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Abstract 38 

 39 

 40 

Heterozygosity-fitness correlations (HFCs) were assessed for a sample of a Gilthead 41 

Sea bream Sparus aurata population. Two hundred and seventy one fish were 42 

genotyped at 22 known and novel microsatellite loci, from which correlations between 43 

the multilocus heterozygosity index (MLH) and various fitness traits (length, weight and 44 

specific growth rates) were calculated. Significant global HFCs were found in this 45 

sample (0.02 ≤ r2 ≤ 0.08). In addition, all the significant correlations found in this work 46 

were negative, indicating that heterozygotes had lower fitness than their homozygote 47 

counterparts. Marker location could not explain the observed HFCs. Evidence of 48 

inbreeding, outbreeding, or population/family structuring was not found in this work. 49 

However, the presence of undetected general effects that may lead to the appearance of 50 

HFCs cannot be ruled out. In any case, these results seem to be best explained by the 51 

occurrence of local effects (due to linkage) or even by possible direct locus advantages.   52 

 53 

 54 
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Introduction 60 

 61 

 62 

Heterozygosity-fitness correlations (HFCs) have been defined as the empirical 63 

observation of a correlation between heterozygosity, as measured at a marker locus or a 64 

set of marker loci, and a fitness-related trait (David, 1998). They have historically 65 

provided an opportunity to use marker-based genetics to assess two major issues: the 66 

genetic basis of inbreeding depression and heterosis and the neutralist-selectionist 67 

controversy (Ohta, 1971; Zouros, 1993; David, 1998). Thus, their existence makes 68 

HFCs a focus of attention, not only for biologists and evolutionists, but also for farm 69 

and hatchery managers. The debate is still vigorous, and in the last 5 years, HFCs have 70 

been reported for several taxa, including more than 40 plant and animal species 71 

(Grueber et al., 2008). However, the findings regarding HFCs are not universally 72 

consistent (see Chapman et al. (2009) for a review).  73 

 74 

 75 

Heterozygosity-fitness correlations may primarily be the result of direct or 76 

associative overdominance (Ohta, 1971; Zouros, 1993; David, 1997). Correlations may 77 

arise from a heterozygous advantage at certain loci (direct overdominance). 78 

Alternatively, an association may result from differences in inbreeding among 79 

individuals within a population (associative overdominance via a general effect) or as a 80 

consequence of loci being in gametic phase disequilibrium with loci that affect the traits 81 

being studied (associative overdominance via a linkage effect) (David, 1997; 1998; 82 

Hansson & Westerberg, 2002).  83 

 84 
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 85 

Early studies could detect HFCs using alloenzyme data, but not by using 86 

noncoding DNA markers (e.g. Zouros & Pogson, 1994). The main assumption at the 87 

time was that enzyme loci have a direct influence on fitness components through the 88 

control of metabolic reactions (Haldane, 1954; Koehn et al., 1988; Pogson, 1991; 89 

Mitton, 1993; 1997). Additionally, these findings were the basis for Thelen & 90 

Allendorf’s reasoning (2001) that allozyme loci could be located in gene-rich regions 91 

(i.e., would have a greater probability of linkage with relevant genes), whereas 92 

noncoding DNA markers would be mainly located in gene-poor regions of the genome. 93 

Despite this thinking, significant positive HFCs have also been documented using 94 

noncoding markers (Pogson & Fevolden, 1998; Coulson et al., 1998; 1999; Coltman et 95 

al., 1999; Rowe et al., 1999; etc.; reviewed by Chapman et al. (2009)). The associations 96 

between noncoding DNA markers and fitness traits have been interpreted as showing 97 

that some correlations are due to factors other than the direct effects of marker genes on 98 

the phenotype. Therefore, they support the associative overdominance hypothesis that 99 

HFCs result from inbreeding or local effects. It has generally been assumed that mean 100 

heterozygosity reflects the global level of heterozygosity, which should in turn correlate 101 

with individual inbreeding levels, as revealed by noncoding markers (Coltman & Slate, 102 

2003; Pemberton, 2004; Slate et al., 2004; Aparicio et al., 2007). However, with 103 

analytical and empirical approaches, several authors (e.g., Balloux et al. (2004), Slate et 104 

al. (2004), De Woody & De Woody (2005), Hansson & Westerberg (2008) and Väli et 105 

al. (2008)) have suggested that HFCs are better explained by relationships at the level 106 

of the individual markers, or genes linked to them, because DNA marker heterozygosity 107 

(mainly at microsatellites) does not reflect genome-wide inbreeding. 108 

 109 
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 110 

Szulkin et al. (2010) have published a comprehensive review about this 111 

controversial subject recently. They argue that all data supporting HFCs is consistent 112 

with inbreeding-based theory. In particular, they attempted to demonstrate that linkage 113 

disequilibrium is not an alternative to inbreeding but is rather a consequence of some 114 

forms of inbreeding and is not restricted to closely linked loci (Szulkin et al., 2010). 115 

Moreover, they argue that local chromosomal effects on HFCs are expected to be small 116 

and have rarely, if ever, proven to be statistically significant using adequate tests 117 

