
The final publication is available at
https://dx.doi.org/10.1111/j.1095-8649.2011.03099.x

Copyright Wiley
Heterozygosity-fitness correlations in the Gilthead Sea bream *Sparus aurata* using microsatellite loci from unknown and gene-rich genomic locations.

Authors

Y. J. Borrell\(^a\), C.E. Carleos\(^b\), J.A. Sánchez\(^a\), E. Vázquez\(^a\), V. Gallego\(^c\), J. F. Asturiano\(^c\) and G. Blanco\(^a\)*

Postal addresses

\(^a\)Laboratorio de Genética Acuícola, Departamento de Biología Funcional, Universidad de Oviedo, IUBA, 33071 Oviedo, Spain.

\(^b\)Grupo de Estadística Genómica, Departamento de Estadística, Universidad de Oviedo, 33007, Oviedo, Spain.

Corresponding Author

Gloria Blanco Lizana: * Corresponding author: Tel: 34 985 103889; Fax: 34 985 103534; E.mail: gloriablanco@uniovi.es.

Running Title

HFCs in S. aurata.
Abstract

Heterozygosity-fitness correlations (HFCs) were assessed for a sample of a Gilthead Sea bream *Sparus aurata* population. Two hundred and seventy one fish were genotyped at 22 known and novel microsatellite loci, from which correlations between the multilocus heterozygosity index (MLH) and various fitness traits (length, weight and specific growth rates) were calculated. Significant global HFCs were found in this sample ($0.02 \leq r^2 \leq 0.08$). In addition, all the significant correlations found in this work were negative, indicating that heterozygotes had lower fitness than their homozygote counterparts. Marker location could not explain the observed HFCs. Evidence of inbreeding, outbreeding, or population/family structuring was not found in this work. However, the presence of undetected general effects that may lead to the appearance of HFCs cannot be ruled out. In any case, these results seem to be best explained by the occurrence of local effects (due to linkage) or even by possible direct locus advantages.

Keywords

HFC, fish, aquaculture, growth, inbreeding, overdominance
Introduction

Heterozygosity-fitness correlations (HFCs) have been defined as the empirical observation of a correlation between heterozygosity, as measured at a marker locus or a set of marker loci, and a fitness-related trait (David, 1998). They have historically provided an opportunity to use marker-based genetics to assess two major issues: the genetic basis of inbreeding depression and heterosis and the neutralist-selectionist controversy (Ohta, 1971; Zouros, 1993; David, 1998). Thus, their existence makes HFCs a focus of attention, not only for biologists and evolutionists, but also for farm and hatchery managers. The debate is still vigorous, and in the last 5 years, HFCs have been reported for several taxa, including more than 40 plant and animal species (Grueber et al., 2008). However, the findings regarding HFCs are not universally consistent (see Chapman et al. (2009) for a review).

Heterozygosity-fitness correlations may primarily be the result of direct or associative overdominance (Ohta, 1971; Zouros, 1993; David, 1997). Correlations may arise from a heterozygous advantage at certain loci (direct overdominance). Alternatively, an association may result from differences in inbreeding among individuals within a population (associative overdominance via a general effect) or as a consequence of loci being in gametic phase disequilibrium with loci that affect the traits being studied (associative overdominance via a linkage effect) (David, 1997; 1998; Hansson & Westerberg, 2002).
Early studies could detect HFCs using alloenzyme data, but not by using noncoding DNA markers (e.g. Zouros & Pogson, 1994). The main assumption at the time was that enzyme loci have a direct influence on fitness components through the control of metabolic reactions (Haldane, 1954; Koehn et al., 1988; Pogson, 1991; Mitton, 1993; 1997). Additionally, these findings were the basis for Thelen & Allendorf's reasoning (2001) that allozyme loci could be located in gene-rich regions (i.e., would have a greater probability of linkage with relevant genes), whereas noncoding DNA markers would be mainly located in gene-poor regions of the genome. Despite this thinking, significant positive HFCs have also been documented using noncoding markers (Pogson & Fevolden, 1998; Coulson et al., 1998; 1999; Coltman et al., 1999; Rowe et al., 1999; etc.; reviewed by Chapman et al. (2009)). The associations between noncoding DNA markers and fitness traits have been interpreted as showing that some correlations are due to factors other than the direct effects of marker genes on the phenotype. Therefore, they support the associative overdominance hypothesis that HFCs result from inbreeding or local effects. It has generally been assumed that mean heterozygosity reflects the global level of heterozygosity, which should in turn correlate with individual inbreeding levels, as revealed by noncoding markers (Coltman & Slate, 2003; Pemberton, 2004; Slate et al., 2004; Aparicio et al., 2007). However, with analytical and empirical approaches, several authors (e.g., Balloux et al. (2004), Slate et al. (2004), De Woody & De Woody (2005), Hansson & Westerberg (2008) and Väli et al. (2008)) have suggested that HFCs are better explained by relationships at the level of the individual markers, or genes linked to them, because DNA marker heterozygosity (mainly at microsatellites) does not reflect genome-wide inbreeding.
Szulkin et al. (2010) have published a comprehensive review about this controversial subject recently. They argue that all data supporting HFCs is consistent with inbreeding-based theory. In particular, they attempted to demonstrate that linkage disequilibrium is not an alternative to inbreeding but is rather a consequence of some forms of inbreeding and is not restricted to closely linked loci (Szulkin et al., 2010). Moreover, they argue that local chromosomal effects on HFCs are expected to be small and have rarely, if ever, proven to be statistically significant using adequate tests (Szulkin et al., 2010). Curiously, from Szulkin et al.’s perspective (2010) the possibility of direct effects has been obviated when using microsatellites for HFC studies. Microsatellites are ubiquitous and can sometimes seriously affect gene function. It appears that repeats inside genes are usually negative cis modulators of transcription (Streelman & Kocher, 2002; Li et al., 2004; Almuly et al., 2005; Xu et al., 2006; De-Santis & Jerry, 2007; Sharma et al., 2007).

