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Abstract

This article explores the potential of kernel-based methods for fault diagnosis in batch process
monitoring by combining Kernel-Principal Component Analysis and three common techniques
which permit to analyze batch data by means of bilinear models: variable-wise unfolding, batch-
wise unfolding and landmark feature extraction. Gower’s idea of pseudo-sample projection is
exploited to develop novel tools, the pseudo-sample based contribution plots, for diagnostic pur-
poses. The results show that, when the datasets under study are affected by severe non-linearities,
the proposed approach performs better than classical ones.

Keywords: kernel-based techniques, batch process monitoring, pseudo-sample projection,
contribution plots, fault detection, fault diagnosis

1. Introduction

Nowadays, most of the manufacturing industries in the world perform batch processes in their
plants. To guarantee and preserve high quality of the final products and to minimize the number
of off-specification process runs, batch monitoring schemes are designed so that faults and fail-
ures might be quickly, easily and efficiently recognized and their possible root causes might be
correctly identified. These two phases of process monitoring are also known as fault detection and
fault diagnosis, respectively. After that, specific countermeasures can be adopted for restoring the
possible faulty situation to normal operating conditions (NOC).
The aforementioned monitoring schemes are usually constructed resorting to particular data-driven
approaches [1–3]. In fact, during a batch run, j=1, 2, ..., J process variables are commonly mea-
sured at t=1, 2, ..., T time points. Data collected for i=1, 2, ..., I batches are then arranged in
a three-way array (I×J×T). Although many methods exist for directly analyzing data with this
structure, the most widely used technique to extract exploitable information from them consists in
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unfolding this three-way array into a matrix and then fitting a bilinear model by means of Prin-
cipal Component Analysis (PCA) or Partial Least Squares regression (PLS) [1]. In general, this
unfolding procedure is executed by variable-wise unfolding (VWU), batch-wise unfolding (BWU)
or landmark feature extraction (LFE). The first separates the single sub-matrices associated to the
evolution of each batch and rearranges them preserving the variable direction leading to a new
array with dimensions IT×J. This approach does not take into account the dynamics of the pro-
cess under study and has been found to be valid only when its correlation structure is more or
less constant along the batch run [1]. The second unfolds the original three-way structure so that
all the sub-matrices, each one related to the evolution of a single variable in all the batches, are
organized side by side (the final two-way array has dimensions I×JT). It then permits to model the
linear dynamics of the analyzed process and capture changing relationships among process vari-
ables. By the third, F landmark features of the evolution of each batch are defined and organized
in a new matrix with dimensions I×F. A good survey of these techniques can be found in [4].
However, when resorting to PCA or PLS for dealing with non-linear process datasets (defined as
those characterised by measured variables that are linked by non-linear relationships), their anal-
ysis and interpretation may be seriously jeopardized, since both assume their underlying structure
is linear [5]. In the last decades, many novel methods have been proposed to handle these situa-
tions such as non-linear PLS [6–8] or artificial neural networks [9]. Nevertheless, such approaches
often require the optimization of many adjustable parameters and may show overfitting and local
minima. A good alternative is represented by the so-called kernel-based techniques [10], which
also comprehend support vector machines [11] and have already been broadly used in chemistry
[12, 13], biology [14], informatics [15, 16], continuous process monitoring [17, 18] and on-/off-
specification batch run discrimination [19]. The first aim of this article is to explore their potential
to design off-line monitoring schemes for batch processes, whose complex nature usually results
in strong non-linearities, difficult to model if the physical and/or chemical phenomena generating
them are not completely known.
Unfortunately, these techniques suffer from a severe drawback: the information about the weights
or the loadings of the original variables is lost. This makes classical diagnostic tools, like con-
tribution plots [20], unfeasible. Many possibilities to recover this information exist, but authors
commonly abstain from resorting to them for three reasons: i) their implementation and the inter-
pretation of the final results is not straightforward; ii) most of them do not permit to graphically
visualize the relation between original variables and final models; iii) when they are used for con-
tinuous process monitoring, their application is always based on the comparison of the possible
detected faults with a database of previously observed ones, which is rarely available when dealing
with real industrial data [13, 21–24]. Recently, the principles of non-linear bi-plots and so-called
pseudo-sample projection, described by Gower and Hardings in 1988 [25], has been extended
and used to overcome these limitations. However, only specific applications aimed at finding the
original variables with the highest discriminant power among various classes of objects and, then,
solving classification or discrimination (supervised) problems have been reported in the scientific
literature [19, 26–28].
On the other hand, when a batch process monitoring scheme is designed, data resulting from runs
which evolved under NOC are used to construct a so-called in-control model. Incoming batch data
are then projected onto its space for the evaluation of the quality of the new analyzed process runs.
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This approach has a clear unsupervised nature. For this reason and since the fault diagnosis plays
a fundamental role in every process monitoring scheme, the principle of pseudo-sample projection
will be first adapted to the case in which a kernel-based batch monitoring scheme is built. Then,
it will be exploited to construct novel tools for diagnostic purposes, the so-called pseudo-sample
based contribution plots.

2. Materials and methods

2.1. Datasets
Three different datasets will be analysed. The first is a simulated one containing 30 different
batches during which 10 variables are measured at 25 sampling times: as such batches are char-
acterized by differences in the variance of some variables, but not in their mean values, they will
be used to mimic two different scenarios, in which increases and decreases in the process variable
variability have to be detected and diagnosed, respectively (see Section 1 of the Supporting Mate-
rial for the details about the data simulation).
The second one relates to a real 4-stage batch chemical process, described in [29], and consists
of 22 process variables measured at 1-minute intervals for 36 batches of a single product grade.
These variables mainly include pressures, temperatures and flow rates. Normal batch lengths are
between 398 and 460 minutes and, therefore, before modeling the data, variable trajectory syn-
chronization was performed by applying Dynamic Time Warping [30] stage-wise to guarantee all
the process runs had the same evolution pace.
The third dataset includes eight landmark features extracted from the variable trajectories of 49
batches (26 NOC and 23 off-specification) of a pharmaceutical batch drying process, originally
described in [31].