(Szulkin et al., 2010). Curiously, from Szulkin et al.´s perspective (2010) the possibility 118 

of direct effects has been obviated when using microsatellites for HFC studies. 119 

Microsatellites are ubiquitous and can sometimes seriously affect gene function. It 120 

appears that repeats inside genes are usually negative cis modulators of transcription 121 

(Streelman & Kocher, 2002; Li et al., 2004; Almuly et al., 2005; Xu et al., 2006; De-122 

Santis & Jerry, 2007; Sharma et al., 2007). 123 

 124 

 125 

The increased prevalence of inbreeding in small populations (such as those 126 

found in aquaculture) facilitates the detection of HFCs (Grueber et al., 2008). Under 127 

these circumstances, a small number of loci may provide useful information about 128 

genomic heterozygosity and inbreeding for HFC studies (DeWoody & DeWoody, 129 

2005). Despite this possibility, not much work has been performed regarding HFCs in 130 

cultured fish populations, and recent studies have focused on only a few species (e.g., 131 

Salmo salar L. (Borrell et al., 2004), Anguilla anguilla (Pujolar et al., 2005; 2006; 132 

2009), and Salmo trutta (Tiira et al., 2006)). This is perhaps due to the difficulties 133 
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involved in conducting experiments using these species, including the duration of fish 134 

life cycles and the space and number of individuals required, among other factors.  135 

 136 

 137 

Sparus aurata (Linnaeus 1758), a member of the Sparidae family, is one of the 138 

most important farmed fish in Europe (especially in the Mediterranean area). S. aurata 139 

is a protandrous hermaphroditic mass spawning species. Individuals are males for the 140 

first two years of life and then become females. Members of the species breed once a 141 

year during a six- to eight-week period (Zohar et al., 1978; 1995). However, not all 142 

Gilthead Sea bream males seem to follow this pattern; some animals either delay or 143 

never attain sex reversal, possibly in relation to social, environmental, and/or genetic 144 

factors (Zohar et al., 1995). Spawning in the wild takes place in large groups or schools. 145 

Therefore, a minimum of five to seven fish appears to be necessary for reduced stress 146 

and natural spawning in artificial environments (Brown, 2003 and references therein). 147 

As far as one knows, no previous research has been conducted to assess HFCs in S. 148 

aurata. 149 

 150 

 151 

This research have conducted to pursue the following aims: 1) to determine if 152 

HFCs exist in the Gilthead Sea bream S. aurata using 22 microsatellites and the 153 

phenotypic parameters length, mass and specific growth rate (which are generally 154 

accepted as fitness-related traits (Chapman et al., 2009)) and 2) to assess which 155 

mechanism(s) that could explain HFCs (if present) in the Gilthead Sea bream. The 156 

microsatellite sets used here contain both classical microsatellites from genomic 157 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1602104#bib36#bib36
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libraries (CMs; genomic locations unknown) and microsatellites markers located in 158 

gene-rich regions (gene-rich microsatellites, GRM).  159 

 160 

 161 

Materials and Methods 162 

 163 

 164 

Samples and fitness measurements 165 

 166 

 167 

A population of two-year-old Gilthead Sea bream individuals of unknown origin 168 

that had reached commercial size was sampled from the marine farm Safor, S.L. 169 

(Gandía, Valencia). A total of 271 fish were selected based on phenotype (no evidence 170 

of diseases and/or physical deformities) as potential breeders for the research project 171 

(CRIOGEN 2003) at the beginning of 2004 (January). These individuals where tagged 172 

using microchips. Small caudal fin pieces were collected, stored in absolute ethanol, and 173 

sent to the University of Oviedo.  174 

 175 

 176 

Masses were recorded in June 2004 (Mass 1, M1), June 2005 (Mass 2, M2), and 177 

June 2006 (Mass 3, M3), at which time the length of each fish was also measured 178 

(Length, L). Mortality was extremely low during this period (~4%), and individuals that 179 

did not survive were excluded from all the analyses. Growth rates were measured in 180 

terms of Specific Growth Rates (SGR) (% Mt/day) (Ricker, 1975; Boyer et al., 1994) 181 

using the formula SGR = 100 x ((ln Mt1-lnMt0)/t) (for SGR1: Mt1 =M2, Mt0 =M1; for 182 
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SGR2: Mt1 =M3, Mt0 =M2; and for SGRtot: Mt1 =M3, Mt0 =M1). More than 200 fish 183 

were weighed, and their chips were correctly identified during both the 2004 (218) and 184 

2005 (238) weighing processes in the hatchery. During the study, all fish were 185 

maintained in an 8-m-diameter sea cage, where they were fed at a rate of 0.7%. As the 186 

result of a hatchery management decision, over 100 fish were lost in 2006 before any 187 

fitness measures could be obtained; thus, only 107 fish were measured and weighed in 188 