The increased prevalence of inbreeding in small populations (such as those found in aquaculture) facilitates the detection of HFCs (Grueber et al., 2008). Under these circumstances, a small number of loci may provide useful information about genomic heterozygosity and inbreeding for HFC studies (DeWoody & DeWoody, 2005). Despite this possibility, not much work has been performed regarding HFCs in cultured fish populations, and recent studies have focused on only a few species (e.g., Salmo salar L. (Borrell et al., 2004), Anguilla anguilla (Pujolar et al., 2005; 2006; 2009), and Salmo trutta (Tiira et al., 2006)). This is perhaps due to the difficulties
involved in conducting experiments using these species, including the duration of fish life cycles and the space and number of individuals required, among other factors.

Sparus aurata (Linnaeus 1758), a member of the Sparidae family, is one of the most important farmed fish in Europe (especially in the Mediterranean area). *S. aurata* is a protandrous hermaphroditic mass spawning species. Individuals are males for the first two years of life and then become females. Members of the species breed once a year during a six- to eight-week period (Zohar *et al.*, 1978; 1995). However, not all Gilthead Sea bream males seem to follow this pattern; some animals either delay or never attain sex reversal, possibly in relation to social, environmental, and/or genetic factors (Zohar *et al.*, 1995). Spawning in the wild takes place in large groups or schools. Therefore, a minimum of five to seven fish appears to be necessary for reduced stress and natural spawning in artificial environments (Brown, 2003 and references therein). As far as one knows, no previous research has been conducted to assess HFCs in *S. aurata*.

This research have conducted to pursue the following aims: 1) to determine if HFCs exist in the Gilthead Sea bream *S. aurata* using 22 microsatellites and the phenotypic parameters length, mass and specific growth rate (which are generally accepted as fitness-related traits (Chapman *et al.*, 2009)) and 2) to assess which mechanism(s) that could explain HFCs (if present) in the Gilthead Sea bream. The microsatellite sets used here contain both classical microsatellites from genomic
libraries (CMs; genomic locations unknown) and microsatellites markers located in gene-rich regions (gene-rich microsatellites, GRM).

Materials and Methods

Samples and fitness measurements

A population of two-year-old Gilthead Sea bream individuals of unknown origin that had reached commercial size was sampled from the marine farm Safor, S.L. (Gandía, Valencia). A total of 271 fish were selected based on phenotype (no evidence of diseases and/or physical deformities) as potential breeders for the research project (CRIOGEN 2003) at the beginning of 2004 (January). These individuals were tagged using microchips. Small caudal fin pieces were collected, stored in absolute ethanol, and sent to the University of Oviedo.

Masses were recorded in June 2004 (Mass 1, M1), June 2005 (Mass 2, M2), and June 2006 (Mass 3, M3), at which time the length of each fish was also measured (Length, L). Mortality was extremely low during this period (~4%), and individuals that did not survive were excluded from all the analyses. Growth rates were measured in terms of Specific Growth Rates (SGR) (% Mt/day) (Ricker, 1975; Boyer et al., 1994) using the formula $SGR = 100 \times (\ln M_t - \ln M_0)/t$ (for SGR_1: $M_t = M_2$, $M_0 = M_1$; for...
SGR2: $M_{t1} = M3$, $M_{t0} = M2$; and for SGR_{tot}: $M_{t1} = M3$, $M_{t0} = M1$). More than 200 fish were weighed, and their chips were correctly identified during both the 2004 (218) and 2005 (238) weighing processes in the hatchery. During the study, all fish were maintained in an 8-m-diameter sea cage, where they were fed at a rate of 0.7%. As the result of a hatchery management decision, over 100 fish were lost in 2006 before any fitness measures could be obtained; thus, only 107 fish were measured and weighed in June 2006. A principal component analysis (PCA) for the seven fitness traits measured was performed using the R software package (Hornik, 2006).