2.2. Kernel-based techniques: basic principles
The framework of all the kernel-based data analysis methods is common and based on the so-called
kernel transformation, whose mathematical formulation is given by:

K(xa, xa′) =< φ(xa), φ(xa′) > (1)

where xT
a and xT

a′ are two row vectors of the original data matrix to which a specific mapping
function φ is applied, while < and > denote the inner product. If one applies this transformation to
every possible couple of vectors constituting a generic array, X, with dimensions N×M, it will be
converted into a squared symmetric N×N kernel matrix, K, whose elements constitute dissimilarity
or distance measurements between two different observations. This will project the original data
onto a new space, the so-called feature space, permitting to describe in a linear way possible non-
linear relationships. Details about the mathematical principles of the kernel transformation and
the properties of the feature space can be found elsewhere [5]. Once the kernel matrix has been
obtained, a classical bilinear technique is applied to it: in case one uses PCA or PLS, a Kernel-
PCA (K-PCA) or a Kernel-PLS (K-PLS) model is generated, respectively.
When dealing with kernel-based techniques, it is not needed to know the mapping function a
priori: K can be obtained by applying many generic kernel functions. For the purposes of this
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article, only four will be taken into account: the linear, the second- and third-order polynomial and
the Gaussian. Their mathematical formulations are listed in Table 1 together with the indication
of their possible adjustable parameters.

Table 1: Kernel functions referred to in this article and list of their adjustable parameters

Kernel type Kernel function Adjustable parameters

Linear xT
a xa′ None

2nd-order polynomial (xT
a xa′)2 None

3rd-order polynomial (xT
a xa′)3 None

Gaussian exp(− ||xa−xa′ ||
2

2σ ) σ

2.3. Pseudo-samples and pseudo-sample projection
A pseudo-sample corresponds to a particular observation, which carries all the weight in one single
variable. For example, the vector [0, 0, . . . , 1, 0, . . . , 0] represents one of the possible pseudo-
samples associated to the m-th variable of a generic dataset. By projecting an observation like this
onto the latent structure of a classical 1-component PCA model, the score for this new sample is
calculated by Equation 2:

tnew = [0, 0, . . . , 1, 0, . . . , 0]p = pm (2)

This score is equal to the m-th value of the loadings vector p, and, thus, gives information about
the contribution of the variable xm to the model. Creating a pseudo-sample matrix, Vm, which
contains in its m-th column values ranging from the minimum to the maximum of the variable xm

and 0 in all the other entries, as:

Vm =


0, 0, . . . , min(xm), 0, . . . , 0

. . .

. . .
0, 0, . . . , max(xm), 0, . . . , 0

 (3)

and projecting it onto the latent space, a trajectory is obtained according to the following equation:

Vmp =


min(xm)pm

. . .

. . .
max(xm)pm

 (4)

In a higher-dimensional model space, the matrix resulting from the previous operation would de-
fine the geometrical locus of all the points lying along the direction determined by the origin of
the latent space and the point, whose coordinates represent the weights of xm on the A calculated
components. Nevertheless, as proven in Appendix A, it is possible to resort to the pseudo-sample
principle also when dealing with kernel-based methods.
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In [19, 26, 27], the analysis of the pseudo-sample trajectories, obtained by projecting one pseudo-
sample matrix per original variable under study, permitted to recover the information related to
their importance or discriminant power after the application of kernel-based methods for clas-
sification and discrimination purposes. In particular, these trajectories were compared with the
maximum separation direction between two classes of objects. When a monitoring scheme is
built, no directions of separation are defined due to the unsupervised nature of the aforementioned
approach. For this reason, the pseudo-sample projection strategy has to be slightly modified in
order to be applied for fault diagnosis in such cases.

2.4. Adaptation of the pseudo-sample projection strategy to batch process monitoring
The whole procedure for building kernel-based batch monitoring schemes and recovering the in-
formation about the contribution of the original variables, enabling this way the fault diagnosis,
comprises two phases (Model building and Model exploitation).
Phase I - Model building: i) Preprocess and unfold into the training matrix X (N × M) the three-
way dataset containing the observations resulting from the batches which evolved under NOCi; ii)
Convert X into a kernel matrix K (N × N) by using a specific kernel function; iii) Double-center
K as follows:

Kc = K −Km −Kn + Kn,m (5)

where Km, Kn and Kn,m are squared matrices (N×N) containing the column means, the row means
and the overall mean of K, respectively; iv) Fit a PCA model on Kc:

Kc = TKPKT
+ EK (6)

where TK (N × A), PK (N × A) and EK (N × N) are the score, loading and residual matrices of the
fitted K-PCA model. v) Calculate the D-statistic and the Squared Prediction Error (SPE) for every
observation of K as follows:

DK
n = tKT

n SK-1
tK
n (7)

SPEK
n =

N∑
n=1

eK2

n,n (8)

and their corresponding control limits as in [32] and [33], respectively. tKT

n is the n-th row of TK,
SK is the K-PCA scores covariance matrix (A×A)ii, while eK

n,n represents the n×n-th element of EK;
vi) Provided that all the training process runs are in-control, proceed with phase II. Otherwise,
remove outliers and return to step ii).

iAs the pharmaceutical batch drying process training and test data were provided beforehand as two-way arrays
obtained by LFE, the unfolding step was not required in this specific case and they were straight preprocessed in this
form by standard auto-scaling.

iiWhen VWU is applied for the analysis of batch data, one observation of the final unfolded matrices represents
a single time instant of a specific process run. In this article, in such cases, the calculation of its D-statistic value
was executed using its predicted score, centered by the mean of the training ones corresponding to the same sampling
point, and the respective instantaneous score covariance matrix.
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Phase II - Model exploitation i) Preprocess and unfold into the matrix XTest (N′ × M) the three-
way dataset including the test process runs, as for the training seti; ii) Convert XTest into a kernel
matrix KTest (N′ × N) by using the same kernel function as for X. By this operation, the dissim-
ilarity/distance values between the N′ test and the N training observations are calculated, which
allows KTest, after appropriate preprocessing, to be projected onto the K-PCA model space defined
by the loadings matrix PK; iii) Double-center KTest as follows:

Kc,Test = KTest −Km,Test −Kn′,Test + Kn,m,Test (9)

where Km,Test and Kn,m,Test are N′ ×N matrices containing the column means and the overall mean
of K, respectively. Notice that, unlike Equation 5, Kn is substituted by the term Kn′,Test (N′ × N),
containing the row means of KTest; iv) Project Kc,Test onto the in-control K-PCA model space as:

TK
Test = Kc,TestPK (10)

where TK
Test (N′ × A) is the predicted score matrix associated to KTest. Then, calculate the residual

test matrix, EK
Test (N′ × N), as:

EK
Test = Kc,Test − TK

TestP
KT

(11)

v) Calculate the D-statistic and the Squared Prediction Error (SPE) for every observation of KTest

as follows:
DK

n′,Test = tKT

n′,TestS
K-1

tK
n′,Test (12)

SPEK
n′,Test =

N∑
n=1

eK2

n′,n,Test (13)

where tKT

n′,Test is the n′-th row of TK
Test

ii, while eK
n′,n,Test represents the n′×n-th element of EK

Test; vi)
If a faulty batch is detected, create a V × M pseudo-sample matrix, Vm,NOC, for each one of the M
original variables as in Equation 3 using its minimum and its maximum values in the whole training
matrix, X; vii) Build another set of Vm,Fault pseudo-sample matrices (V ′ × M) using, in this case,
the minimum and the maximum values of the M original variables in XTest relative to the faulty
batchiii; viii) Apply to each couple of pseudo-sample matrices the same kernel transformation as
for the training data in order to obtain a pair of pseudo-sample kernel matrices, KVm,NOC (V × N)
and KVm,Fault (V ′ × N). By this operation, the dissimilarity/distance values between the N training
observations and both the V pseudo-samples in Vm,NOC and the V ′ pseudo-samples in Vm,Fault are
calculated, which allows KVm,NOC and KVm,Fault , after appropriate preprocessing, to be projected onto
the K-PCA model space defined by the loadings matrix PK; ix) Double-center every KVm,NOC and
every KVm,Fault so that:

KVm,NOC ,c = KVm,NOC −Km,Vm,NOC −Kv,Vm,NOC + Kn,m,Vm,NOC (14)

KVm,Fault ,c = KVm,Fault −Km,Vm,Fault −Kv′,Vm,Fault + Kn,m,Vm,Fault (15)

iiiSpecial circumstances in which this operation needs to be slightly adjusted will be further discussed in the fol-
lowing sections.
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where Km,Vm,NOC (V × N) and Km,Vm,Fault (V ′ × N) carry the column means of K, Kn,m,Vm,NOC (V × N)
and Kn,m,Vm,Fault (V ′ × N) include the overall mean of K, while the v-th row of Kv,Vm,NOC (V × N) and
the v′-th row of Kv′,Vm,Fault (V ′ × N) contain the mean of the v-th row of KVm,NOC and the mean of
the v′-th row of KVm,Fault , respectively; x) Project the two groups of double-centered pseudo-sample
kernel matrices onto the K-PCA model space, as follows:

TK
Vm,NOC

= KVm,NOC ,cP
K (16)

TK
Vm,Fault

= KVm,Fault ,cP
K (17)

where TK
Vm,NOC

(V × A) and TK
Vm,Fault

(V ′ × A) represent the pseudo-sample K-PCA predicted score
matrices associated to KVm,NOC and KVm,Fault , respectively. Two different pseudo-sample trajectories
will be then constructed per each original variable, which can be considered as representations
in the latent space of the K-PCA model of its real variability range in the NOC batches and in
the process run detected as faulty, respectively; xi) Calculate for every couple of pseudo-sample
trajectories related to the same m-th variable the so-called Discriminant Distance (DDm) as:

DDm =

√√√ A∑
a=1

( t̃K
Vm,Fault ,a

− t̃K
Vm,NOC ,a

stK
Vm,NOC ,a

)2

(18)

which will be used as an index of the m-th variable contribution to the fault. t̃K
Vm,Fault ,a

and t̃K
Vm,NOC ,a

are the median values of the column vectors of TK
Vm,Fault

and TK
Vm,NOC

, respectively, related to the
a-th component of the model. stK

Vm,NOC ,a
is the standard deviation of the column vector of TK

Vm,NOC

related to the a-th component of the model. This term will permit to distinguish specific situations
in which the absolute difference between the two median values, t̃K

Vm,Fault ,a
and t̃K

Vm,NOC ,a
, might not

be statistically significant considering the variability range of the pseudo-sample predicted scores
associated to the NOC observations; xii) Represent the DDm values in a bar plot for all the M orig-
inal variables, obtaining a pseudo-sample based contribution plot (named Discriminant Distance
or DD plot from now on).

3. Results and discussion

The three datasets, described in Section 2.1, will be used in order to assess and compare the perfor-
mance of classical bilinear techniques to that of kernel-based methods coupled to pseudo-sample
projection in batch process monitoring. VWU and BWU will be tested on the simulated and the
real chemical data. They will be combined with the two most common preprocessing approaches
applied in process chemometrics: Variable Centering and Scaling (VCS) and Trajectory Centering
and Scaling (TCS). This will permit to evaluate how VCS and TCS affect the quality of the final
monitoring schemes. VCS mean-centers and scales to unit variance each j-th process variable.
TCS consists of mean-centering and scaling to unit variance each j-th process variable at each
t-th sampling point, allowing their variation around their average trajectories to be subsequently
modelled. Specifically, the comparison will be carried out considering: i) Variable Centering and
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Scaling-VWU (VCS-VWU), ii) Trajectory Centering and Scaling-VWU (TCS-VWU) and Trajec-
tory Centering and Scaling-BWU (TCS-BWU).
On the other hand, the third dataset will permit to evaluate how bilinear and kernel methods per-
form when LFE is applied to a batch dataset.
In any considered case-study, the number of principal components (PCs) calculated for building
the PCA- and K-PCA-based monitoring schemes was determined by cross-validationiv. The cross-
validatory approach was extended in order to take into account also a certain set of possible kernel
transformations of the original training data. The final combination of number of PCs and kernel
function was selected as that guaranteeing the best compromise between degree of non-linearity
of the model and reconstruction error. The authors are aware that such criterion might not be the
most suitable in a monitoring context [34]. Nevertheless, in all the applications under study, it
permitted to obtain very satisfying outcomes in terms of fault detection and diagnosis accuracy.

