Φm0(xp)(
Θm0(xp)

)k
(xp − x0)J

= dk(xp) +

N∑
j=k+1

cj(xp)

(
Θm0(xp)

)j−k
(xp − x0)J

which converges to dk(x0) 6= 0 as p goes to infinity (the second term of the sum converges
to 0 since Θm0 is flat at x0). On the other hand, for p large enough, we have |xp − x0| ≤ ε
and it follows that

|Φm0(xp)| ≤ Chp(p!)s−1|xp − x0|p.
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Moreover, for p large enough, we have 2nxp − b2nxpc = p−(n−1) and fn
(
1 − p−(n−1)

)
converges to fn(1) = e−1 > 0 if p goes to infinity. Therefore, we obtain that∣∣∣∣∣ Φm0(xp)(

Θm0(xp)
)k

(xp − x0)J

∣∣∣∣∣ ≤ Chp(p!)s−1|xp − x0|p(
Cnψn

(
2nxp − b2nxpc

))k
|xp − x0|J

=
Chp(p!)s−12−n(p−J)p−(p−J)(n−1)(

Cne−pfn
(
1− p−n−1

))k
≤ C2nJ(

Cnfn
(
1− p−n−1

))k ( p!pp
)n−1

pJ(n−1)
(
hek2−n

)p
,

which converges to 0 as p goes to infinity. This contradiction gives the conclusion. �

Let H denote a Hamel basis of R, let A be an algebra generated by the functions ρeα
with α ∈ H and eα(x) = exp(αx). Then f of A if and only if f is of the form

f =
L∑
l=1

alρ
nleβl

where L ∈ N, al ∈ R for all l ∈ {1, . . . , L}, and βl 6= βl′ if l 6= l′.

Proposition 3.3. A is a c-generated free algebra contained in NG ∪ {0}.
Proof. By Proposition 3.2, A ⊂ NG∪{0}. Using the periodicity of ρ and the properties of
Vandermonde determinants, we obtain that the functions ρnleβl are linearly independent.

�

In order to obtain strongly dense-algebrability of NG, we are now going to modify a
little bit the definition of the previous algebra as explained in what follows. First we need
some additional notations and a lemma.

Let αm ∈ R (m ∈ N). Using the continuity of the multiplication by scalars, for every m,
we take km > 0 such that d(0, kmeαmρ) < 1

m . Let also Pm (m ∈ N) be a dense sequence of
polynomials in C∞([0, 1]).

Lemma 3.4. The family G0 := {Pm + kmρeαm : m ∈ N} is dense in C∞([0, 1]).

Proof. For every f ∈ C∞([0, 1]) and for every m, we have

d
(
f, Pm + kmeαmρ

)
≤ d(f, Pm) + d

(
0, kmeαmρ

)
≤ d(f, Pm) +

1

m
.

Since there is a subsequence M(k) ∈ N (k ∈ N) such that limk d(f, PM(k)) = 0, we conclude.
�

Now, take a sequence of different elements αm ∈ H (m ∈ N) and define kα = 1, Pα = 0
for α ∈ H\{αm : m ∈ N}. The “candidate” we are looking for is the algebra Ad generated
by

G := {Pα + kαρeα : α ∈ H} .



ALGEBRABILITY AND NOWHERE GEVREY DIFFERENTIABILITY 11

Theorem 3.5. Ad is a is c-generated free dense-algebra (in C∞([0, 1])) and contained in
NG ∪ {0}.

Proof. On the one hand, since the set of generators G contains G0, Lemma 3.4 provides the
density. On the other hand, the functions ρeα (α ∈ H \ {αm : m ∈ N}) are generators;
using Proposition 3.3 we obtain the fact that Ad is c-generated. It remains then to show
that Ad ⊂ NG ∪ {0}. An element f 6= 0 of Ad can be written as

f =

L∑
l=1

al

J∏
j=1

(
Pγj + kγjeγjρ

)n(l,j)
where J, L ∈ N, al ∈ R\{0} for all l ∈ {1, . . . L}, γj ∈ H for all j ∈ {1, . . . J} (with γj 6= γj′
if j 6= j′) and where n(l, j) ∈ N0 are such that n(l, j) 6= n(l′, j) for at least one j in case

l 6= l′. As before, we set βl :=
∑J

j=1 n(l, j)γj (l ∈ {1, . . . , L}) and we have βl 6= βl′ if l 6= l′.

For each l ∈ {1, . . . , L}, the term

J∏
j=1

(
Pγj + kγjeγjρ

)n(l,j)
is a “polynomial” (with coefficients which are analytic functions) in the “variable” ρ; the

“degree” of this polynomial is nl =
∑J

j=1 n(l, j) ∈ N and the coefficient of ρnl is

cl =

 J∏
j=1

kn(l,j)γj

 eβl .

Let N = sup{n1, . . . , nL}. The function f also appears as a “polynomial” (with coeffi-
cients which are analytic functions) in the “variable” ρ and the coefficient of the term with
the highest power N is

FN :=
∑

1≤l≤L, nl=N

alcl =
∑

1≤l≤L, nl=N

al

 J∏
j=1

kn(l,j)γj

 eβl .

Since the coefficients al are not zero and since the βl are different, FN is not identically 0.
Hence the conclusion using Proposition 3.2 and the fact that the sum of a polynomial and
a NG function is still a NG function.

�

We would like to finish by pointing out some remarks. In the existing literature, many
examples of continuous functions (enjoying certain pathological properties) were construct-
ing within the framework of C([0, 1]).

Of course, when it comes to spaceability, the results may differ very much from one
another depending on which subspace of continuous functions we are considering. For
instance, in 1966, a classical result by Gurariy [23] states the following.
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Theorem. The set of everywhere differentiable functions on [0, 1] is not spaceable in
C([0, 1]).

On the other hand, Gurariy also proved in [23] that there actually exist closed infinite
dimensional subspaces of C([0, 1]) all of whose members are differentiable on ]0, 1[. However,
Bernal [11, Theorem 4.4] showed that C∞(]0, 1[) is, indeed, spaceable in C(]0, 1[).

Next, we would like to recall that Proposition 2.5 and Theorem 3.5 in this paper can
be easily adapted to the case of nowhere Gevrey differentiable funcions in C∞(R) (and not
just [0, 1]), since C∞(R) is also a Fréchet space and the polynomials are also dense in it
(and, also, employing Theorem 2.2 and Remark 2.5 from [2] as well).

Acknowledgments. The authors would like to thank the referee for his thoroughly anal-
ysis of this paper, for Remarks 1.2 (b.) and 1.6, and for pointing out references [5], [6],
[7], [8], [21], and [31]. All of this helped in improving the paper and in making it easier to
read.
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differentiable and nowhere Hölder functions, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3505–3511.

[26] B. R. Hunt, T. Sauer, and J. A. Yorke, Prevalence: a translation-invariant “almost every” on infinite-
dimensional spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 2, 217–238.

[27] B. Levine and D. Milman, On linear sets in space C consisting of functions of bounded variation, Comm.
Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech.] (4) 16 (1940), 102–105 (Russian, with
English summary).

[28] D. Morgenstern, Unendlich oft differenzierbare nicht-analytische Funktionen, Math. Nachr. 12 (1954),
74 (German).
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