Microsatellite analysis

DNA was extracted from tissue stored in ethanol using the rapid Chelex® protocol (Walsh et al., 1991). This protocol involved heating approximately 1 mg of fish caudal fins for 1 hour at 55°C with 500 µL of 10% Chelex® (which was previously heated to 60°C) and 7.5 µL of Proteinase K (P-K, 20 mg mL$^{-1}$). The P-K was inactivated by heating the samples at 100°C for 15 min.

The samples were analyzed using two groups of microsatellites:

1) Eleven “classic” microsatellites whose genomic locations were unknown (CM), were obtained from several published genomic libraries: $SaGT1$, $SaGT26$, $SaGT41b$ (Batargias et al., 1999), $SauI41INRA$ (Launey et al., 2003), $Pb-OVI-A3$, $Pb-OVI-B2$, $Pb-OVID102$, $Pb-OVI-D22$, $Pb-OVI-D106$ (Piñera et al., 2006) $Dxd44$, ...
Dpt3 (last two from De la Herrán et al., 2005). Specific PCR procedures were performed as previously described by Borrell et al. (2007) (Table I).

2) Eleven microsatellites located in gene-rich regions (GRM) were obtained, including 2 markers from EST libraries and 9 markers identified from the publically-available sequences for genes related to somatotopic axis (growth) (De Santis & Jerry, 2007).

a) Five microsatellite primer pairs were obtained from previous reports (summarized in Franch et al. (2006) and Table I):

- \(\mu l184 \): S. aurata pituitary cDNA EST-library (Power et al., 2003);
- \(\mu l190 \): S. aurata pituitary cDNA EST-library (Power et al., 2003);
- saGHpCA: S. aurata Growth Hormone gene (5´-UTR) (Almuly et al., 2005);
- 2G: S. aurata myostatin gene (Intron II) (Maccatrozzo et al., 2001);
- G4: S. aurata myogenic factor 1 MYOD1 gene (3´-UTR) (Tan & Du, 2002).

b) Six other microsatellite primer pairs were developed (denoted with a *) in this study (see Table I for details):

- saPROpCA*: S. aurata prolactin gene (5´-UTR) (Astola et al., 2003);
- saMT2pCA*: S. aurata myostatin gene (3´-UTR) (Maccatrozzo et al., 2001);
- saMGpCA*: S. aurata myogenin gene (5´-UTR) (Codina et al., 2008);
saMD2pAC*: *S. aurata* myogenic factor 2 MYOD2 gene (3′-UTR) (Tan & Du, 2002);

saGHR1pCTC*: *S. aurata* growth hormone receptor type I gene (*GHR-I*) (Intron-Exon II) (Saera-Vila et al., 2005; 2007);

saGHR2pGCT*: *S. aurata* growth hormone receptor type II gene (*GHR-II*) (5′-UTR-Exon I) (Saera-Vila et al., 2005; 2007).

To develop the new microsatellite primers, genes sequences were downloaded from GenBank and screened for repeats using the *Tandem Repeats Finder* software (Benson, 1999). Forward and reverse primers were designed for effective amplification of microsatellites using the *FastPCR Professional* package (Kalendar et al., 2009) (Table I). The specific PCR procedures for each microsatellite are described in Table I.

All amplification products were analyzed on polyacrylamide gels using the OpenGene™ automated DNA sequencing system. One primer from each primer set was end-labeled with the fluorescent dye CY5.5, and the internal size marker was end-labeled with the fluorescent dye CY5. PCR reactions were diluted (0.6 µL of the PCR reaction was mixed with 0.6 µL of the marker), heated at 95°C for two minutes, placed immediately on ice and loaded onto a Surefill® 6% denaturing polyacrylamide gel (Visible Genetics, Ontario). Allele sizes were calculated using *GeneObjects™* version 3.1 (Visible Genetics, Ontario).
Genetic analyses of sample characteristics.