3.1. Simulated dataset - Variability increase detection case-study
The first approach tested on the simulated dataset was VCS-VWU. After preprocessing and un-
folding the three-way arrays, 10 NOC process runs were randomly selected for building the PCA
and K-PCA in-control models. Regarding the latter, a second-order polynomial function was cho-
sen for the kernel transformation.
The comparison of the two monitoring schemes was then carried out after having adjusted the con-
trol limits of the resulting SPE and D-statistic control charts so that the Overall Type I (OT I) risk
value, the false alarm rate, was approximately equal to the corresponding imposed significance
level (ISL) α (5% and 1% in this specific case)v. The expression for the OT I risk value is:

OT I = 100
n f

INOCT
(19)

where n f denotes the number of sampling points detected as faulty, INOC represents the number of
considered NOC batches and T is the total number of sampling points per batch. The control limit
adjustment was assessed after the projection of the 5 NOC batches, left out of the training set, onto
the model space. As highlighted in Table 2, the OT I values are quite similar for both considered
monitoring schemes, which indicates that the control limits were correctly adjusted.
The fault detection power of the different control charts resulting from classical PCA and K-PCA
was evaluated according to the Overall Type II (OT II) risk value, calculated as:

OT II = 100
nn f

I f aultyT
(20)

ivIn case VWU was resorted to for the analysis of the batch data, at each iteration, the bunch of observations
associated to a specific batch were removed from the training set. On the other hand, one single row was iteratively
left out when the unfolding step was performed by BWU or LFE.

vNotice that the significance level imposed for the control limits of the SPE and D-statistic charts may vary from
case to case. This is due to the fact that their adjustment is assessed by using an external test set, which may have
different size depending on the original data array under study. The same applies for the confidence limits of every
pseudo-sample based contribution plot displayed from now on, calculated by a jackknife procedure.
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Table 2: Overall Type I (OT I) risk values for the SPE and the D-statistic control charts resulting from both the classical
PCA- and the K-PCA-based monitoring schemes. The table lists also the number of principal components (PCs) and
the goodness of fit (R2) of the two different models

PCs R2 SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 2 0.705 6.4% 1.6% 4.8% 1.6%

K-PCA (second-order polynomial) 2 0.743 6.4% 0.8% 4.0% 0.8%

where nn f represents the number of non-signaled faulty sampling points and I f aulty is the number
of faulty batches, projected onto the in-control model. A good performance would lead to a OT II
value close to 0. The results, obtained using the 15 faulty test runs, are reported in Table 3.

Table 3: Overall Type II (OT II) risk values for the SPE and the D-statistic control charts resulting from both the
classical PCA- and the K-PCA-based monitoring schemes

SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 79.5% 89.1% 0.3% 5.6%

K-PCA (second-order polynomial) 0.3% 1.1% 0.0% 0.0%

The K-PCA-based SPE control chart shows OT II values approximately equal to zero, much lower
than the ones resulting from the classical PCA model. On the other hand, the D-statistic control
charts seem to be characterized by a similar good accuracy in terms of fault detection power. As
an example, the SPE and the D-statistic control charts obtained by both classical PCA and K-PCA
for the first faulty batch contained in the test set are represented in Figure 1.
Once a specific fault has been detected by one or both of the considered control charts, it is funda-
mental to diagnose it and verify which variables contribute the most to the out-of-control signal.
In general, this is done by the so-called contribution plots [20]. In Figure 2, the classical SPE and
D-statistic contribution plots, related to the first sampling point of the first faulty test batch found
to be beyond the 95% control limit in the corresponding PCA-based control charts (time instant
#10 and #1, respectively), are displayed. The SPE contribution plot for time instant #10 (Figure
2a) points out an issue, which affects variables x8, x9 and x10. Unfortunately, the conclusions one
would reach looking at it would be completely wrong. In fact, these three variables do not show
any difference in their evolution between NOC and faulty batches, as highlighted in Section 1 of
the Supporting Material. Therefore, the fault diagnosis would be completely mistaken. On the
other hand, in the D-statistic contribution plot (Figure 2b), variables x8, x9 and x10 are correctly
identified as having a low contribution to the fault at time instant #1. However, its interpreta-
tion is not straightforward: all the variables from x1 to x7 were simulated so that their variance
in the faulty batches was approximately twice the variance in the NOC process runs. Thus, such
large differences in their contributions were not expected and are not coherent with the nature of
the simulated dataset. Furthermore, the SPE and D-statistic contribution plots related to all the
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Figure 1: SPE and D-statistic control charts obtained by both classical PCA and K-PCA for the first faulty test batch.
The dotted and the solid red lines represent the 95% and the 99% control limits, respectively

other sampling times were found to have consistent profiles as the ones displayed in Figure 2 (not
shown).

Figure 2: Classical PCA: a) SPE and b) D-statistic contribution plots related to first sampling point of the first faulty
test batch found to be beyond the 95% control limit in the corresponding PCA-based control charts (time instant #10
and #1, respectively)

Regarding the kernel-based approach, the fault diagnosis was enabled by resorting to the strategy
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described in Section 2.4. Figure 3 shows the DD plot, related to the first faulty test batch. Notice
that this is an overall contribution plot, taking into account the whole evolution of each variable
in both the faulty and the NOC process runs under study and not focusing on an individual value
it assumes at a certain time instant. However, the proposed pseudo-sample approach can be easily
adapted to diagnose faults, occurring during specific time intervals of the batch under study. For
instance, in this case, instantaneous pseudo-sample based contribution plots might have also been
constructedvi, but, it was not necessary because, for this particular process run, both SPE and
D-statistic were found beyond the 99% control limits at all the sampling points (see Figure 1).
However, all the possible instantaneous DD plots showed very similar outcomes as that in Figure
3 (not shown).

