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Abstract4

The analysis of P-wave variability from the electrocardiogram (ECG) has been suggested as5

an early predictor of the onset of paroxysmal atrial fibrillation (PAF). Hence, a preventive treat-6

ment could be used to avoid the loss of normal sinus rhythm, thus minimising health risks and7

improving the patient’s quality of life. In these previous studies the variability of different tempo-8

ral and morphological P-wave features has been only analyzed in a linear fashion. However, the9

electrophysiological alteration occurring in the atria before the onset of PAF has to be considered10

as an inherently complex, chaotic and non-stationary process. This work analyses the presence of11

non-linear dynamics in the P-wave progression before the onset of PAF through the application12

of the central tendency measure (CTM), which is a non-linear metric summarising the degree of13

variability in a time series. Two hour-length ECG intervals just before the arrhythmia onset be-14

longing to 46 different PAF patients were analysed. In agreement with the invasively observed15

inhomogeneous atrial conduction preceding the onset of PAF, CTM for all the considered P-wave16

features showed higher variability when the arrhythmia was closer to its onset. A diagnostic accu-17

racy around 80% to discern between ECG segments far from PAF and close to PAF was obtained18

with the CTM of the metrics considered. This result was similar to previous P-wave variability19

methods based on linear approaches. However, the combination of linear and non-linear methods20

with a decision tree improved considerably their discriminant ability up to 90%, thus suggesting21

that both dynamics could coexist at the same time in the fragmented depolarisation of the atria22

preceding the arrhythmia.23
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1 Introduction31

Atrial fibrillation (AF) is the most common sustained supra-ventricular arrhythmia in clinical practice,32

with an increasing number of patients being affected worldwide [1]. From a clinical point of view, this33

arrhythmia can present itself in different forms [2]. It often starts with paroxysmal (self-terminating)34

episodes, which have a duration ranging from several seconds to less than 7 days. Previous studies35

have estimated a progression rate of PAF patients to persistent or permanent AF between 15 and 31%,36

this transition occurring during a time period of 4 to 8 years, approximately [3]. Both persistent and37

permanent AF episodes last more than 7 days, their main difference being the dissimilar response to38

cardioversion, which has only proven to be effective in persistent AF.39

Nowadays, the mechanisms provoking the onset of PAF are not fully known [4]. However, sig-40

nificant heterogeneous alterations in atrial electrophysiological properties have been noticed before41

the spontaneous onset of the arrhythmia [5]. Such abnormalities may result in an anisotropic and42

discontinuous propagation of sinus impulses, thus predisposing the atria to fibrillation [5]. This un-43

coordinated atrial activity reaches the atrio-ventricular (AV) node and can be conducted through the44

ventricles, which leads to a fast and irregular heart rate [1]. Even though PAF is self-limited, its45

presence can provoke major complications such as decreased heart capacity, thromboembolic events,46

congestive heart failure, and tachycardia-induced cardiomyopaty [6]. Consequently, although PAF is47

not a life-threatening arrhythmia, it increases cardiovascular morbidity and mortality [7]. Therefore,48

after the spontaneous termination of a PAF episode, a very relevant clinical challenge starts: to predict49

the arrival of the next episode. The possibility of avoiding PAF recurrence by using early pacing and50

drugs could hamper the progression of PAF to a more chronic form [1, 3].51

Recently, the analysis of P-wave variability over time has shown a certain ability to quantify elec-52

trophysiological alterations during the two hours preceding the onset of PAF [8, 9]. In these studies,53

every P-wave was delineated and then characterised by computing temporal distances between its54

fiducial points [8] or quantifying its morphology [9]. Next, the variability evolution of each analysed55

parameter was estimated by means of a linear fitting [8, 9]. However, the possible presence of non-56

linear dynamics within the P-wave evolution before the onset of PAF was not studied. To this respect,57
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the study of the P-wave variability over time from a non-linear point of view could reveal clinically58

interesting information and complement these previous works. In fact, atrial electrophysiological59

evolution preceding the onset of PAF can be considered as an inherently chaotic and non-stationary60

process [5, 10], which could be modelled by non-linear equations [11, 12].61

The present study hypothesises that the P-wave variability estimation over time through non-62

linear methods may help to anticipate recurrent PAF episodes which could be misdiagnosed by linear63

methods previously proposed [8,9]. To this respect, non-linear methods have previously demonstrated64

their interesting capabilities dealing with the envision of events related to AF [13, 14], as well as in65

tracking the behaviour of this arrhythmia [15]. Moreover, through the combination of both linear and66

non-linear approaches, PAF onset prediction may be improved. To the best of our knowledge, non-67

linear analysis of P-wave variability has never been applied to quantify susceptibility to PAF. In the68

present work, the central tendency measure (CTM) will be computed to analyse the alteration of the69