The number of alleles at each microsatellite locus \((N_a)\), the proportion of individual samples that were heterozygous (direct count heterozygosity, \(H_o\)) and the unbiased estimate of expected heterozygosity \((H_e)\) were assessed using a modified version of the Biosys-1 program capable of accepting more than 20 alleles per locus (Swofford & Selander, 1981). The Fstat statistical package (Goudet, 1995; 2001) was used to estimate the total variance in gene frequencies \((F_{IT})\), which were partitioned into components of variance occurring within \((F_{IS})\) and among \((F_{ST})\) samples for each locus, as described by Weir & Cockerham (1984). Significance levels for \(F_{IS}\) were assessed through randomizing alleles within samples 1000 times followed by Bonferroni correction (Rice, 1989). Tests for global population differentiation were applied using the log-likelihood G as the test statistic, with no assumption of random mating within samples (Goudet et al., 1996). All loci were tested for linkage disequilibrium using Fstat. To check for genotyping errors, the data were analyzed with the Microchecker software (Van Oosterhout et al., 2004). A test for recent bottlenecks (the Wilcoxon sign-rank test, Luikart & Cornuet, 1997) was conducted using the Bottleneck software. A two-phase model of mutation (TPM) assuming 90% SMM and 10% IAM, with 20,000 iterations was used (Cournet & Luikart, 1996).

Two different approaches were used to assess the extent of population or family structuring within this sample. Population structure was assessed using Structure (Pritchard et al., 2000; 2007). The number of possible clusters \((K)\) within the data set
using a Bayesian approach based on genotype data was assessed. The parameters for each run were set according to Pritchard et al. (2000; 2007) and Evanno et al. (2005). An admixture model (to infer the degree of admixture from the data, α) and correlated allele frequencies among populations were used. The burn-in was set to 50,000, and the MCMC was set to 1,000,000 chains. For each data set, four runs were conducted to estimate ΔK, as suggested by Evanno et al. (2005), as this was a better indication of the true value of K than $\ln P(D)$. The range of Ks tested was 1 to 20.

Possible family structuring in the sample was tested using Colony (version 2) (Wang & Santure, 2009). Family structure will go undetected when the data is similar to data from a single population with no internal structure because independent panmictic subsets are not detectable using programs such as Structure. Colony implements a maximum likelihood method to jointly assign sibship and parentage using individual multilocus genotypes at a number of codominant marker loci. It will infer full-sibs, paternal half-sibs, and maternal half-sibs among “offspring” (i.e., these 271 individuals). Colony also estimates the current effective population size (N_e) from sibship assignments (Wang, 2009). The logic behind the method is simple. A small population (small N_e) will contain a high proportion of sibs because the smaller the N_e, the greater the probability that two individuals drawn at random from the same cohort within a population are sibs that share one parent or both parents. Three replicates of short runs (Wang & Santure, 2009) using polygamy (both parents) and the full likelihood method (Wang, 2004), with no genotyping errors at the markers allowed, were performed.
Estimating MLH and testing HFCs.

The multilocus heterozygosity index (MLH) was calculated according to the commonly used formula recommended by Chapman et al. (2009) (i.e., \(MLH = \) (the number of heterozygous loci/the total number of loci)).

To determine if heterozygosity is correlated across loci within individuals the loci were randomly subdivided into two groups and then it was assessed whether the multilocus heterozygosity (MLH) of the first group of loci was correlated with the MLH of the second group of loci (Balloux et al., 2004). This strategy has been previously proposed as a way to test for global inbreeding (Balloux et al., 2004, Lieutenant-Gosselin & Bernatchez, 2006). The loci were randomly subdivided into two groups of 11, the individual MHL values was recalculated for both groups and then the correlation between those measurements was assessed using a simple linear regression. This procedure was repeated 10,000 times using R (http://www.r-project.org) (Hornik, 2006) to obtain the mean and standard deviation of the correlation coefficients. The g2 value, the overall correlation in heterozygosity among all loci, was also measured. This eliminates the need to divide the set of loci into two arbitrary halves. David et al. (2007) describe the method and its implementation in the RMES software package, which also computes the significance of the observed g2 value, as well as selfing rates when inbreeding is believed to stem from partial selfing. The g2 estimates are still valid even if the inbreeding is not due to selfing (David et al., 2007).
Regression analyses were performed using the *SPSS* 15.0 statistical software. Two analyses were performed: a simple linear regression model using the *MLH* index and the logarithms of the fitness traits, and a multiple linear regression model using the 22 microsatellite loci data instead of *MLH*. For the multiple regression model, a stepwise regression model was used to identify those loci that were most predictive of fitness using an automatic successive steps procedure and F tests with a significance threshold of P<0.05 (Hocking, 1976; *SPSS* 15.0). Quadratic regression models were conducted following the reasoning of Blanchet *et al.* (2009), to uncover signals of stabilizing selection (see also Neff (2004)). Both models (linear and quadratic) were compared using ANOVA and AIC-BIC tests (as implemented in R; Hornik, 2006). Similar regression analyses were conducted, this time using the principal components *PC1* and *PC2*, which contained around an 80% of the information of the fitness variables assessed here. The relationship between those principal components and single locus heterozygosity was assessed using regression analyses to confirm relevant single locus-*HFC*s.

