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ABSTRACT: In recent years, mesoporous silica nanoparticles (MSN) have been used as 

effective supports for the development of controlled release nanodevices able to act as a 

multifunctional delivery platform for the encapsulation of therapeutic agents, enhancing their 

bioavailability and overcoming common issues such as poor water solubility and poor stability of 

some drugs. In particular, redox-responsive delivery systems have attracted the attention of 

scientists because of the intracellular reductive environment related with a high concentration of 

glutathione (GSH). In this context we describe herein the development of a GSH-responsive 

delivery system based in PEG-capped MSN able to deliver safranin O and doxorubicin in a 

controlled manner. The results showed that the PEG-capped systems designed in this work can 
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be maintained closed at low GSH concentrations yet the cargo is delivered when the 

concentration of GSH increased. Moreover, the efficacy of the PEG-capped system in deliver the 

cytotoxic agent doxorubicin in cells was also demonstrated. 

INTRODUCTION 

Since its beginning, nanotechnology has revolutionized each field in which it has been 

exploited. In the area of medicine, it offers a broad variety of tools able to transform and improve 

conventional therapeutic and diagnostic strategies. In particular, one of the fields within 

medicine in which nanotechnology has a great potential is the development of new smart drug 

delivery systems able to release therapeutic agents in a controlled and selective manner. With 

this, researchers aim to prepare effective supports for the development of controlled release 

nanodevices able to act as a multifunctional delivery platform for the encapsulation of 

therapeutic agents, enhancing their bioavailability and overcoming common issues such as poor 

water solubility, poor stability of some drugs and undesired side effects. This goal is especially 

appealing in the delivery of cytotoxic drugs for cancer treatment. Based in these concepts, a 

number of nanodevices for encapsulation, transport and release of antineoplasic agents have been 

described based on different platforms such as liposomes, polymeric nanoparticles, lipid–

polymer hybrid nanoparticles, dendrimers and inorganic nanoparticles.1-10  In most cases it was 

observed that these drug nanocarriers tend to accumulate at solid tumour sites due to their 

comparatively leaky vasculature and poor lymphatic drainage. These properties make the tumour 

vasculature hyperpermeable for high molecular weight (≤ 40 kDa) long-circulating 

macromolecules and nanoparticles. This effect, known as the enhanced permeation and retention 
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effect (EPR), results in a passive targeting that allow achieving higher intratumoral drug 

concentration and decreasing the toxicity in normal tissues.11-14  

 In recent years, mesoporous silica nanoparticles (MSN) have been used as effective 

support for the development of controlled release nanodevices due to their unique characteristics, 

such as high homogeneous porosity, inertness, robustness, thermal stability and high loading 

capacity. Owing to their properties, these supports are able to act as multifunctional delivery 

platforms for the encapsulation of therapeutic agents.15-17  Moreover, MSN could be decorated 

with switchable “gate-like” ensembles on the external surface, capable of being “opened” or 

“closed” upon the application of certain external stimuli.18 These concepts have allowed the 

design of nanodevices for on-command delivery that can be triggered by target chemical (such as 

redox molecules,19-21 selected anions22-24 and pH changes25-28), physical (such as light,29-31 

temperature32-35 or magnetic fields36-38) and biochemical (such as enzymes,39-43 antibodies,44 or 

DNA45,46) stimuli. 

 In this context redox-responsive delivery systems are particularly appealing because 

intracellular release of therapeutic agents can be achieved by the reductive environment of the 

cytosol tied with a high concentration of glutathione (GSH). In fact, since Lin and coworkers 

reported the first redox-responsive gated material in which cadmium nanoparticles blocked the 

pore entrances of a silica mesoporous support and the release of the entrapped fluorescein was 

triggered by the rupture of a disulphide bond,47 several capped systems driven by GSH and other 

reducing agents have been described.48-54 GSH is a thiol-containing tripeptide capable of 

reducing disulfide bonds, and its intracellular concentration (10mM) is significantly higher than 

its concentration in blood plasma (2µM).55 These differences in GSH concentration inside and 

outside the cell allows the design of GSH-driven nanovalves for drug transport that remain 
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closed in extracellular environments whereas they open and deliver their cargo in intracellular 

medium. Moreover, the GSH levels in some cancer tissues have been found many-fold higher 