June 2006. A principal component analysis (PCA) for the seven fitness traits measured 189 

was performed using the R software package (Hornik, 2006).  190 

 191 

 192 

Microsatellite analysis 193 

 194 

 195 

DNA was extracted from tissue stored in ethanol using the rapid Chelex® 196 

protocol (Walsh et al., 1991). This protocol involved heating approximately 1 mg of 197 

fish caudal fins for 1 hour at 55ºC with 500 µL of 10% Chelex® (which was previously 198 

heated to 60ºC) and 7.5 µL of Proteinase K (P-K, 20 mg mL-1). The P-K was inactivated 199 

by heating the samples at 100ºC for 15 min.  200 

 201 

 202 

The samples were analyzed using two groups of microsatellites:  203 

1) Eleven “classic” microsatellites whose genomic locations were unknown 204 

(CM), were obtained from several published genomic libraries: SaGT1, SaGT26, 205 

SaGT41b (Batargias et al., 1999), SauI41INRA (Launey et al., 2003), Pb-OVI-A3, 206 

Pb-OVI-B2, Pb-OVID102, Pb-OVI-D22, Pb-OVI-D106 (Piñera et al., 2006) Dxd44, 207 
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Dpt3 (last two from De la Herrán et al., 2005). Specific PCR procedures were 208 

performed as previously described by Borrell et al. (2007) (Table I).  209 

 210 

2) Eleven microsatellites located in gene-rich regions (GRM) were obtained, 211 

including 2 markers from EST libraries and 9 markers identified from the publically-212 

available sequences for genes related to somatotopic axis (growth) (De Santis & 213 

Jerry, 2007).  214 

 215 

a) Five microsatellite primer pairs were obtained from previous reports 216 

(summarized in Franch et al. (2006) and Table I):  217 

µ184: S. aurata pituitary cDNA EST-library (Power et al., 2003); 218 

µ190: S. aurata pituitary cDNA EST-library (Power et al., 2003);  219 

saGHpCA: S. aurata Growth Hormone gene (5´-UTR) (Almuly et al., 220 

2005);  221 

2G: S. aurata myostatin gene (Intron II) (Maccatrozzo et al., 2001); 222 

G4: S. aurata myogenic factor 1 MYOD1 gene (3´-UTR) (Tan & Du, 223 

2002). 224 

 225 

b) Six other microsatellite primer pairs were developed (denoted with a *) 226 

in this study (see Table I for details): 227 

saPROpCA*: S. aurata prolactin gene (5´-UTR) (Astola et al., 2003);  228 

saMT2pCA*: S. aurata myostatin gene (3´-UTR) (Maccatrozzo et al., 229 

2001);  230 

saMGpCA*: S. aurata myogenin gene (5´-UTR) (Codina et al., 2008); 231 
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saMD2pAC*: S. aurata myogenic factor 2 MYOD2 gene (3´-UTR) (Tan & 232 

Du, 2002); 233 

saGHR1pCTC*: S. aurata growth hormone receptor type I gene (GHR-I) 234 

(Intron-Exon II) (Saera-Vila et al., 2005; 2007);  235 

saGHR2pGCT*: S. aurata growth hormone receptor type II gene (GHR-II) 236 

(5´-UTR-Exon I) (Saera-Vila et al., 2005; 2007).  237 

 238 

 239 

To develop the new microsatellite primers, genes sequences were downloaded 240 

from GenBank and screened for repeats using the Tandem Repeats Finder software 241 

(Benson, 1999). Forward and reverse primers were designed for effective amplification 242 

of microsatellites using the FastPCR Professional package (Kalendar et al., 2009) 243 

(Table I). The specific PCR procedures for each microsatellite are described in Table I.  244 

  245 

 246 

All amplification products were analyzed on polyacrylamide gels using the 247 

OpenGeneTM automated DNA sequencing system. One primer from each primer set was 248 

end-labeled with the fluorescent dye CY5.5, and the internal size marker was end-249 

labeled with the fluorescent dye CY5. PCR reactions were diluted (0.6 µL of the PCR 250 

reaction was mixed with 0.6 µL of the marker), heated at 95ºC for two minutes, placed 251 

immediately on ice and loaded onto a Surefill 6% denaturing polyacrylamide gel 252 

(Visible Genetics, Ontario). Allele sizes were calculated using GeneObjectsTM version 253 

3.1 (Visible Genetics, Ontario). 254 

 255 

 256 
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Genetic analyses of sample characteristics. 257 

 258 

 259 

The number of alleles at each microsatellite locus (Na), the proportion of 260 

individual samples that were heterozygous (direct count heterozygosity, Ho) and the 261 

unbiased estimate of expected heterozygosity (He) were assessed using a modified 262 

version of the Biosys-1 program capable of accepting more than 20 alleles per locus 263 

(Swofford & Selander, 1981). The Fstat statistical package (Goudet, 1995; 2001) was 264 

used to estimate the total variance in gene frequencies (FIT), which were partitioned into 265 

components of variance occurring within (FIS) and among (FST) samples for each locus, 266 

as described by Weir & Cockerham (1984). Significance levels for FIS were assessed 267 

through randomizing alleles within samples 1000 times followed by Bonferroni 268 

correction (Rice, 1989). Tests for global population differentiation were applied using 269 

the log-likelihood G as the test statistic, with no assumption of random mating within 270 

samples (Goudet et al., 1996). All loci were tested for linkage disequilibrium using 271 