Figure 3: K-PCA: Overall DD plot related to the first faulty test batch. The solid red line represents the 90% confi-
dence limit calculated for the DD values of every variable by a jackknife-based procedure

For the sake of clarity, the original pseudo-sample trajectories are represented in Figure 4.
In order to ease the interpretation of Figure 3 and quickly identify the process variables that are
different in the faulty batch compared to the NOC runs, 90% confidence limits were calculated for
the different DD values using the jackknife procedure, proposed in [35]. As expected, variables
x8, x9 and x10 have no statistically significant contributions to the fault (values below the respec-
tive confidence limits). Furthermore, in accordance with the way the data were simulated, similar
contributions were found for variables from x1 to x7.
Exploiting the features of the pseudo-sample trajectories represented in Figure 4, a modification

viSpecifically by i) computing per each of the M considered variables one single pseudo-sample using the value
it assumes when a specific out-of-control signal is detected; ii) transforming it by applying the same kernel function
as for the training data; iii) double-centering the resulting pseudo-sample kernel vector and projecting it onto the
K-PCA model space, as detailed in Section 2.4; iv) substituting the resulting score value to the median value t̃K

Vm,Fault ,a
in Equation 18.
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Figure 4: K-PCA: Original pseudo-sample trajectories obtained by the procedure described in Section 2.4. The scores
represented as blue numbers are calculated starting from the minimum and the maximum values each preprocessed
variable assumes in all the training NOC batches. The scores represented as red numbers are calculated starting from
the minimum and the maximum values each preprocessed variable assumes in the considered out-of-control test batch.
Their graphical comparison permits to evaluate whether the original variables assume values either inside or outside
their in-control variability range, during the occurrence of a fault

of the original DD plot can also be developed to selectively focus on changes in the variance of the
process variables under study, as in this specific case. This variant is named Pseudo-sample Tra-
jectory Variance Ratio plot (VR plot) and the contribution of each variable to the fault is evaluated
according to the VRm index, calculated as:

VRm =

A∑
a=1

max({s2
tK
Vm,NOC ,a

}, {s2
tK
Vm,Fault ,a

})

min({s2
tK
Vm,NOC ,a

}, {s2
tK
Vm,Fault ,a

})
(21)

where s2
tK
Vm,NOC ,a

and s2
tK
Vm,Fault ,a

correspond to the variance of the column vectors of TK
Vm,NOC

and TK
Vm,Fault

,

respectively, related to the a-th component of the model. In Figure 5 the overall VR plot related to
the first faulty test batch is displayed.
Also in this case, a completely correct fault diagnosis was obtained.
The rationale behind the definition of the VR index is associated to the frequent need in process
monitoring to distinguish whether an out-of-control signal is generated by shifts in the average
level of specific measured variables or by changes in their variability. In fact, although the DD
plot has proved to be an effective tool for detecting the latter deviations in case they represent the
only differences between in-control and faulty batches and a second-order polynomial function is
found to be the optimal for the data under study, in more complex scenarios, when a different ker-
nel transformation is performed, coupling it with the VR plot may constitute a feasible and valid
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Figure 5: K-PCA: Overall VR plot related to the first faulty test batch. The solid red line represents the 90% confidence
limit calculated for the VR values of every variable by a jackknife-based procedure

option for unveiling both types of variation.
The same modeling strategy was followed when TCS-VWU and TCS-BWU were used to prepro-
cess and unfold the original simulated three-way arrays. The results are detailed in Section 2 of
the Supporting Material, which also includes the classical contribution and the DD and VR plots
used for the diagnosis of a particular fault in the various circumstances.
Regarding TCS-VWU, a similar good accuracy was found for both the PCA- and the K-PCA-
based SPE and D-statistic control charts. Nevertheless, the interpretation of the classical SPE and
D-statistic contribution plots is not obvious, which drastically jeopardizes the fault diagnosis. On
the contrary, both the DD and the VR plots permit to correctly identify the process variables show-
ing a different evolution with respect to an in-control situation.
Concerning TCS-BWU, as each row of the final unfolded data arrays contains all the information
registered for one batch, the comparison was carried out assessing the Type I (T I) and Type II
(T II) risk values. They stand for the percentage of NOC process runs detected as abnormal and
the percentage of faulty ones detected as NOC, respectively. Owing to the limited number of an-
alyzed batches, in this case, the control limits of the SPE and D-statistic charts were adjusted so
that the T I risk value was equal to an α of 20%. Here, no significant differences in terms of fault
detection power were found in either the SPE or the D-statistic control charts obtained by classical
PCA and K-PCA (with a Gaussian data transformation and a σ parameter value of 89.1). Also the
fault diagnosis was correctly addressed by both the studied approaches. Here, three aspects have
to be carefully taken into account:

• since every row of the final training and test matrices contains information associated to the
entire evolution of a particular process run, a single SPE and a single D-statistic value is
calculated for each one of them. For the same reason, the procedure to construct the DD
plots employed for diagnostic purposes has to be redefined as specified before. Notice that
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this point also applies when LFE is resorted to for building batch monitoring schemes;

• applying BWU to the original three-way data structures permits to compare the considered
faulty process run with the training NOC ones time instant-to-time instant and, then, com-
pute a contribution or a DD value per each sampling point of the evolution of every variable;

• as in this case the pseudo-sample based strategy takes into account the variability range
of every variable at a specific time instant of the evolution of all the training batches and
the single value that the same variable assumes at the same time instant in a specific run
detected as faulty, the VR indices cannot be calculated and the respective pseudo-sample
based contribution plot cannot be constructed.

The similarity between the performance of classical PCA and K-PCA results from coupling TCS
and BWU. In fact, their combination permits to remove the strongly non-linear dynamic trend of
the evolution of the considered variables from the data and, at the same time, model their variation
about their average trajectories at the single sampling points, reducing the process analysis to a
stationary problem [4]. This is also proven by the fact that a Gaussian function with a relatively
high σ parameter was selected after a previous step of cross-validation as the optimal one for
dealing with such data (N.B. the higher theσ parameter, the more linear the kernel transformation).