than those in normal tissues.56, 57  

 In the same context, the preparation of controlled release nanodevices able to remain 

stable and bioavailable for long time in the human body environment is a pursued goal. In this 

field, polyethylene glycol (PEG) has been widely used. This molecule is a highly hydrophilic 

polymer currently and thoroughly used in drug delivery formulations. It has been demonstrated 

that PEGylation of nanoparticles increases its solubility in buffer and serum due to the 

hydrophilic ethylene glycol moieties. Moreover, the presence of PEG groups on the surface of 

nanoparticles reduces the nonspecific binding of nanoparticles to blood proteins and 

macrophages, resulting in the so-called “stealth” behaviour. As a result, it has been described 

that the blood circulation half-lives of PEG-containing nanocarriers are prolonged and the 

passive targeting to cancer cells tied with EPR effect could be enhanced.   

 Based in these concepts, our aim was to design a GSH-responsive gated material, based 

on MSN, as a simple to prepare and stable delivery systems of cytotoxic agents. In particular, we 

report herein the preparation of a hybrid material consisting of MSN loaded with a cargo (a dye 

or drug) and functionalized with PEG chains in the pore outlets using a disulfide linkage. The 

proposed paradigm is depicted in Scheme 1. It was expected that the size of PEG chains would 

be enough to block the pores and to inhibit cargo release. Moreover, as illustrated in Scheme 1, 

the presence of the intracellular reducing agent GSH is expected induce the uncapping of the 

pores and the delivery of the entrapped guest.  
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Glutathione

Safranin O  

Scheme 1. Schematic representation of the gated material S1 capped with PEG chains via disulfide linkage. 

 

EXPERIMENTAL SECTION 

Synthesis of mesoporous MCM-41 nanoparticles  

Mesoporous MCM-41 nanoparticles were synthesised by the following procedure: n-

cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 mmol) was first dissolved in deionized 

water (480 mL). Then, NaOH (3.5 mL, 2.00 mol L-1) in deionized water was added to the CTAB 

solution, followed by adjusting the solution temperature to 80 °C. TEOS (5.00 mL, 2.57 x 10–2 

mol) was then added dropwise to the surfactant solution. The mixture was stirred for 2 h to give 

a white precipitate. Finally, the solid product was centrifuged, washed with deionized water and 

ethanol, and dried at 60 °C (MSN as-synthesized). To prepare the final porous nanoparticles 
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(calcined MSN), the as-synthesized solid was calcined at 550 °C using an oxidant atmosphere for 

5 h in order to remove the template phase. 

Synthesis of S1 and S2 

For the preparation of solids S1 and S2, 500 mg of calcined MSN and safranin O dye (140.34 

mg, 0.40 mmol) were suspended in distilled water (17 mL) in a round-bottomed flask. The 

mixture was sonicated in an ultrasonic bath for 10 minutes and stirred for 24 h at room 

temperature, filtered off and dried under vacuum. Afterward, this loaded solid (250 mg) was re-

suspended in acetonitrile (8.5 mL) in the presence of an excess of safranin O and (3-

mercaptopropyl) trimethoxysilane (464.38 µL, 2.5 mmol) was added. The suspension was stirred 

for 5.5 h at room temperature and then, 2,2'-dipyridyl disulfide (550.77 mg, 2.5 mmol) was 

added to the reaction mixture. After stirring for 12 h at room temperature, the resulting solid was 

filtered off and dried under vacuum. Finally, a mixture of this prepared solid (50 mg) and O-(2-

mercaptoethyl)-O’-methyl-hexa(ethylene glycol) (1.4 mmol) for S1, or poly(ethylene 

glycol)methyl ether thiol (0.15 mmol) for S2 were suspended in acetonitrile (3.33 mL) in the 

presence of an excess of safranin O. The mixture was stirred for 12 h and the final materials S1 

and S2 were isolated by centrifugation, washed with abundant water and dried at 40ºC for 12 h. 

The prepared solids were easily redispersed by 1 min of mild sonication in an ultrasonic bath.  