It was also assessed whether dividing the microsatellites into two classes, classic microsatellites with unknown locations (*CM*) and gene-rich regions microsatellites (*GRM*), resulted in a significant improvement in terms of the amount of variance explained as compared to the simple regression model \(F = \frac{\left(SS_{\text{SIMPLE}} - SS_{\text{CM+GRM}} \right)}{\left(SS_{\text{CM+GRM}} / (N-3) \right)} \). Significance was assessed using tables of the F-distribution with 1 and N-3 degrees of freedom (a classical approach) and AIC and BIC values as well.
Results

Genetic description of the sample.

Of the 271 individuals analyzed, only eight produced samples that failed to amplify during PCR. These individuals were excluded from subsequent analyses. Genetic variation (N_a, H_e, H_o) among individuals was high (Table I). There was no significant difference between the two groups of microsatellites in terms of genetic variation levels (CM group: N_a=17.36, H_e=0.800, H_o=0.777; GRM group: N_a=14.09, H_e=0.785, H_o=0.735). The 22 microsatellite loci used here were not in linkage disequilibrium, although Bonferroni correction may have resulted in a number of false negatives, as there were 231 possible comparisons and 4620 permutations in total, resulting an adjusted P-value threshold for significance at the 5% nominal level of 0.0002. However, linkage between microsatellites was not found even for microsatellites located within the same gene (e.g., for microsatellites 2G and $saMT2pCA^*$ within the $S. aurata$ myostatin gene, P=0.0781). A significant departure from Hardy-Weinberg expectations was found in this sample (F_{IS} (22 microsatellites) = +0.047, P=0.0023). This result was driven by seven loci ($SaGT26$, $SauI41INRA$, $Pb-OVI-A3$, $saGHpCA$, $\mu 184$, $saMT2pCA^*$ and $saMD2pAC^*$) (Table I). Evidence for possible null alleles was found at four of these loci using Microchecker: $SauI41INRA$, $\mu 184$, $saMT2pCA^*$ and $saMD2pAC^*$ (Table I). A global test for population
differentiation using the log-likelihood G as a statistic (Goudet et al., 1996) and an assumption of no random mating within samples did not detect any significant global genetic structuring in this sample, \(F_{ST} (22 \text{ microsatellites}) = 0.001 \text{ n.s.} \). The sample had a normal L-shape allele distribution, indicating that bottlenecks are very unlikely to have occurred recently in the sampled population \((P=0.5253) \).

Analysis using Structure failed to identify a biologically sensible or likely number of the populations \((K) \) within the sample. The procedure of Evano et al. (2005) for estimating \(K \) demonstrated that \(\ln \left(\Pr \left(X/K \right) \right) \) was bimodal \((K = 1, K = 8) \), which indicates that the MCMC scheme was finding different solutions. Longer runs did not fix this problem. Moreover, the proportion of the sample assigned to each population was roughly symmetric and most individuals were admixed when testing the different \(K \) clusters (1-20). Three short runs of the Colony software converged toward the same result, that the 271 individuals are likely comprised of 111 males and 105 females from 229 full sib families (190 families with one individual, 36 with two individuals and 3 with 3 individuals) and 467 and 45 half and full sib pairs, respectively. A minimum of 14 independent sib clusters were inferred. Two individuals that are not directly related can still be included in the same sib cluster if they share a half-sib (Colony user guide notes). The effective population size estimated by Colony was \(N_e = 257 \), with a 95% CI of 210-314.

Fitness parameters.
The mean mass, length, and growth rate in this sample are shown in Table II. All fish weighed approximately 825 g in 2004. A mass increase of approximately 43% (a mean of 0.12% per day) was observed during the first year of this study (the third year of life for the fish). This trend did not continue into the second year of cultivation where a minor, but still significant, mass increase was observed (13%, a mean of 0.04% per day). The mean length of the fish at the end of the experiment (June 2006) was approximately 37 cm (Table II). Body masses were correlated with each other, and the specific body mass (M3) and length (L) were also correlated (F values P<0.05). The SGR1 and SGR2 indices were correlated with SGRtot (P<0.05), but not with each other (P>0.05). An ANOVA analysis comparing the means of all of the fitness traits under study (M1, M2, M3, L, SGR1, SGR2, SGRtot) between the 14 independent sibs clusters identified by Colony found no significant differences between them (0.025<F<1.448, 0.232<P<0.874). The PCA indicated that one component (PC1) contains almost all of the variance in fitness traits (58.8% of the variance in the fitness data), except for logSGR2, which was mainly separated by the second PCA component (PC2; 20.6% of the variance in fitness).