P-wave non-linear dynamics. This index uses continuous chaotic modelling to summarise the degree70

of variability in a time series [16].71

2 Methods72

2.1 Study population73

A cohort of 46 patients with idiopathic PAF, i.e. none of them caused by concomitant heart disease,74

hyperthyroidism or pulmonary disease, were retrospectively selected for the study. Their main demo-75

graphic and clinical characteristics are presented in Table 1. At the time of the study any patient was76

under anti-arrhythmic drug therapy. Further details on the database are to be found elsewhere [9].77

The study was approved by the hospital’s Ethics Committee and informed consent was obtained from78

all the participants.79
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2.2 P-wave delineation and characterisation80

A 24-h Holter recording was acquired from every patient. A sampling rate of 1000 Hz and 16-bit81

resolution were considered as recording parameters. Next, the longest sinus rhythm interval was82

selected and the two hours before the onset of PAF were extracted and divided into two-one hour83

periods. This division aimed to evaluate how the proposed approach quantified the P-wave non-linear84

variability over time. The ECG segments immediately before and further than the arrhythmia onset85

were named as ”close to PAF” and ”far from PAF”, respectively.86

After the ECGs segmentation, P-waves were detected from lead V1 and their boundaries auto-87

matically delineated [17]. Although more recent approaches for this purpose can be found in the88

literature (e.g. [18, 19]), the algorithm used here provided high accuracy and very few location er-89

rors [17]. Moreover, it is worth noting that automatic P-wave delineation allows to obtain highly90

reproducible measurements [20]. Nonetheless, expert cardiologists supervised the obtained P-wave91

detection and delineation and around 4% of the P-waves had to be corrected.92

Finally, each P-wave was characterised by a set of morphological and time features. Morpho-93

logical changes provoked by alterations in the atrial depolarisation were first quantified by three pa-94

rameters previously analysed [9]. Thus, the rectified P-wave length was computed as its arc length95

(Pal) and the P-wave amplitude was characterised by its normalised root mean square (nrms) value96

(Pnrms) and its area (Parea). On the other hand, different temporal features related to the P-wave fidu-97

cial points have also proven to be indicative of an increased risk of AF development [4,8]. Hence, the98

P-wave duration (Pdur) together with the duration of its initial (Pini) and terminal (Pter) portions were99

computed. The rhythm variability between successive P-waves was also estimated (PP) [8].100

2.3 Central tendency measure101

In order to quantify the P-wave non-linear features variability over time, CTM was computed from102

the time series generated by each single parameter and calculated in a wave-to-wave fashion. CTM is103

a quantitative measure of variability computed from second-order difference plots [16]. Given a time104

series x[n], the second-order difference plot, i.e., the graph x[n+ 2]− x[n+ 1] versus x[n+ 1]− x[n],105
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centred around the origin represents graphically its rate of variability [16]. Thus, by selecting a106

circular region of radius ρ around the origin, CTM is computed by counting the number of points107

that fall within the radius and dividing by the total number of points. In this way, a low CTM value108

indicates a large amount of dispersion and a high value indicates concentration near the centre.109

The outcome of CTM for a concrete application depends strongly on the selected radius. However,110

in contrast to other non-linear methods [21], no guidelines exist for optimising its value. Hence, it111

is usually chosen depending upon the character of the data [16]. In the present study an approach112

similar to the developed in previous works [22, 23] was used to select the optimal ρ for each single113

P-wave feature. Thus, CTM was computed for radius of 0.1, 0.2, . . . , 10 times the standard deviation114

of the analysed data. Normalising ρ in this way provides translation and scale invariance, in the sense115

that CTM remains unchanged under uniform process magnification, reduction or constant shift to116

higher or lower values. Thereafter, for each considered ρ , statistical differences between CTM values117

for ECG segments far from PAF and close to PAF were assessed by a Student’s t-test or a U Mann-118

Whitney test depending on the normality and homoscedasticity of the data, respectively. To evaluate119

these conditions, the Kolmogorov-Smirnov and Levene tests were used, respectively. Finally, the120

selected radius was determined as the one providing the lowest statistical significance (p-value).121

2.4 Linear estimation of P-wave variability122

To better contextualising the results obtained by CTM, the P-wave variability over time was also123

estimated in a linear fashion from the three most significant metrics reported in previous studies, i.e.124