Synthesis of S3 

Solid S3 was prepared following the same procedure described for S1 but, in this case, MSN was 

loaded with doxorubicin drug instead of safranin O. Then, 50 mg of calcined MSN and 

doxorrubicin (10 mg, 0.017 mmol) were suspended in distilled water (0.8 mL) in a round-

bottomed flask. The mixture was stirred for 24 h at room temperature, isolated by centrifugation 
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and dried under vacuum. Afterward, this loaded solid was re-suspended in acetonitrile (1.7 mL) 

and (3-mercaptopropyl) trimethoxysilane (92.87 µL, 0.5 mmol) was added.  The suspension was 

stirred for 5.5 h at room temperature and then, 2,2'-dipyridyl disulfide (136.0 mg, 0.5 mmol) was 

added to the reaction mixture. After stirring for 12 h at room temperature, the resulting solid was 

isolated by centrifugation and dried under vacuum. Finally, a mixture of this prepared solid (28 

mg) and O-(2-mercaptoethyl)-O’-methyl-hexa(ethylene glycol) (mPEG thiol) (113.12 µL, 0.08 

mmol) were suspended in acetonitrile (1.885 mL) and the mixture was stirred for 12 h at room 

temperature. The final capped solid S3 was isolated by centrifugation, washed with abundant 

water and dried under vacuum for 24 h. The prepared solid was easily redispersed by 1 min of 

mild sonication in an ultrasonic bath.  

Dye release studies 

Delivery experiments were carried out using the capped materials S1, S2 and S3, in the absence 

or presence of gluthathione (GSH) as reducing agent. In a typical experiment, 0.5 mg of each 

material were suspended in 1.125 mL of distilled water at pH 7.5. After sonication, 125 µL of the 

corresponding GSH stock solution were added. The suspension was then stirred and, at a certain 

time, an aliquot was separated and centrifuged. Dye and drug delivery was monitored through 

the emission band of safranin O or doxorrubicin centred at 585 nm (λexc = 520 nm) and 557 nm 

(λexc =  495 nm) respectively.  

Cell culture conditions 

The HeLa human cervix adenocarcinoma cells were purchased from the German Resource 

Centre for Biological Materials (DSMZ). Hela cells were routinely grown in DEM supplemented 

with 10% FBS, at 37 ºC in an atmosphere of 5% CO2 and underwent passage twice a week. 
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WST-1 cell viability assay  

Cells were cultured in sterile 24–well microtiter plates at a seeding density of 25 x 103 cells/well 

for HeLa and were allowed to settle for 24h. S1 or S3 was added to the cells at a final 

concentrations of 20, 50, 150 and 200 μM. After 22 h, WST-1 (30 µL of a 50 mg/ml solution) 

was added to each well. Cells were further incubated for 2 h (a total of 24 h of incubation was 

therefore studied), and then shaked thoroughly for 1 minute on a shaker. After that, absorbance 

was measured at 450 nm against a background control as blank using a microplate ELISA reader. 

The reference wavelength was 690 nm. 

Live confocal microscopy S1 and S3 cellular internalisation assays 

HeLa cells were seeded in 24 mm glass coverslips in 6-well microliter plates at a seeding density 

of 1.5 x 10-5 cells/well. After 24 hours, cells were treated with 75 μg/ml of S1 or S3. After 20 

minutes, the medium was removed to eliminate compounds and washed with PBS. Then, cells 

were incubated during 20 hours at 37 ºC, and were visualized under a confocal microscope. 

Confocal microscopy studies were performed with a Leica TCS SP2 AOBS (Leica Microsystems 

Heidelberg GmbH, Mannheim, Germany) inverted laser scanning confocal microscope using oil 

objectives: 63X Plan-Apochromat-Lambda Blue 1.4 N.A. Two-dimensional pseudo colour 

images (255 colour levels) were gathered with a size of 1024x1024 pixels and Airy 1 pinhole 

diameter. All confocal images were acquired using the same settings. Identical experiments were 

done three times to obtain reproducible results.  
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RESULTS AND DISCUSSION 

Design and synthesis of gated MSN  

In this study, we selected spherical nanometric MSN from the MCM-41 family as support. 