Fstat. To check for genotyping errors, the data were analyzed with the Microchecker 272 

software (Van Oosterhout et al., 2004). A test for recent bottlenecks (the Wilcoxon 273 

sign-rank test, Luikart & Cornuet, 1997) was conducted using the Bottleneck software. 274 

A two-phase model of mutation (TPM) assuming 90% SMM and 10% IAM, with 275 

20,000 iterations was used (Cournet & Luikart, 1996).  276 

 277 

 278 

Two different approaches were used to assess the extent of population or family 279 

structuring within this sample. Population structure was assessed using Structure 280 

(Pritchard et al., 2000; 2007). The number of possible clusters (K) within the data set 281 
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using a Bayesian approach based on genotype data was assessed. The parameters for 282 

each run were set according to Pritchard et al. (2000; 2007) and Evanno et al. (2005). 283 

An admixture model (to infer the degree of admixture from the data, α) and correlated 284 

allele frequencies among populations were used. The burn-in was set to 50,000, and the 285 

MCMC was set to 1,000,000 chains. For each data set, four runs were conducted to 286 

estimate ∆K, as suggested by Evanno et al. (2005), as this was a better indication of the 287 

true value of K than LnP(D). The range of Ks tested was 1 to 20.  288 

 289 

 290 

Possible family structuring in the sample was tested using Colony (version 2) 291 

(Wang & Santure, 2009). Family structure will go undetected when the data is similar to 292 

data from a single population with no internal structure because independent panmictic 293 

subsets are not detectable using programs such as Structure. Colony implements a 294 

maximum likelihood method to jointly assign sibship and parentage using individual 295 

multilocus genotypes at a number of codominant marker loci. It will infer full-sibs, 296 

paternal half-sibs, and maternal half-sibs among “offspring” (i.e., these 271 297 

individuals). Colony also estimates the current effective population size (Nê) from 298 

sibship assignments (Wang, 2009). The logic behind the method is simple. A small 299 

population (small Nê) will contain a high proportion of sibs because the smaller the Nê, 300 

the greater the probability that two individuals drawn at random from the same cohort 301 

within a population are sibs that share one parent or both parents. Three replicates of 302 

short runs (Wang & Santure, 2009) using polygamy (both parents) and the full 303 

likelihood method (Wang, 2004), with no genotyping errors at the markers allowed, 304 

were performed. 305 

 306 
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 307 

Estimating MLH and testing HFCs.   308 

 309 

 310 

The multilocus heterozygosity index (MLH) was calculated according to the 311 

commonly used formula recommended by Chapman et al. (2009) (i.e., MLH = (the 312 

number of heterozygous loci/the total number of loci)).  313 

 314 

 315 

To determine if heterozygosity is correlated across loci within individuals the 316 

loci were randomly subdivided into two groups and then it was assessed whether the 317 

multilocus heterozygosity (MLH) of the first group of loci was correlated with the MLH 318 

of the second group of loci (Balloux et al., 2004). This strategy has been previously 319 

proposed as a way to test for global inbreeding (Balloux et al., 2004, Lieutenant-320 

Gosselin & Bernatchez, 2006). The loci were randomly subdivided into two groups of 321 

11, the individual MHL values was recalculated for both groups and then the correlation 322 

between those measurements was assessed using a simple linear regression. This 323 

procedure was repeated 10,000 times using R (http://www.r-project.org) (Hornik, 2006) 324 

to obtain the mean and standard deviation of the correlation coefficients. The g2 value, 325 

the overall correlation in heterozygosity among all loci, was also measured. This 326 

eliminates the need to divide the set of loci into two arbitrary halves. David et al. (2007) 327 

describe the method and its implementation in the RMES software package, which also 328 

computes the significance of the observed g2 value, as well as selfing rates when 329 

inbreeding is believed to stem from partial selfing. The g2 estimates are still valid even 330 

if the inbreeding is not due to selfing (David et al., 2007). 331 

http://www.r-project.org/
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 332 

 333 

Regression analyses were performed using the SPSS 15.0 statistical software. 334 

Two analyses were performed: a simple linear regression model using the MLH index 335 

and the logarithms of the fitness traits, and a multiple linear regression model using the 336 

22 microsatellite loci data instead of MLH. For the multiple regression model, a 337 

stepwise regression model was used to identify those loci that were most predictive of 338 

fitness using an automatic successive steps procedure and F tests with a significance 339 

threshold of P<0.05 (Hocking, 1976; SPSS 15.0). Quadratic regression models were 340 

conducted following the reasoning of Blanchet et al. (2009), to uncover signals of 341 

stabilizing selection (see also Neff (2004)). Both models (linear and quadratic) were 342 

compared using ANOVA and AIC-BIC tests (as implemented in R; Hornik, 2006). 343 

Similar regression analyses were conducted, this time using the principal components 344 