Multilocus heterozygosity (MLH) and correlations within individuals.

The mean multilocus heterozygosity, MLH_{22} (22 microsatellites), was 0.9551 in this sample. When the loci were randomly subdivided into two groups of 11, and individual MLH values were recalculated for both groups and measured the correlation between
those measurements using linear regression 10,000 times, it was found that the MLH values within an individual were not correlated at all ($r^2 = 0.002$). The overall correlation in heterozygosity among all loci (based on g2 values) was zero ($P=0.436$ after 10,000 iterations).

Heterozygosity-Fitness correlations (HFCs).

Simple regression of MLH and the logarithms of the fitness measurements revealed several significant associations (Figure 1, Table III). Significant negative correlations between MLH (using all 22 microsatellites) and L ($r^2 = 0.066$, $F = 7.12$, $P=0.009$), $SGRI$ ($r^2 = 0.026$, $F = 5.13$, $P=0.025$) and $SGRtot$ ($r^2 = 0.071$, $F = 7.14$, $P=0.009$) were found. The PC1 component from the PCA was negatively correlated with MLH ($r^2 =0.083$ $F=7.57$ $P=0.0072$) while PC2 was not ($P>0.05$) (Figure 1, Table III). In all the cases, the quadratic models of regression did not explain the data variance any better than did any of the linear models assayed ($P>0.05$). These results indicate that heterozygotes had lower fitness than their homozygous counterparts in this work.

The results of multiple regression analyses (using all 22 loci as independent variables) are shown in Table III. Regression coefficients were not significant, and in all cases, loci with both positive and negative regression coefficients were observed (Table III). These models did not better explain the dependent variables (fitness traits) than did the global model previously assessed (no significant improvement was indicated by the
F values, AIC or BIC values). The automatic procedure for identifying loci that were most predictive of fitness found 6 loci, SaGT26(+), Pb-OVI-B2(-), Pb-OVI-D22(-), 2G(-), saMT2pCA* (+) and saGHR1pCTC*(-) where heterozygosity could be used to predict some of the dependent fitness variables measured (Table III). All of these loci (with the exception of saMT2pCA*) were also detected as loci related to HFCs after single locus analyses using simple regressions with the PC1 and PC2 variables (Table III).

Finally, multiple regression analyses using the MLH values of the two previously described groups of microsatellites (“potentially differentiated” in terms of their genomic locations: CMs-unknown vs. GRMs-vicinity of genes) as two independent variables, MLH\textsubscript{CM} and MLH\textsubscript{GRM}, were performed. The results obtained indicate that little gain in the fraction of variance in the assessed fitness traits explained is obtained, as compared to the simple regression model (Table III). F tests, comparing the simple and the two variables models, always yielded P-values greater than 0.05. A similar result was obtained using AIC and/or BIC values (data not shown).

Discussion

Two comprehensive reviews on heterozygosity-fitness correlations have recently been published (Chapman et al., 2009; Szulkin et al., 2010). The subject seems to have engendered serious and contentious debate. Chapman et al. (2009) conducted a quantitative review of HFCs in animal populations and concluded that HFCs studies do
not generally agree with the patterns predicted by population genetic theory and explain only small effects (less than 1%). This is the reason they have been largely discarded as a useful tool in selection and breeding strategies in aquaculture (Fjalestad, 2005). Szulkin et al. (2010) affirmed that quantitative and qualitative HFC studies are consistent with inbreeding-based theory. They rejected linkage disequilibrium and local effects as an alternative to inbreeding and described how HFCs can be used to quantify inbreeding load and unravel the structure of natural populations (Szulkin et al., 2010).

In this study, there were two main results: 1) late life-stage HFCs were observed in a sample from a Gilthead Sea bream population, and 2) the significant correlations between heterozygosity and growth found were negative.

Do HFCs in a late life-stage of a sample from a Gilthead Sea bream population represent general or local effects?