This is a suitable inorganic matrix that displays several appropriate characteristics, such as 

homogeneous porosity, high inertness and ease of functionalization. Moreover, typical MCM-41 

materials contain mesopores in the 2–3 nm range, which allows the storage of a wide variety of 

guests. In relation to the capping ensemble, as stated above, we aimed to develop a gate-like 

platform that could be triggered by the GSH present in cells. As capping molecules we selected 

two different sized polyethylene glycol chains of molecular weights of 350 and 800, containing a 

terminal thiol group. Moreover different solids loaded with safranin O (S1 and S2) or with 

doxorubicin (S3) were prepared. MSN were synthesised by using tetraethyl orthosilicate 

(TEOS), which acts as an inorganic precursor, and hexadecyltrimethylammonium bromide 

(CTAB) as a structure-directing agent. The subsequent removal of the surfactant by calcination 

in air at high temperature resulted in the starting mesoporous inorganic nanoparticles. To prepare 

the capped material containing the dye Safranin O in the pore voids and the 350 Mn PEG in the 

pore outlets (S1), we followed a four-step synthetic procedure (see Scheme 2). As a first step, 

calcined MSN were added to a water solution containing a high safranin O concentration and 

were stirred for 24 h to achieve an efficient loading of pores. The loaded solid was treated with 

3-mercaptopropyltrimethoxysilane and then with 2,2′-dipyridyl disulfide to obtain 2-

pyridinyldisulfanylpropyl-functionalized MSN. Finally, grafting of polyethylene glycol chains 

onto the external surface was achieved through the formation of a disulfide linkage by reaction 

with O-(2-mercaptoethyl)-O-methyl-hexa(ethyleneglycol). The nanoparticles were washed with 

abundant water and dried under vacuum to obtain the final solid S1. The hybrid material S2 was 
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synthesized following the same procedure as S1, but in this case, PEG of a molecular weight of 

800 was used. Finally, PEG-capped doxorubicin-containing hybrid material S3 was prepared 

following the same procedure as S1, but using the drug doxorubicin as cargo.   

 

Safranin O

MSN-Saf MSN-SH

MSN-SS-Pyridyl MSN-SS-PEG

(1) (2)

(3) (4)

 

Scheme 2. Synthetic route for preparing the final solid S1. 

Characterization of the hybrid materials  

The prepared solids were characterized using standard techniques. Powder X-ray diffraction 

(PXRD) patterns of the as-synthesized MSN, calcined MSN, and the final materials S1, S2 and 

S3 are shown in Figure 1. As it can be appreciated, the PXRD of synthesized MSN (Figure 1a) 

shows the four low-angle reflections attributed to the typical MCM-41 hexagonal array that can 

be indexed as (100), (110), (200), and (210) Bragg peaks. From these data, a d100 spacing of 

42.25 Å can be calculated. In a further step, the PXRD of calcined MSN (Figure 1b) shows a 

significant displacement of the (100) peak, that can be attributed to an approximate cell 

contraction of 3.64 Å. This displacement and broadening of the (110) and (200) peaks found in 
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calcined MSN is related to further condensation of silanol groups during the calcination step. 

Finally, Figures 1c to 1e show the PXRD patterns for solid S1, S2 and S3 respectively. In these 

curves, the reflections (110) and (200) are practically lost, most likely due to a reduction in 

contrast as a consequence of the pore loading with the Safranin O dye (for S1 and S2) or 

doxorubicin (for S3) and the functionalization with the corresponding polyethylene glycol 

chains. Nevertheless, the presence of the (100) peak in the PXRD pattern indicated that the 

process of pore loading and the additional functionalization with PEG did not modify the 

mesoporous structure of the MSN support in a large extent. The mesoporous structure of the 

prepared solids was also confirmed using transmission electron microscopy (TEM) analysis. As 

it can be observed in representative images of Figure 1, for solids S1 and S2, MSN were 

obtained as spherical particles with a diameter of ca. 90 nm. Moreover, the typical MCM-41-like 

hexagonal arrangement of the mesopores can also be observed. 
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Figure 1. A) Powder X-ray pattern of a) MSN, b) calcined MSN, c) solid S1 containing safranin O and 

functionalized with PEG (Mn 350), d) solid S2 containing safranin O and functionalized with PEG (Mn 800) and e) 
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solid S3 containing doxorubicin and functionalized with PEG. B) Transmission electron microscopy (TEM) images 

of i) solid S1, and ii) solid S2 showing the typical porosity of the MCM-41 matrix. 