PC1 and PC2, which contained around an 80% of the information of the fitness 345 

variables assessed here. The relationship between those principal components and single 346 

locus heterozygosity was assessed using regression analyses to confirm relevant single 347 

locus-HFCs. 348 

 349 

 350 

It was also assessed whether dividing the microsatellites into two classes, classic 351 

microsatellites with unknown locations (CM) and gene-rich regions microsatellites 352 

(GRM), resulted in a significant improvement in terms of the amount of variance 353 

explained as compared to the simple regression model (F = [(SSSIMPLE - SSCM+GRM)] / 354 

[(SSCM+GRM / (N-3)]). Significance was assessed using tables of the F-distribution with 1 355 

and N-3 degrees of freedom (a classical approach) and AIC and BIC values as well.  356 
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 357 

 358 

Results 359 

 360 

 361 

Genetic description of the sample.  362 

 363 

 364 

Of the 271 individuals analyzed, only eight produced samples that failed to 365 

amplify during PCR. These individuals were excluded from subsequent analyses. 366 

Genetic variation (Na, He, Ho) among individuals was high (Table I). There was no 367 

significant difference between the two groups of microsatellites in terms of genetic 368 

variation levels (CM group: Na=17.36, He=0.800, Ho=0.777; GRM group: Na=14.09, 369 

He=0.785, Ho=0.735). The 22 microsatellite loci used here were not in linkage 370 

disequilibrium, although Bonferroni correction may have resulted in a number of false 371 

negatives, as there were 231 possible comparisons and 4620 permutations in total, 372 

resulting an adjusted P-value threshold for significance at the 5% nominal level of 373 

0.0002. However, linkage between microsatellites was not found even for 374 

microsatellites located within the same gene (e.g., for microsatellites 2G and 375 

saMT2pCA* within the S. aurata myostatin gene, P=0.0781). A significant departure 376 

from Hardy-Weinberg expectations was found in this sample (FIS (22 microsatellites) = 377 

+0.047, P=0.0023). This result was driven by seven loci (SaGT26, SauI41INRA, Pb-378 

OVI-A3, saGHpCA, µ184, saMT2pCA* and saMD2pAC*) (Table I). Evidence for 379 

possible null alleles was found at four of these loci using Microchecker: SauI41INRA, 380 

µ184, saMT2pCA* and saMD2pAC* (Table I). A global test for population 381 
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differentiation using the log-likelihood G as a statistic (Goudet et al., 1996) and an 382 

assumption of no random mating within samples did not detect any significant global 383 

genetic structuring in this sample,  (FST (22 microsatellites) = 0.001 n.s.). The sample had a 384 

normal L-shape allele distribution, indicating that bottlenecks are very unlikely to have 385 

occurred recently in the sampled population (P=0.5253). 386 

 387 

 388 

Analysis using Structure failed to identify a biologically sensible or likely 389 

number of the populations (K) within the sample. The procedure of Evano et al. (2005) 390 

for estimating K demonstrated that ln (Pr (X/K)) was bimodal (K = 1, K = 8), which 391 

indicates that the MCMC scheme was finding different solutions. Longer runs did not 392 

fix this problem. Moreover, the proportion of the sample assigned to each population 393 

was roughly symmetric and most individuals were admixed when testing the different K 394 

clusters (1-20). Three short runs of the Colony software converged toward the same 395 

result, that the 271 individuals are likely comprised of 111 males and 105 females from 396 

229 full sib families (190 families with one individual, 36 with two individuals and 3 397 

with 3 individuals) and 467 and 45 half and full sib pairs, respectively. A minimum of 398 

14 independent sib clusters were inferred. Two individuals that are not directly related 399 

can still be included in the same sib cluster if they share a half-sib (Colony user guide 400 

notes). The effective population size estimated by Colony was Nê = 257, with a 95% CI 401 

of 210-314.  402 

 403 

 404 

Fitness parameters. 405 

 406 
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 407 

The mean mass, length, and growth rate in this sample are shown in Table II. All 408 

fish weighed approximately 825 g in 2004. A mass increase of approximately 43% (a 409 

mean of 0.12% per day) was observed during the first year of this study (the third year 410 

of life for the fish). This trend did not continue into the second year of cultivation where 411 

a minor, but still significant, mass increase was observed (13%, a mean of 0.04% per 412 

day). The mean length of the fish at the end of the experiment (June 2006) was 413 

approximately 37 cm (Table II). Body masses were correlated with each other, and the 414 

specific body mass (M3) and length (L) were also correlated (F values P<0.05). The 415 

SGR1 and SGR2 indices were correlated with SGRtot (P<0.05), but not with each other 416 

(P>0.05). An ANOVA analysis comparing the means of all of the fitness traits under 417 

study (M1, M2, M3, L, SGR1, SGR2, SGRtot) between the 14 independent sibs clusters 418 

identified by Colony found no significant differences between them (0.025<F<1.448, 419 