Pdur, Pal and PP [8, 9]. In brief, groups of 10 samples were formed from the data series for each125

parameter. Then, for every group the difference between its 90- and 10-quantiles was obtained to126

estimate its variability. Finally, the groups variability time course for each parameter, i.e. their slope127

α , was computed from a linear least-squares fitting.128
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2.5 Performance assessment129

A stratified 2-fold cross-validation was used to assess the ability of CTM and the slope α computed130

from each single metric in discerning between ECG segments far from PAF and close to PAF. In131

this approach, the database is randomly partitioned into two equal size subsamples. For each fold,132

approximately the same number of ECG segments from each group is considered. Then, a single133

subsample is used for training and the other one for testing. The process is then repeated changing134

the role of each fold. Finally, classification results are separately averaged for both iterations. In135

order to assess the discriminant ability of each parameter, a receiver operating characteristic (ROC)136

curve was used in each training process. The rate of ECG segments far from PAF properly identified137

was considered as the true positive rate (i.e., sensitivity). Similarly, the percentage of ECG segments138

close to PAF successfully classified were considered as the true negative rate (i.e., specificity). The139

optimum threshold discriminating both groups was finally selected as the CTM or α value providing140

the highest accuracy, i.e., the greatest rate of ECG segments correctly discerned.141

Additionally, the relationships among the variability estimated from single P-wave parameters142

through CTM and the slope α were analysed by means of a decision tree. Thus, the optimal combi-143

nation of CTM computed from every single parameter with the slope α obtained from Pdur, Pal and144

PP was analysed. The tree growth was stopped when each node only contained ECGs from a group145

or less than 20% of all ECGs. Moreover, every node was split by using an impurity-based Gini in-146

dex [24]. A stratified 2-fold cross-validation was also used to evaluate the classification result of each147

tree.148

3 Results149

The optimal radius ρ providing the highest statistical differences between ECG segment groups as150

well as the mean and standard deviation of the computed CTM values are shown in Table 2. As can151

be observed, all the metrics provided statistically significant differences between groups, revealing152

higher mean values for ECG segments far from PAF, such as Fig. 1 shows for Pal, Pdur and Pini. As153

another significant example, Fig. 2 shows the second-order difference plot associated to Pdur for a154
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typical patient, presenting higher dispersion in ECG segments close to PAF. In contrast, the slope α155

for Pdur, Pal and PP presented an increase in the mean values associated to ECG segments close to156

PAF, such as shown in Fig. 3. Anyway, statistically significant differences were also found between157

groups.158

In order to estimate the diagnostic accuracy of each studied metric in a more robust way, the159

stratified 2-fold cross-validation was run five times. Thus, Tables 3 and 4 present the average values160

of sensitivity, specificity and accuracy obtained for the 10 iterations of learning and test carried out161

from the CTM and α values, respectively. Regarding CTM, the highest classification rates (around162

80%) were achieved with the metrics Pdur, Pini and Pal, such as Table 3 shows. However, as can be163

seen from Table 4, the slope α from Pal and Pdur reached accuracy values slightly higher than 80%.164

Finally, a decision tree modelled by two metrics was obtained for every 4-parameter subset con-165

stituted by the CTM, corresponding to one of the studied P-wave features, and the slope α for Pal,166

Pdur and PP. As can be observed in Table 5, the slope α for Pal was the most frequently chosen167

parameter to complement the CTM. Moreover, for all the metrics excepting Pter and PP, the decision168

tree results outperformed the slope α for Pal, reaching accuracy values around 87%. Nonetheless, it is169

worth noting that for every generated decision tree the combination of the same two P-wave metrics170

remained unaltered from the 10 learning iterations in the cross-validation analysis. To this respect,171

Fig. 4 shows the tree structure obtained for one of the learning iterations from the combination of172

CTM for Pini and the slope α for Pal. As can be seen, ECG segments far from PAF were identified by173

the lowest degrees of both linear and non-linear variability.174

4 Discussion175

According to the intermittently disturbed conduction observed in the atrial tissue susceptible to PAF [5],176

the present study has shown that CTM is able to quantify the P-wave variability progression over the177

two hours preceding the onset of PAF. To this respect, a higher variability was observed as the ar-178

rhythmia onset approximates, thus suggesting that non-linear dynamics exist in the transition from179

sinus rhythm to PAF. This finding agrees with previous works demonstrating that steep conduction180
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velocity dispersion represents one way to form a spatially heterogeneous pattern in a completely ho-181

mogeneous tissue [25], the theory of such pattern formation being a well-described part of non-linear182

systems theory [11].183

Compared to the P-wave variability linear estimation, CTM did not improve PAF onset prediction.184