In addition, N2 adsorption–desorption isotherms of calcined MSN were registered. As it can be 

seen in Figure 2a, a typical curve for MCM-41-like mesoporous solids was obtained. In 

particular, a sharp adsorption step was recorded at intermediate P/P0 values (0.25–0.4). This 

feature corresponds to a type IV isotherm, indicating the nitrogen condensation inside the 

mesopores by capillarity. Moreover, the free nitrogen release from the mesopores is confirmed 

by the absence of a hysteresis loop in this interval, suggesting the presence of uniform cylindrical 

mesopores. Using the adsorption branch of the porosimetry data, the Barrett–Joyner–Halenda 

(BJH)58 model was applied and a narrow pore distribution centred at 2.76 nm was calculated. 

Furthermore, the application of the Brunauer, Emmett and Teller (BET) model resulted in a 

value of 1045.7 m2g-1 for the total specific surface of calcined MSN. Taking into account the 

registered PXRD, porosimetry and TEM studies, an a0 cell parameter of 4.45 nm and a wall 

thickness of 1.69 nm were calculated. These values are in agreement with typical MCM-41-type 

solids. In addition to the adsorption step associated to the micelle generated mesopores, a second 

feature can also be observed at a high relative pressure (P/P0>0.85). This adsorption corresponds 

to the filling of the large voids among the particles and a main pore diameter of 49.63 nm can be 

calculated in this case by using the BJH model. 

 N2 adsorption-desorption isotherms for the capped solids S1, S2 and S3 showed no 

remarkable steps at low-intermediate relative pressure values if compared to the calcined MSN. 

When BET and BJH models were applied lower N2 adsorbed volume and surface areas were 

found (see Table SI-1, Supporting Information) for solids S1, S2 and S3 as expected when 
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compared with the starting MSN supports and due to the partial filling of the mesopores with the 

cargo.  
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Figure 2. N2 adsorption–desorption isotherms for a) MSN, b) S1, c) S2 and d) S3. Inset: Pore-size distribution for 

each corresponding solid.  
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Furthermore, the hydrodynamic diameter of calcined MSN, S1 and S2 was determined from 

Dynamic Light Scattering (DLS) studies (Figure SI-1, Supporting Information). The diameter for 

calcined MSN was of ca. 94 nm while that found for S1 was higher (126 nm). An even larger 

diameter was registered for S2 (178 nm). These results are in agreement with the 

functionalization of the MNS nanoparticles and with the larger size of the PEG derivative used to 

cap S2 when compared with the PEG used to prepare S1.  

Finally, the organic content in solids S1, S2 and S3 was determined by elemental analysis and 

thermogravimetric studies. Table SI-2 in Supporting Information summarizes all the obtained 

data. Specifically, a content of 0.11 and 0.21 mmol g-1 SiO2 of safranin O dye in solids S1 and 

S2 respectively and a content of 0.27 mmol g-1 SiO2 of doxorubicin in solid S3 were obtained. 

All the obtained values are within the range usually observed in previously reported gated 

systems.  

The Functional Redox-Responsive Controlled Release 

As stated above, it was our aim the design of delivery systems triggered by a reductive 

environment in cells due to the presence of glutathione. In a first step release experiments in an 

aqueous solution were carried out with nanoparticles S1 and S2. For example in a typical 

experiment S1 material was suspended in water at pH 7.5 both, in the absence and presence of 

GSH (10mM). At certain fixed times, aliquots were separated, filtered and the delivery of 

safranin O dye from the pore voids was observed via monitoring of the fluorescence band of 

safranin O at 585 nm (λex=520 nm) in the aqueous phase (see Figure 3). Solid S1 displayed a 

poor release profile (curve a) in water, whereas it delivered the dye in the presence of GSH 
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(curve b). In particular S1 nanoparticles were able to remain stable at least for 24 h in a non-

reductive environment, whereas in the presence of 10mM GSH, a fast release of cargo was 

observed achieving 90% of the maximum release of the entrapped guest, corresponding to a 55%  

of the total loaded cargo, in less than 1 h. These results indicate that the anchored PEG chains 

form a dense barrier that inhibits cargo release effectively. In contrast, when GSH is present, the 

disulfide bond is cleaved allowing the release of the entrapped cargo.  
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Figure 3. Kinetics of the release of safranin O from gated solid S1 in water a) in the absence of GSH and b) in the 

presence of 10 mM GSH. 