0.232<P<0.874). The PCA indicated that one component (PC1) contains almost all of 420 

the variance in fitness traits (58.8% of the variance in the fitness data), except for 421 

logSGR2, which was mainly separated by the second PCA component (PC2; 20.6% of 422 

the variance in fitness).  423 

 424 

 425 

Multilocus heterozygosity (MLH) and correlations within individuals. 426 

 427 

 428 

The mean multilocus heterozygosity, MLH(22 microsatellites), was 0.9551 in this 429 

sample. When the loci were randomly subdivided into two groups of 11, and individual 430 

MLH values were recalculated for both groups and measured the correlation between 431 
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those measurements using linear regression 10,000 times, it was found that the MLH 432 

values within an individual were not correlated at all (r2 = 0.002). The overall 433 

correlation in heterozygosity among all loci (based on g2 values) was zero (P=0.436 434 

after 10,000 iterations). 435 

 436 

 437 

Heterozygosity-Fitness correlations (HFCs). 438 

 439 

 440 

Simple regression of MLH and the logarithms of the fitness measurements 441 

revealed several significant associations (Figure 1, Table III). Significant negative 442 

correlations between MLH (using all 22 microsatellites) and L (r2 = 0.066, F = 7.12, 443 

P=0.009), SGR1 (r2 = 0.026, F = 5.13, P=0.025) and SGRtot (r2 = 0.071, F = 7.14, 444 

P=0.009) were found. The PC1 component from the PCA was negatively correlated 445 

with MLH (r2 =0.083 F=7.57 P=0.0072) while PC2 was not (P>0.05) (Figure 1, Table 446 

III). In all the cases, the quadratic models of regression did not explain the data variance 447 

any better than did any of the linear models assayed (P>0.05). These results indicate that 448 

heterozygotes had lower fitness than their homozygous counterparts in this work. 449 

 450 

 451 

The results of multiple regression analyses (using all 22 loci as independent 452 

variables) are shown in Table III. Regression coefficients were not significant, and in all 453 

cases, loci with both positive and negative regression coefficients were observed (Table 454 

III). These models did not better explain the dependent variables (fitness traits) than did 455 

the global model previously assessed (no significant improvement was indicated by the 456 
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F values, AIC or BIC values). The automatic procedure for identifying loci that were 457 

most predictive of fitness found 6 loci, SaGT26(+), Pb-OVI-B2(-), Pb-OVI-D22(-), 2G(-458 

), saMT2pCA*(+) and saGHR1pCTC*(-) where heterozygosity could be used to predict 459 

some of the dependent fitness variables measured (Table III). All of these loci (with the 460 

exception of saMT2pCA*) were also detected as loci related to HFCs after single locus 461 

analyses using simple regressions with the PC1 and PC2 variables (Table III).   462 

 463 

 464 

Finally, multiple regression analyses using the MLH values of the two previously 465 

described groups of microsatellites (“potentially differentiated” in terms of their 466 

genomic locations: CMs-unknown vs. GRMs-vicinity of genes) as two independent 467 

variables, MLHCM and MLHGRM, were performed. The results obtained indicate that 468 

little gain in the fraction of variance in the assessed fitness traits explained is obtained, 469 

as compared to the simple regression model (Table III). F tests, comparing the simple 470 

and the two variables models, always yielded P-values greater than 0.05. A similar 471 

result was obtained using AIC and/or BIC values (data not shown). 472 

 473 

 474 

Discussion 475 

 476 

 477 

Two comprehensive reviews on heterozygosity-fitness correlations have recently 478 

been published (Chapman et al., 2009; Szulkin et al., 2010). The subject seems to have 479 

engendered serious and contentious debate. Chapman et al. (2009) conducted a 480 

quantitative review of HFCs in animal populations and concluded that HFCs studies do 481 



  

21 

not generally agree with the patterns predicted by population genetic theory and explain 482 

only small effects (less than 1%). This is the reason they have been largely discarded as 483 

a useful tool in selection and breeding strategies in aquaculture (Fjalestad, 2005). 484 

Szulkin et al. (2010) affirmed that quantitative and qualitative HFC studies are 485 

consistent with inbreeding-based theory. They rejected linkage disequilibrium and local 486 

effects as an alternative to inbreeding and described how HFCs can be used to quantify 487 

inbreeding load and unravel the structure of natural populations (Szulkin et al., 2010). 488 

In this study, there were two main results: 1) late life-stage HFCs were observed in a 489 

sample from a Gilthead Sea bream population, and 2) the significant correlations 490 

between heterozygosity and growth found were negative.  491 

 492 

 493 

Do HFCs in a late life-stage of a sample from a Gilthead Sea bream population 494 

represent general or local effects? 495 

 496 

 497 

Szulkin et al. (2010) strongly support the idea that heterozygosity at neutral 498 

markers is correlated with heterozygosity at selected loci, both linked and unlinked, 499 

through genetic associations that arise in the context of a form of sensu lato inbreeding, 500 

such as when there is a small population size, nonrandom mating, population admixture 501 

or bottlenecks (see also Slate & Pemberton (2006)). The use of the approaches proposed 502 

by Balloux et al. (2004) and David et al. (2007) (the g values) demonstrate that marker 503 

heterozygosities are not correlated in this sample. Thus, marker heterozygosity did not 504 

reflect the level of inbreeding in this work. The family analysis revealed more than 200 505 

full sib families (229) among the 271 fish being studied and the effective population 506 
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size as estimated from analysis of sibs was Nê=257 (95% confidence intervals of 210-507 