3.2. Simulated dataset - Variability decrease detection case-study
A similar comparison was carried out inverting the training and the test sets of the previous simu-
lated case-study in order to verify how classical PCA and K-PCA perform when a decrease in the
variability of the process variables has to be detected and diagnosed. In particular, the in-control
models were built on 10 out of the 15 batches characterized by a higher variance of the measured
variables (randomly chosen), the adjustment of the resulting control chart limits was assessed after
the projection of the 5 batches, left out of the training set, and the fault detection and diagnosis
power of the final monitoring schemes was evaluated as described before using the remaining 15
process runs. The results are displayed in Section 3 of the Supporting Material.
VCS-VWU did not lead to satisfactory performance with either PCA or K-PCA. This is a con-
sequence of the fact that mean-centering and scaling the complete variable trajectories of the test
batches (showing a lower standard deviation) by the larger standard deviation of those of the train-
ing runs modified their profiles so that they showed very slight fluctuations around zero. For this
reason, the scores associated with every sampling time of the evolution of a new batch were con-
centrated around the origin of the latent space, which, combined with the large variability of the
training process runs, made the detection of any fault impossible.
After TCS-VWU, the D-statistic control charts resulting from both the second-order polynomial
K-PCA and classical PCA models were found to be characterized by a similar fault detection accu-
racy. Nevertheless, only the DD and VR plots permitted to correctly identify the process variables
showing a decrease in their variability in the test batches, while the classical SPE and D-statistic
contribution plots were not able to recognize them and suffer from lack of interpretability.
Finally, the two monitoring schemes constructed after TCS-BWU were compared. In this case, the
D-statistic control charts resulting from a Gaussian K-PCA (σ=19.3) and a classical PCA model
proved to have a high accuracy in terms of fault detection power and both the classical contribution
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and the DD plots enabled a correct fault diagnosis.
A summary of the outcomes obtained in each of the described simulated case-study is displayed
in Table 4.

Table 4: Summary of the results obtained in the different simulated case-studies. The table shows which of the
classical PCA- or K-PCA-based control charts and contribution plots were able to detect and diagnose the considered
faults, respectively.

Variability increase Variability decrease

Fault detection Fault diagnosis Fault detection Fault diagnosis

VCS-VWU
PCA D NO NO NO

K-PCA D, SPE DD, VR NO NO

TCS-VWU
PCA D, SPE NO D NO

K-PCA D, SPE DD, VR D DD, VR

TCS-BWU
PCA D, SPE D D D

K-PCA D, SPE DD D DD

3.3. Chemical process dataset
In order to build a first K-PCA monitoring scheme on the chemical process dataset, VCS-VWU
was applied. A training set, containing observations associated with 20 NOC batches, a first test
set, including 11 NOC process runs, and a second test set, consisting of 5 batches manufactured
with a deviating steam supply were obtained by unfolding the original three-way arrays. For
increasing the quality of the final monitoring scheme, a multi-stage modeling strategy was resorted
to: the training set was further divided into 4 sub-matrices, each one related to a different process
phase, on which, 4 cross-validated K-PCA models were built. As highlighted in Table 5, except
for stage #1, a Gaussian kernel function was selected for the original data transformation.

Table 5: Parameters of the K-PCA in-control models built for every process stage

Stage #1 Stage #2 Stage #3 Stage #4

Function Type 3-rd order polynomial Gaussian Gaussian Gaussian

CV-σ - 23.8 15.0 12.8

PCs 3 2 2 2

R2 0.852 0.850 0.798 0.775

After performing K-PCA on the training data and assessed the adjustment of the limits of the
resulting control charts using the 11 NOC batches of the first test set, the observations related to
the faulty process runs were transformed in the same way as for the corresponding training set
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and projected onto the corresponding model space. As an example, the case of the fifth faulty test
batch is reported. Figure 6 shows its respective SPE and the D-statistic control charts.
In every process stage, the SPE values are always beyond the 95% control limit and, at most of
the time samples, beyond the 99% control limit, which evidently highlights an issue affecting the
evolution of this process run all over its duration. To investigate the nature of this problem and
pinpoint which variables evolve differently with respect to an in-control situation, the DD plots
were exploited also in this case. In Figure 7, those related to every process stage and associated
to the fifth faulty test batch are displayed. They clearly point out an issue which affects variable
x22 during all the evolution of the batch. This exactly corresponds to the steam pressure, which is
known to be the main cause generating the deviating behavior of all the process runs included in
the second test set. Furthermore, regarding stage #3, a further problem is highlighted. In this case,
the variable pinpointed as having the highest contribution to the fault is x4.
At a first glance, the fault diagnosis might be considered correct, since the main problem associated
to the steam pressure is properly identified. Nevertheless, by inspecting more carefully the original
variable trajectories, it was possible to realize that the contribution of variable x1 in stage #2 was
much lower than expected (see Figure 8).
This variable contribution masking effect is due to the combination between VCS-VWU and the
pseudo-sample projection strategy adopted for fault diagnosis in this article. In fact, the reader
should remind that the pseudo-sample matrices are filled in with values ranging from the min-
imum to the maximum of a certain column of the original preprocessed data related to the in-
control process runs and to the batch detected as faulty. When VCS-VWU is applied, each of
these columns contains the complete evolution of a single variable, which preserves its non-linear
dynamic trend. If the minimum and the maximum of the variable under study in the two cases
roughly correspond, the resulting pseudo-sample trajectories would cover approximately the same
variability range (see the animation contained in the Supporting Material). This would generate
a really small difference between the medians of the pseudo-sample score distributions and, thus,
a really small contribution for this variable, even if its evolution in the faulty batch is different
compared to the in-control process runs. That is exactly what happens with variable x1 in stage #2
for the fifth batch of the second test set, as highlighted in Figure 8.
Similar results were obtained in terms of fault detection accuracy for TCS-VWU, while the result-
ing DD plots enabled a slightly clearer, but not completely satisfying fault diagnosis (not shown).
The cross-validated values of the σ parameters of the kernel functions were found to be all be-
tween 50 and 75 for the different process stages, which means a more linear kernel transformation
is needed for adequately modeling this dataset if TCS-VWU is used.
A simple way to definitely solve the problem of the inconsistency of the variable contributions to
the fault of the previous DD plots is to switch to TCS-BWU. Here, a single K-PCA model was
built on the whole training set, because no significant differences were detected when a multi-stage
strategy was applied. A Gaussian function was selected to transform the unfolded data. The op-
timized σ parameter was fixed at a value of approximately 700, which lead to an approximately
linear kernel transformation. This corroborates what was stated before about the coupling of TCS
and BWU.
Figure 9 indicates that the fifth faulty test batch is correctly identified as an outlier by the SPE
control chart.
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Figure 6: K-PCA: SPE and D-statistic control charts related to every stage of the evolution of the fifth faulty batch
contained in the second test set (VCS-VWU). The dotted and the solid red lines represent the 95% and the 99% control
limits, respectively
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Figure 7: K-PCA: Overall stage-DD plots related to the fifth faulty test batch (VCS-VWU). The solid red lines
represent the 95% confidence limit calculated for the DD values of every variable by a jackknife-based procedure