Once proved the suitable behaviour of the capped design, we studied the influence of GSH 

concentration in the release of safranin O from S1. The percentage of safranin O released after 

24 h in the presence of different concentrations of GSH is shown in Figure 4. As expected the 

amount of released safranin O from S1 was GSH-concentration dependent. Furthermore, stability 

of S1 in other competitive media such as phosphate buffered saline (pH 7.4) and simulated body 

plasma (SBP) was explored. As it can be appreciated in Figure 4, in the absence of GSH the 

leakage of safranin O from S1 pore voids was negligible. The results obtained indicated that S1 



 

16 

would remain tightly capped at typical GSH concentrations in plasma (ca. 2µM), whereas is 

expected to display cargo delivery at intracellular GSH concentrations (ca. 10mM).  
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Figure 4. Relative fluorescence intensity of safranin O released from S1 measured at 580 nm (λex=585 nm) in 

water (pH 7.4), PBS 1x and SBP (pH 7.25), and in water (pH 7.4) as a function of GSH concentration.    

Using a similar experimental procedure the release behaviour of S2, capped with a longer PEG 

(Mn 800) derivative, was also studied. The difference in emission of safranin O in the presence 

and absence of GSH is displayed in Figure 5. The release profile of S2 was very similar to that 

observed for S1; i.e. a poor release in absence of glutathione (curve a) and a fast cargo delivery 

in the presence of 10mM GSH. The observed behaviour is consistent with the fact that the 

disulfide linker is positioned at the same relative distance of the surface as in solid S1 and 

therefore both solids display a very similar delivery behaviour. 
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Figure 5. Kinetics of the release of safranin O dye from suspensions of gated solid S2 in water a) in the absence 

of GSH and b) in the presence of GSH 10mM. 

Using a similar experimental protocol, delivery from solid S3, containing the drug 

doxorubicin, was studied in water both in the absence and presence of GSH. In this case cargo 

delivery was monitored through the fluorescence band of doxorubicin at 557 nm (λexc = 495 nm). 

The obtained experimental results are shown in Figure 6. As above a flat baseline was found in 

the absence of glutathione, while a rapid cargo release was observed in the presence of GSH. 
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Figure 6. Kinetics of the release of doxorubicin from solid S3 a) in the absence of GSH and b) in the presence of 

GSH 10mM. 
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Delivery in intracellular media 

After the in vitro characterization the capped mesoporous S1 and S3 nanoparticles were used 

for further ex vivo assays. For these experiments, the tumour cell line HeLa was used. Cells were 

seeded in 6-well culture plates at a density of 150000 cells per well and allowed to adhere for 24 

h. After that time, cells were incubated with solid S1 at a final concentration of 75 µg/mL for 

additional 24h. In these experiments, cells were also stained with the DNA-associated dye 

Hoechst 33342. The cellular uptake and intracellular release of S1 was determined by confocal 

laser scanning microscopy (CLSM) by tracking safranin O associated fluorescence. As shown on 

Figures 7A and 7B, safranin O associated fluorescence (red) was clearly observed in the cellular 

cytosolic compartment indicating the internalization of nanoparticles, the rupture of the 

disulphide bond by the reductive environment, and the subsequent  release of the entrapped dye. 

 Further studies with S1 were performed to exclude any toxic effect. HeLa cells were 

treated with S1 for 24 h at final concentrations of 20, 50, 150 and 200 μg/mL, respectively. After 

that time, a cell viability assay using WST-1 was performed. This yellow reagent (tetrazolium 

salt) can be reduced by mitochondrial enzymes to give a soluble orange product (formazan salt). 

This conversion only occurs in viable cells. Therefore, measuring the absorbance at 450 nm 

against a background control allows an accurate measurement of the number of metabolically 

active cells in the culture. As expected from previous reports 35, 39, 42, treatment of cells with S1 

nanoparticles showed non-toxicity effect in concentrations up to 200 µg/ml after 24 hours 

(Figure 7C).  

To further characterize cargo delivery from S1 in cells the internalization of nanoparticles, we 

performed a time course experiment of dye release in Hela cells. Accordingly 20 minutes after 
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incubation with S1 material, cell culture medium was removed and cells were washed with PBS. 