314), accounting for the sample size used. In light of this, an underlying familial 508 

structure within the sample does not appear to be responsible for the significant 509 

correlations found. 510 

 511 

 512 

Some of loci genotyped in this work varied from Hardy-Weinberg expectations 513 

(in the form of heterozygote deficits). However, under the Wahlund effect, genetic 514 

markers are expected to show Hardy-Weinberg disequilibrium at most loci. This is not 515 

the case for the majority of the loci in this study. Hardy-Weinberg disequilibrium was 516 

observed at only 7/22 loci (31%), with evidence of the possible existence of null alleles 517 

in four of these loci (the sample would be in global HW equilibrium without those four 518 

loci). It would also expected to find evidence of linkage disequilibrium among the loci 519 

if there is population stratification (Wang et al., 1998) and/or if a high percentage of 520 

individuals were asymmetrically assigned to putative subpopulations after Bayesian 521 

clustering with a software package such as Structure (Pritchard et al., 2000). Neither of 522 

these possibilities occurred (this was also assessed using Partition 2 (Dawson & 523 

Belkhir, 2001), but the software used failed to determine the K number of 524 

subpopulations; data not shown)). The global population stratification test performed 525 

using the Fstat program was not significant. Together, the genetic analyses indicate that 526 

this sample lacks clear genetic structure. 527 

 528 

 529 

Overall, this data does not point to a “general effect” (inbreeding, or family or 530 

population structure) being responsible for the correlations found. However, it should be 531 



  

23 

noted that finding a lack of significance when attempting to detect these general effects 532 

does not means they are absent (Waples, 1998; Hedrick, 1999; Szulkin et al., 2010). In 533 

fact, Szulkin et al. (2010) said that one of the possible utilities of HFC studies is that 534 

they can serve as a “warning signal” for genetic erosion in unpedigreed captive or wild 535 

populations. HFC studies have suggested inbreeding in large and open populations of 536 

marine bivalves, which had been missed by previous studies that had used other 537 

methods of genetic analysis (Szulkin et al. (2010) and references therein).  538 

 539 

 540 

David P. (pers. comm.) and Szulkin et al. (2010) have affirmed that local effects 541 

due to linkage or direct action are unlikely to be detected due to a dilution effect, and 542 

they have almost never been tested for using an adequate statistical approach (see David 543 

et al., 1997). This work has been tested for correlations that could be a result of linkage. 544 

Two types of microsatellites have been used; one with unknown genomic locations and 545 

another located in gene-rich regions. Thelen & Allendorf (2001) reasoned that allozyme 546 

loci might tend to be located in gene-rich regions, whereas microsatellite loci (which are 547 

commonly obtained from genomic libraries and have unknown genomic locations) 548 

would probably be located in gene-poor regions of the genome. Thus, it was suggested 549 

that the HFCs found when using allozymes but not microsatellites, such as those found 550 

in the deep-sea scallop Placopecten magellanicus (Zouros & Pogson, 1994), the 551 

rainbow trout Oncorhynchus mykiss (Thelen & Allendorf, 2001), the Atlantic salmon 552 

Salmo salar L. (Borrell et al., 2004) and the eel Anguilla anguilla L. (Pujolar et al., 553 

2005), could be more influenced by a linkage effect than a direct overdominance effect 554 

(a hypothesis widely accepted at the time). However, it seems that the genomic 555 

locations of the markers used in this work had little to do with the HFCs found. It was 556 
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not observed a significant increase in the amount of variance in fitness traits that could 557 

be explained after dividing the loci into microsatellites from gene-rich regions (GRM) 558 

and classic microsatellites whose positions were unknown (CM). In fact, 3 loci from 559 

each “class” were identified as predictive variables for fitness traits. Similar to the work 560 

of Thelen & Allendorf (2001), this result is limited by the fact that the true location of 561 

the CMs in the genome cannot be determined (they could be also in gene-rich regions). 562 

Recently, Pujolar et al. (2009) found a complete lack of HFCs in eels using 22 563 

expressed sequence tag-derived microsatellite loci that were all located in gene-rich 564 

regions. This result seems to confirm that a marker’s location in a gene-rich region of 565 

the genome is not sufficient on its own to explain the existence of HFCs.   566 

 567 

 568 

A more appropriate procedure to test for local effects seems to be to test whether 569 

a multiple regression incorporating specific effects for each locus explains more 570 

variance than a simple regression model (David, 1997; David et al., 1997; David, 1998; 571 