Figure 8: Temporal evolution of the variable x1 of the chemical process dataset in the NOC batches (blue thin lines)
and in the fifth faulty process run contained in the second test set (red thick line). The vertical dotted red lines mark
the end point of every process stage
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Figure 9: K-PCA: a) SPE and b) D-statistic control charts related to the fifth faulty batch contained in the second test
set (TCS-BWU). The solid red lines represent their respective 90.9% control limit

Figure 10: K-PCA: Overall DD plot related to the fifth faulty test batch (TCS-BWU). The solid red line represents
the 95% confidence limit calculated for the DD values of every variable by a jackknife-based procedure. The vertical
dotted red lines mark the separation between the DD values at the different sampling times of two consecutive process
variables

In this case, a more accurate fault diagnosis is enabled, as proven by the DD plot related to the
fifth batch of the second test set, displayed in Figure 10 where also the contribution of variable x1

is correctly highlighted. Furthermore, it seems to be much higher than the other ones, in contrast
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with what was observed when VWU was applied for the analysis of these data. The temporal
evolution of the original variables, found to have a high contribution to the fault (x1, x4, x5 and
x22), in the training NOC batches and the faulty test process run under study is represented in
Section 4 of the Supporting Material.
The analysis of the chemical process dataset by means of classical PCA also resulted in outcomes,
which were coherent with those obtained when K-PCA was resorted to (not shown). This may be
associated to the fact that not so strong non-linear relationships were present in the original data.
However, the quality of the final monitoring schemes was found to be strictly dependent on the
number of PCs, which could represent an additional issue to be solved for a correct fault detection
and diagnosis.

3.4. Pharmaceutical batch drying process
The pharmaceutical batch drying process dataset [31] represents a specific case-study, in which
LFE is used for monitoring batch processes. Here, the in-control models were built on 17 process
runs, which evolved under NOC, while the remaining 9 were used to assess the adjustment of the
limits of the resulting SPE and D-statistic control charts according to the T I risk values, as done
when TCS-BWU was applied previously in this article. Owing to the low number of analyzed
batches, the imposed significance level α was set at a value of 11.1. The fault detection power
of the control charts constructed by both PCA and K-PCA was evaluated in terms of T II values,
calculated after the projection of the 23 faulty test runs onto the respective model space. The
results are listed in Table 6 and 7.

Table 6: Type I (T I) risk values for the SPE and the D-statistic control charts resulting from both the classical PCA-
and the K-PCA-based monitoring schemes. The table lists also the number of principal components (PCs) and the
goodness of fit (R2) of the two different models

PCs R2 SPEISL=11.1% DISL=11.1%

Classical PCA 2 0.790 11.1% 11.1%

K-PCA (third-order polynomial) 2 0.830 11.1% 11.1%

Table 7: Type II (T II) risk values for the SPE and the D-statistic control charts resulting from both the classical PCA-
and the K-PCA-based monitoring schemes

SPEISL=11.1% DISL=11.1%

Classical PCA 30.4% 69.2%

K-PCA (third-order polynomial) 17.4% 65.2%

In this case, the use of a third-order polynomial kernel transformation clearly improved the ac-
curacy of the SPE control chart, leading to a higher number of test batches correctly detected
as faulty (T II=17.4%, α=11.1%) than when resorting to classical PCA (T II=30.4%, α=11.1%),
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while similar T II values were found for the two different D-statistic control charts. In order to
evaluate the fault diagnosis ability of both the monitoring schemes, the classical SPE contribution
plot and the DD plot (constructed, for the reason previously mentioned, according to the adapted
procedure described in Section 3.1) related to the first faulty test batch are displayed in Figure 11.
The D-statistic contribution plot is not shown, as this specific process run did not exhibit a value
for this index beyond the control limit.

Figure 11: a) SPE contribution plot (classical PCA) and b) DD plot (K-PCA) related to first faulty test batch. The solid
red line represents the 94.1% confidence limit calculated for the DD values of every variable by a jackknife-based
procedure

The fault diagnosis was correctly addresses by both the approaches under study. The variables
pinpointed as having the highest contribution to the fault were x2 (dryer temperature) and x8 (batch
duration). In the original article, these were found to be the most critical parameters affecting the
quality of the final product, together with the level of the solvent collector tank (variable x1), which
showed a normal behavior in this particular batch [31].

4. Conclusions

In this article a novel approach for fault detection and diagnosis, based on the combination of
K-PCA and pseudo-sample projection, was proposed to deal with complex batch process datasets,
usually difficult to model if affected by strong non-linearities and in case the physico-chemical
phenomena generating them are not completely known. In particular, an innovative tool, the so-
called pseudo-sample based contribution plot (in the form of both DD and VR plot) was developed
to overcome the main drawback of the kernel-based methods, that is, their hard interpretability
(which does not permit to evaluate the importance of the original variables in the final models).
Two interesting points arose from the results of the data analysis:

• when strongly non-linear data structures had to be analyzed, non-linear kernel-based tech-
niques showed clear advantages in comparison to classical bilinear approaches. In fact, in
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most of the simulated case-studies, even if both the K-PCA- and classical PCA-based mon-
itoring schemes were found to be characterized by a similar fault detection power, in terms
of fault diagnosis, classical contribution plots suffered from lack of interpretability and did
not lead to identify the process variables evolving differently with respect to an in-control
situation. On the other hand, the pseudo-sample based contribution plots always resulted in
a completely correct diagnosis of the detected faults;

• even if no severe non-linear relationships affected the original analyzed data, it was still
possible to resort to kernel-based methods and pseudo-sample projection, obtaining very
similar results to classical PCA. In fact, in all the circumstances in which classical PCA
performed well, the cross-validation procedure, by which the best kernel transformation and
its adjustable parameters were chosen, selected an approximately linear function (in general
Gaussian with a relatively high value of σ), guaranteeing an equally correct fault detection
and diagnosis.