Szulkin et al. (2010) strongly support the idea that heterozygosity at neutral markers is correlated with heterozygosity at selected loci, both linked and unlinked, through genetic associations that arise in the context of a form of sensu lato inbreeding, such as when there is a small population size, nonrandom mating, population admixture or bottlenecks (see also Slate & Pemberton (2006)). The use of the approaches proposed by Balloux et al. (2004) and David et al. (2007) (the g values) demonstrate that marker heterozygosities are not correlated in this sample. Thus, marker heterozygosity did not reflect the level of inbreeding in this work. The family analysis revealed more than 200 full sib families (229) among the 271 fish being studied and the effective population
size as estimated from analysis of sibs was $N_e=257$ (95% confidence intervals of 210-314), accounting for the sample size used. In light of this, an underlying familial structure within the sample does not appear to be responsible for the significant correlations found.

Some of loci genotyped in this work varied from Hardy-Weinberg expectations (in the form of heterozygote deficits). However, under the Wahlund effect, genetic markers are expected to show Hardy-Weinberg disequilibrium at most loci. This is not the case for the majority of the loci in this study. Hardy-Weinberg disequilibrium was observed at only 7/22 loci (31%), with evidence of the possible existence of null alleles in four of these loci (the sample would be in global HW equilibrium without those four loci). It would also expected to find evidence of linkage disequilibrium among the loci if there is population stratification (Wang et al., 1998) and/or if a high percentage of individuals were asymmetrically assigned to putative subpopulations after Bayesian clustering with a software package such as Structure (Pritchard et al., 2000). Neither of these possibilities occurred (this was also assessed using Partition 2 (Dawson & Belkhir, 2001), but the software used failed to determine the K number of subpopulations; data not shown)). The global population stratification test performed using the Fstat program was not significant. Together, the genetic analyses indicate that this sample lacks clear genetic structure.

Overall, this data does not point to a “general effect” (inbreeding, or family or population structure) being responsible for the correlations found. However, it should be
noted that finding a lack of significance when attempting to detect these general effects does not mean they are absent (Waples, 1998; Hedrick, 1999; Szulkin et al., 2010). In fact, Szulkin et al. (2010) said that one of the possible utilities of HFC studies is that they can serve as a “warning signal” for genetic erosion in unpedigreed captive or wild populations. HFC studies have suggested inbreeding in large and open populations of marine bivalves, which had been missed by previous studies that had used other methods of genetic analysis (Szulkin et al. (2010) and references therein).

David P. (pers. comm.) and Szulkin et al. (2010) have affirmed that local effects due to linkage or direct action are unlikely to be detected due to a dilution effect, and they have almost never been tested for using an adequate statistical approach (see David et al., 1997). This work has been tested for correlations that could be a result of linkage. Two types of microsatellites have been used; one with unknown genomic locations and another located in gene-rich regions. Thelen & Allendorf (2001) reasoned that allozyme loci might tend to be located in gene-rich regions, whereas microsatellite loci (which are commonly obtained from genomic libraries and have unknown genomic locations) would probably be located in gene-poor regions of the genome. Thus, it was suggested that the HFCs found when using allozymes but not microsatellites, such as those found in the deep-sea scallop Placopecten magellanicus (Zouros & Pogson, 1994), the rainbow trout Oncorhynchus mykiss (Thelen & Allendorf, 2001), the Atlantic salmon Salmo salar L. (Borrell et al., 2004) and the eel Anguilla anguilla L. (Pujolar et al., 2005), could be more influenced by a linkage effect than a direct overdominance effect (a hypothesis widely accepted at the time). However, it seems that the genomic locations of the markers used in this work had little to do with the HFCs found. It was
not observed a significant increase in the amount of variance in fitness traits that could
be explained after dividing the loci into microsatellites from gene-rich regions (GRM)
and classic microsatellites whose positions were unknown (CM). In fact, 3 loci from
each “class” were identified as predictive variables for fitness traits. Similar to the work
of Thelen & Allendorf (2001), this result is limited by the fact that the true location of
the CMs in the genome cannot be determined (they could be also in gene-rich regions).
Recently, Pujolar et al. (2009) found a complete lack of HFCs in eels using 22
expressed sequence tag-derived microsatellite loci that were all located in gene-rich
regions. This result seems to confirm that a marker’s location in a gene-rich region of
the genome is not sufficient on its own to explain the existence of HFCs.