Szulkin et al., 2010). It does not seem correct to perform a separate regression for each 572 

locus because they are not independent from each other due to identity disequilibrium, 573 

as was affirmed by Szulkin et al. (2010), or to use Fisher tests, as fitness traits are not 574 

independent (see Fisher (1948), Sokal & Rohlf (1995) and Szulkin et al. (2010)). It was 575 

performed the same tests as David et al. (1997), and the multiple regression models did 576 

not help to explain significantly more variance in fitness traits. David et al. (1997) and 577 

Szulkin et al. (2010) remarked that although this is the more rigorous way to test for 578 

local effects, they are extremely difficult to detect if the MLH regression results are 579 

already weak.  Sample size also limits the ability of David’s tests (David, 1997) to 580 

statistically demonstrate direct or associative overdominance. All three tests (A, B and 581 
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C tests) proposed by David (1997) require large samples sizes (n≈1000 individuals; see 582 

also David et al., 1997). In any case, some of the loci assayed here seem to be 583 

associated with some of the fitness traits under study. There is not information about the 584 

genomic location of the SaGT26, Pb-OVI-B2, or Pb-OVI-D22 markers. However, it is 585 

not clear why the two microsatellites located in the vicinity of the myostatin gene, 586 

saMT2pCA*(+) and 2G(-), a gene that negatively regulates muscle development and 587 

growth (Maccatrozzo et al., 2001), and the saGHR1pCTC* (-) locus located in the 588 

growth hormone receptor gene showed significant single locus HFCs. They may be 589 

linked to relevant genes that influence fitness or they may themselves directly influence 590 

a role on fitness and growth. More research is required to answer these questions. 591 

 592 

 593 

Negative HFC in a late life-stage Gilthead Sea bream sample.  594 

 595 

 596 

Positive HFCs based DNA markers have been previously reported (Pogson & 597 

Fevolden, 1998) and continue to be reported today (Chapman et al., 2009). However, 598 

negative correlations and heterosis can occur simultaneously in a single population (Den 599 

& Fu, 1998). Empirically, there are some examples of negative relationships between 600 

fitness and microsatellite heterozygosity in the literature (Zouros & Pogson, 1994; 601 

Borrell et al., 2004; Lieutenant-Gosselin & Bernatchez, 2006; Van Dongen et al., 2007), 602 

although many cases may go unreported (Chapman et al., 2009). 603 

 604 

 605 
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Two ideas have been invoked to explain negative HFCs. The first involves 606 

exogamic depression (Keller et al., 2000; Fenster & Galloway, 2000; Burke & Arnold, 607 

2001), whereby a breakdown of coadapted gene complexes occurs with increasing 608 

heterozygosity, leading to reduced growth (Marshall & Spalton, 2000; Van Dongen et 609 

al., 2007). The second idea is that ribosomal (or other) genes that participate in protein 610 

turnover are involved, (Mitton & Koehn, 1985; Hawkins & Day, 1999; Hedgecock et 611 

al., 2007) resulting in the dominance of low expression and/or underdominance, and 612 

heterozygotes having poorer performance in some genic functions by because they are 613 

more efficient individuals that consume less energy (Hedgecock et al., 2007).  614 

 615 

 616 

There is not evidence of outbreeding in this sample. There is neither excess of 617 

heterozygotes, a finding that is commonly related to bottleneck events (Luikart & 618 

Cournet, 1997), and also to exogamy (Von Ahsen et al., 2010). Nevertheless, it could be 619 

present, as the origin of the base population is not known. Thus the negative HFCs 620 

found in this study could be a sign, perhaps the tip of the iceberg, indicating a previous 621 

exogamic process. On the other hand, it has been previously observed that growth is not 622 

consistent fitness in fish at all life-stages. In Atlantic salmon, the more heterozygous 623 

salmon grow faster during early life-stages, but afterwards some fish initiate maturation 624 

and divert more energy to gonad development and gamete production than to somatic 625 

tissue development (Blanco et al., 1998; Borrell, 2002; Pineda et al., 2003; Fernandez, 626 

2005). Thus, if some of the microsatellites assayed here are related (by linkage or in a 627 

direct manner) to more efficient negative regulation of the growth pathways in sea 628 

breams, then it is possible that individuals with greater heterozygosity could then be 629 

more likely to have both sexual revert to females, as well as have a more active sexual 630 
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maturation process (in both sexes), which would result in lower growth than that 631 

demonstrated by their less heterozygous counterparts. 632 

 633 

 634 

In summary, negative HFCs have been detected in a sample from the late life-635 

stage of the Gilthead Sea bream S. aurata using microsatellite loci from unknown and 636 

gene-rich genomic locations. There was not any evidence of inbreeding, outbreeding or 637 

population/family structuring in this data. However, these results cannot rule that 638 

undetected general effects may exist that cause the appearance of HFCs. In fact, HFCs 639 

themselves may provide a way to reveal sensu lato forms of inbreeding or earlier 640 

exogamic processes in populations, even when genetic data indicates otherwise (the “tip 641 

of the iceberg” referred to by Szulkin et al. (2010)). In any case, these results seem to be 642 

best explained by the occurrence of local effects due to linkage with proximal or distal 643 

functional loci or even by possible direct locus advantages.   644 

 645 
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