Then, slides were mounted and visualized by confocal microscopy. Series of images of the same 

XY field were taken every two minutes. The obtained images revealed that the nanoparticles 

gradually internalized into cells, and produced a bright red fluorescence that increase in cells as a 

function of lapsed time (data not shown). 

 

C 

 

Figure 7. Cell viability and cellular internalization of S1 gated-nanoparticles. a) Confocal microscopy images 

corresponding to untreated HeLa cells as a control of autofluorescence, and b) HeLa cells treated with solid S1 at 75 

μg/mL concentration. The cellular uptake of the nanoparticles was evidenced by safranin O associated fluorescence 

(red) in the presence of DNA marker Hoechst 33342 (blue). c) WST-1 cell viability assay. HeLa cells were 

incubated for 24 h with S1 at the indicated concentrations. Cell viability was quantified by employing the WST-1 

reagent. Three independent experiments each one done in duplicates were performed and the data are represented as 

(mean ± SE). 
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Once studied the intracellular uptake and performance of the gated material S1, HeLa cells 

were also used to demonstrate the possible cellular internalization of S3 and its ability to release 

loaded doxorubicin. Doxorubicin treatment causes malfunctioning of the mitochondria by non-

specific oxidative damage to the outer and the inner membranes, and by direct interaction with 

the mitochondrial DNA or enzymes involved in cell respiration.59,60 Doxorubicin delivery from 

S3 in cells is expected to result in a decrease of cell viability. HeLa cells were treated with 20, 

50, 150 and 200 µg/ml of S3 for 24 h and the cytotoxic effect of the released doxorubicin  was 

evaluated by WST-1 assays. As it can be observed in Figure 8C a concentration-dependent 

decrease in living cells was found when compared to the untreated cells (100% viability). As an 

example when cells were treated with S3 at a concentration of 150 µg/ml, around 60% of cells 

were effectively killed. Furthermore, the cytotoxic effect of S3 was also clearly noted through 

changes in cell morphology and cells detachment, when compared with the untreated cells 

(control, see Figure 8A). CLSM images of HeLa cells incubated with S3 at a concentration of 75 

µg/mL for 24h showed a dotted fluorescent patter, suggesting the internalization of nanoparticles 

and the GSH-triggered release of doxorubicin (see Figure 8B).  
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Figure  8. Cellular internalization and cell viability of S3 gated-nanoparticles. a) Confocal microscopy images 

corresponding to untreated HeLa cells as a control of autofluorescence, b) HeLa cells treated with solid S3 at 75 

μg/mL concentration for 24h. Cellular uptake of the nanoparticles was evidenced by doxorrubicin associated 

fluorescence (green) in the presence of DNA marker Hoechst 33342 (blue). c) WST-1 cell viability assay. HeLa 

cells were incubated for 24 h with S3 at the indicated concentrations. Three independent experiments were 

performed and the data are represented as (mean ± SE). 

CONCLUSIONS 

In summary, we have described herein a new GSH-responsive, simple-to-prepare delivery 

system based in PEG-capped MSN. More specifically, hybrid materials with the dye safranin O 

or the anticancer agent doxorubicin as payloads and functionalized with PEG chains of different 

sizes in the pore entrances, were prepared. The preservation of the mesostructure in the final 

materials S1, S2 and S3 and the presence of capped pores were fully confirmed using typical 
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characterization techniques. The performance of the gated systems was assessed by kinetics 

release studies. The anchored PEG chains formed a dense barrier that inhibits the release of the 

cargo effectively. In contrast, when GSH was present, the disulfide bonds were cleaved allowing 

the release of the entrapped cargo. Moreover, as this active group is located near to the silica 

surface, the loaded safranin O can escape rapidly from the pore voids upon reduction of the S-S 

bond, achieving 90% of the maximum release of the entrapped guest in less than 1 h for S1. 

Finally, the performance of solids S1 and S3 in a cellular context was tested. The uptake of the 

gated nanoparticles, their aperture in the intracellular reductive environment and their ability to 

deliver the cargo in a controlled manner was confirmed. The results reported herein confirms that 

the use of simple disulphide bonds combined with highly hydrophilic and bio-compatible PEG 

derivatives is an easy way to design capped MSN that remain closed in non-reductive 

environments (for instance in plasma) yet deliver the cargo in an efficient way in the presence of 

a high concentrations of GSH (for instance in intracellular media). 
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