Thus, the two highest classification rates were obtained by the slope α for Pal and Pdur, respectively.185

Nonetheless, CTM for the same P-wave features reported a slightly lower diagnostic accuracy only186

worsened by less than 3%. A similar result was also observed for CTM of the P-wave initial portion,187

i.e., Pini. Anyway, it has to be remarked that the determination of CTM requires a notable lower188

computational burden than a linear least-squares fitting. Indeed, only comparisons between points189

and one division are required to compute CTM, whereas numerous additions and multiplications190

are used in a linear regression. Therefore, CTM could be more easily implemented on real-time191

ECG monitoring systems. On the other hand, the combination of linear and non-linear estimates by a192

decision tree improved considerably the diagnostic accuracy of every single parameter, thus validating193

our initial hypothesis. Moreover, this result also suggests that the P-wave variability before the onset194

of PAF is a complex process, in which linear and non-linear dynamics coexist simultaneously within195

the disrupted atrial depolarisation.196

PAF onset prediction has also been addressed in several previous studies. Most of them have197

analysed the RR series or the atrial premature contractions (APCs) preceding the arrhythmia. These198

studies were mainly performed within the Computers in Cardiology (CinC) Challenge 2001 and made199

use of a database designed for that purpose [26] freely available at PhysioNet [27]. Although this200

database contained 53 patients, it presented serious disadvantages. First, no clinical data were pro-201

vided by PhysioNet. Therefore, the effect of confounding factors such as age, gender or heart rate on202

P-wave features [28] cannot be controlled in the study. Second, the ECGs were sampled at 128 Hz,203

which hinders an accurate P-wave characterisation [29]. Finally, only 30 minute-length ECG intervals204

were provided, thus turning impossible the analysis of longer time intervals before PAF onset, such205

as the presented in this study.206

Nonetheless, with the aim to compare the proposed algorithm with previous works, the CinC’s207

Challenge 2001 database was also used. More precisely, the 28 test recording sets provided for the208
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so called “Event 2” were analysed. Each set contained two recordings, one immediately prior to an209

episode of PAF and another distant (≥ 45 minutes) from any such episode, the event consisting in the210

identification of which segment immediately preceded PAF. The proposed algorithm reported a score211

of 93% (26 out of 28), thus improving all the methods presented at CinC’s Challenge, because no212

scores higher than 79% (22 out of 28) were reported [26]. Additionally, this result outperforms later213

works, such as the one reported by Thong et al [30], who reached a score of 89% (25 out of 28) by214

studying the number of APCs and the subsequent rhythms in the RR series. Others have also studied215

the same database, but without respecting its organisation. Thus, learning and test sets were taken216

together and no statistical validation of the results was considered in later works [31, 32]. In these217

cases, classification rates higher than 90% were reached. However, a wide variety of time, frequency218

and complexity features of the RR series were combined through highly complex classifiers [31, 32],219

thus hindering the clinical interpretation of each single parameter within the predictive model. In220

contrast to these works, the proposed tree-based model yielded a comparable diagnostic accuracy by221

just combining two parameters, thus making the clinical understading of its outcomes easier. To this222

respect, the higher the P-wave variability estimated both by the linear and non-linear methods, the223

higher the risk of an early onset of PAF.224

On the other hand, some of these previous works also tried to quantify the electrophysiological225

alterations preceding the onset of PAF. Thus, a decrease of complexity indices and a increase in the226

spectral energy of the RR dynamics some minutes before the onset of PAF have been reported [33,34].227

Similarly, the detection of a high number of APCs has proven to be a good harbinger of the imminent228

onset of PAF [30]. However, this high concentration of APCs only happens some minutes before229

the onset [33, 34]. As a consequence, these previous works can anticipate a PAF episode only few230

minutes before its onset, thus making the administration of a feasible antiarrythmic drug treatment231

impossible. In contrast, CTM has revealed the ability to identify atrial alterations and anticipate a232