A more appropriate procedure to test for local effects seems to be to test whether
a multiple regression incorporating specific effects for each locus explains more
variance than a simple regression model (David, 1997; David et al., 1997; David, 1998;
Szulkin et al., 2010). It does not seem correct to perform a separate regression for each
locus because they are not independent from each other due to identity disequilibrium,
as was affirmed by Szulkin et al. (2010), or to use Fisher tests, as fitness traits are not
independent (see Fisher (1948), Sokal & Rohlf (1995) and Szulkin et al. (2010)). It was
performed the same tests as David et al. (1997), and the multiple regression models did
not help to explain significantly more variance in fitness traits. David et al. (1997) and
Szulkin et al. (2010) remarked that although this is the more rigorous way to test for
local effects, they are extremely difficult to detect if the MLH regression results are
already weak. Sample size also limits the ability of David’s tests (David, 1997) to
statistically demonstrate direct or associative overdominance. All three tests (A, B and
C tests) proposed by David (1997) require large samples sizes (n≈1000 individuals; see also David et al., 1997). In any case, some of the loci assayed here seem to be associated with some of the fitness traits under study. There is not information about the genomic location of the SaGT26, Pb-OVI-B2, or Pb-OVI-D22 markers. However, it is not clear why the two microsatellites located in the vicinity of the myostatin gene, saMT2pCA*(+) and 2G(-), a gene that negatively regulates muscle development and growth (Maccatrozzo et al., 2001), and the saGHR1pCTC* (-) locus located in the growth hormone receptor gene showed significant single locus HFCs. They may be linked to relevant genes that influence fitness or they may themselves directly influence a role on fitness and growth. More research is required to answer these questions.

Negative HFC in a late life-stage Gilthead Sea bream sample.

Positive HFCs based DNA markers have been previously reported (Pogson & Fevolden, 1998) and continue to be reported today (Chapman et al., 2009). However, negative correlations and heterosis can occur simultaneously in a single population (Den & Fu, 1998). Empirically, there are some examples of negative relationships between fitness and microsatellite heterozygosity in the literature (Zouros & Pogson, 1994; Borrell et al., 2004; Lieutenant-Gosselin & Bernatchez, 2006; Van Dongen et al., 2007), although many cases may go unreported (Chapman et al., 2009).
Two ideas have been invoked to explain negative HFCs. The first involves exogamic depression (Keller et al., 2000; Fenster & Galloway, 2000; Burke & Arnold, 2001), whereby a breakdown of coadapted gene complexes occurs with increasing heterozygosity, leading to reduced growth (Marshall & Spalton, 2000; Van Dongen et al., 2007). The second idea is that ribosomal (or other) genes that participate in protein turnover are involved, (Mitton & Koehn, 1985; Hawkins & Day, 1999; Hedgecock et al., 2007) resulting in the dominance of low expression and/or underdominance, and heterozygotes having poorer performance in some genic functions by because they are more efficient individuals that consume less energy (Hedgecock et al., 2007).

There is not evidence of outbreeding in this sample. There is neither excess of heterozygotes, a finding that is commonly related to bottleneck events (Luikart & Cournet, 1997), and also to exogamy (Von Ahsen et al., 2010). Nevertheless, it could be present, as the origin of the base population is not known. Thus the negative HFCs found in this study could be a sign, perhaps the tip of the iceberg, indicating a previous exogamic process. On the other hand, it has been previously observed that growth is not consistent fitness in fish at all life-stages. In Atlantic salmon, the more heterozygous salmon grow faster during early life-stages, but afterwards some fish initiate maturation and divert more energy to gonad development and gamete production than to somatic tissue development (Blanco et al., 1998; Borrell, 2002; Pineda et al., 2003; Fernandez, 2005). Thus, if some of the microsatellites assayed here are related (by linkage or in a direct manner) to more efficient negative regulation of the growth pathways in sea breams, then it is possible that individuals with greater heterozygosity could then be more likely to have both sexual revert to females, as well as have a more active sexual
maturation process (in both sexes), which would result in lower growth than that demonstrated by their less heterozygous counterparts.

In summary, negative HFCs have been detected in a sample from the late life-stage of the Gilthead Sea bream *S. aurata* using microsatellite loci from unknown and gene-rich genomic locations. There was not any evidence of inbreeding, outbreeding or population/family structuring in this data. However, these results cannot rule that undetected general effects may exist that cause the appearance of HFCs. In fact, HFCs themselves may provide a way to reveal *sensu lato* forms of inbreeding or earlier exogamic processes in populations, even when genetic data indicates otherwise (the “tip of the iceberg” referred to by Szulkin *et al.* (2010)). In any case, these results seem to be best explained by the occurrence of local effects due to linkage with proximal or distal functional loci or even by possible direct locus advantages.

Acknowledgements

Thanks to F. Funkenstein who gave us sequences for the primers pairs for the *saGHpCA* locus. J. Wang helped with the use of the *Colony 2* software. P. David helped with the *RMES* software. This work was carried out in collaboration with the fish farm Safor, S.L. (Gandía, Valencia) and the hatchery Piscimar de Burriana, Valencia. It has been financed by JACUMAR and the Department of Science and Technology in Spain (National Program of Resources and Food and Agriculture Technologies, *AGL2003-*
References