PAF episode at least two hours before its onset.233

Finally, several study limitations have to be mentioned. First, a reduced database was only anal-234

ysed, thus further prospective studies would be needed to confirm the proposed methodology robust-235

ness as well as obtained results reproducibility. Second, the earliest mark of PAF onset has not been236
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determined because the two hours preceding the arrhythmia were only considered. Thus, further anal-237

ysis leading to reach this significant event have to be developed. Finally, standard lead V1 was only238

studied, thus rejecting potential information contained in other leads.239

5 Conclusions240

Alteration of the temporal and morphological P-wave non-linear dynamics over time has been suc-241

cessfully quantified through the CTM, noticing higher variability in the P-wave features when the242

arrhythmia was closer to its onset. This P-wave non-linear variability analysis has also reported a243

similar diagnostic accuracy than its linear counterpart in the discrimination between ECG segments244

far from PAF and close to PAF. However, the computational cost of the proposed non-linear CTM-245

based analysis is notably lower. Finally, the combination of both linear and non-linear estimates246

of P-wave variability through a decision tree has improved significantly the discrimination ability,247

thus suggesting that linear and non-linear dynamics coexist at the same time in the disturbed atrial248

depolarisation preceding the onset of PAF.249
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Figure 1: Boxplots of the CTM values computed from the most statistically significant features, i.e.
(a) Pal, (b) Pdur and (c) Pini.
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Figure 2: Second-order difference plot of the P-wave duration time course variability from a typical
patient with segments (a) far from PAF and (b) close to PAF.
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Figure 3: Boxplots of the slope α values computed from (a) Pdur, (b) Pal and (c) PP. The statistical
significance p was obtained using a Student’s t-test.
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Figure 4: Combination of CTM for Pini and the slope α for Pal by means of a decision tree classifier
in a training iteration.
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Table 1: Baseline demographic and clinical characteristics of the studied PAF patients.

Age (years) 63.2 ± 10.2
Gender (Male/Female) 18/28
Height (m) 1.68 ± 0.11
Weight (kg) 69.3 ± 9.8
Heart rate (beats/min) 68.4 ± 7.1
Respiratory rate (breaths/min) 13 ± 1
QRS duration (ms) 82.3 ± 20.2
PQ duration (ms) 164.1 ± 1.6
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Table 2: CTM values computed in average from the ECG segments far from PAF and close to PAF.

Feature Optimal ρ Far from PAF Close to PAF p-value
Pal 8.2 0.913±0.073 0.780±0.179 2.671 x 10−8 †

Pnrms 6.1 0.985±0.036 0.942±0.093 7.022 x 10−5 †

Parea 6.3 0.985±0.025 0.918±0.110 4.771 x 10−6 †

Pdur 8.5 0.916±0.070 0.787±0.177 1.524 x 10−7 †

Pini 8.3 0.927±0.084 0.821±0.162 1.301 x 10−8 †

Pter 7.9 0.935±0.103 0.836±0.179 6.852 x 10−6 †

PP 9.1 0.941±0.101 0.876±0.139 2.307 x 10−3 ‡

† Statistical significance computed with the U Mann-Whitney test
‡ Statistical significance computed with the Student’s t-test
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Table 3: Classification results provided by the CTM values computed from each analysed P-wave
feature. Average values of sensitivity (Se), specificity (Sp) and accuracy (Acc) for the 10 iterations of
learning and test carried out are presented.

Feature Learning sets Test sets
Se Sp Acc Se Sp Acc

Pal 78% 82% 80% 80% 79% 80%
Pnrms 66% 71% 68% 66% 59% 63%
Parea 79% 67% 73% 65% 79% 72%
Pdur 80% 78% 79% 76% 83% 80%
Pini 82% 76% 79% 78% 81% 79%
Pter 74% 82% 78% 73% 68% 71%
PP 61% 71% 66% 65% 57% 61%
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Table 4: Classification results provided by the α values computed from Pdur, Pal and PP. Mean values
of sensitivity (Se), specificity (Sp) and accuracy (Acc) for the 10 iterations of learning and test carried
out are presented.

Feature Learning sets Test sets
Se Sp Acc Se Sp Acc

Pdur 84% 90% 87% 79% 85% 82%
Pal 87% 87% 87% 81% 85% 83%
PP 73% 75% 74% 65% 71% 68%
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Table 5: Classification results provided by the decision tree obtained for each 4-feature subset con-
stituted by CTM for one P-wave parameter and the slope α for Pal, Pdur and PP. Average values of
sensitivity (Se), specificity (Sp) and accuracy (Acc) for the 10 iterations of learning and test carried
out are presented.

Variability estimation Learning sets Test sets
CTM α Se Sp Acc Se Sp Acc

Pal Pdur 79% 92% 86% 93% 82% 87%
Pnrms Pal 92% 96% 94% 81% 93% 87%
Parea Pal 86% 94% 90% 81% 96% 89%
Pdur Pal 89 % 89% 89% 89% 85% 87%
Pini Pal 89% 91% 90% 92% 88% 90%
Pter Pdur 96% 91% 93% 78% 83% 80%
PP Pal 91% 86% 89% 80% 83% 82%
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