In addition, the outcomes of the analysis of the chemical process dataset highlighted that one of
the two proposed pseudo-sample based contribution plots, the DD plot, enables a more correct
and accurate fault diagnosis if it is used in combination with TCS-BWU and a single DD index is
calculated for every sampling time of the evolution of every out-of-control batch.
However, the pseudo-sample based approach proposed in this article shows a particular limitation,
represented by the fact that the information about the process variables affected by a fault is re-
covered in a univariate way. New research aimed at trying to unveil possible interactions among
process variables is now in progress, which can be useful to further strengthen the methodology.
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Appendix A.

Let X(N×M) be a generic data matrix. The centered matrix, X̃, is defined as:

X̃ = (I −
1
N

11T)X (A.1)

The linear kernel of X̃ corresponds to the inner product matrix, X̃X̃T, which is proven to be equiv-
alent to the double-centered Euclidean distance matrix, B [19]:

B = −
1
2

HDHT = X̃X̃T (A.2)

where H = I − 1
N 11T and D is the Euclidean distance matrix, obtained from the original measured

variables.
Performing a Singular Value Decomposition (SVD) on X̃X̃T and extracting only the first eigen-
vector yields:

X̃X̃Tv1 = λ1v1 (A.3)

v1 is also equal to the first normalized scores vector obtained by executing SVD on X̃TX̃:

X̃TX̃u1 = λ1u1 (A.4)

X̃u1 = t1 (A.5)

v1 =
t1

||t1||
=

t1
√
λ1

=
X̃u1
√
λ1

(A.6)

where:

||t1|| =

√
tT
1 t1 =

√
u1X̃TX̃u1 =

√
λ1uT

1 u1 =
√
λ1 (A.7)

The projection of the kernel vector calculated by multiplying the pseudo-sample
sT = [0, 0, . . . , 1, 0, . . . , 0](1×M) by X̃T onto the space defined by v1 is proven to be equal to:

sTX̃Tv1 = sTX̃TX̃
u1
√
λ1

= sTλ1u1
√
λ1

=
√
λ1sTu1 =

√
λ1u1,m (A.8)

and thus contains information about the weight of the m-th variable of the original data matrix.
This demonstrates that pseudo-sample projection can be used as a tool for recovering the infor-
mation related to the weights of the M original measured variables on a particular principal com-
ponent of a PCA model built on the simplest possible kernel matrix (i.e. the double-centered Eu-
clidean distance matrix). However, as stated in [25], the same property is valid for all those kernel
transformations generating sets of distance, which may be embedded in a Euclidean space. Since
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the polynomial kernel is calculated as function of the linear one (which is equal to the double-
centered Euclidean distance matrix, B) and the Gaussian as function of the Euclidean distance,
their Euclidean nature is verified.
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Figure captions

• Figure 1: SPE and D-statistic control charts obtained by both classical PCA and K-PCA for
the first faulty test batch. The dotted and the solid red lines represent the 95% and the 99%
control limits, respectively

• Figure 2: Classical PCA: a) SPE and b) D-statistic contribution plots related to first sam-
pling point of the first faulty test batch found to be beyond the 95% control limit in the
corresponding PCA-based control charts (time instant #10 and #1, respectively)

• Figure 3: K-PCA: Overall DD plot related to the first faulty test batch. The solid red line
represents the 90% confidence limit calculated for the DD values of every variable by a
jackknife-based procedure

• Figure 4: K-PCA: Original pseudo-sample trajectories obtained by the procedure described
in Section 2.4. The scores represented as blue numbers are calculated starting from the
minimum and the maximum values each variable assumes in all the training NOC batches.
The scores represented as red numbers are calculated starting from the minimum and the
maximum values each variable assumes in the considered out-of-control test batch. Their
graphical comparison permits to evaluate whether the original variables assume values ei-
ther inside or outside their in-control variability range, during the occurrence of a fault

• Figure 5: K-PCA: Overall VR plot related to the first faulty test batch. The solid red line
represents the 90% confidence limit calculated for the VR values of every variable by a
jackknife-based procedure

• Figure 6: K-PCA: SPE and D-statistic control charts related to every stage of the evolution
of the fifth faulty batch contained in the second test set (VCS-VWU). The dotted and the
solid red lines represent the 95% and the 99% control limits, respectively

• Figure 7: K-PCA: Overall stage-DD plots related to the fifth faulty test batch (VCS-VWU).
The solid red lines represent the 95% confidence limit calculated for the DD values of every
variable by a jackknife-based procedure

• Figure 8: Temporal evolution of the variable x1 of the chemical process dataset in the NOC
batches (blue thin lines) and in the fifth faulty process run contained in the second test set
(red thick line). The vertical dotted red lines mark the end point of every process stage
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• Figure 9: K-PCA: a) SPE and b) D-statistic control charts related to the fifth faulty batch
contained in the second test set (TCS-BWU). The solid red lines represent their respective
90.9% control limit

• Figure 10: K-PCA: Overall DD plot related to the fifth faulty test batch (TCS-BWU). The
solid red line represents the 95% confidence limit calculated for the DD values of every
variable by a jackknife-based procedure. The vertical dotted red lines mark the separation
between the DD values at the different sampling times of two consecutive process variables

• Figure 11: a) SPE contribution plot (classical PCA) and b) DD plot (K-PCA) related to first
faulty test batch. The solid red line represents the 94.1% confidence limit calculated for the
DD values of every variable by a jackknife-based procedure
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Table 1

Kernel type Kernel function Adjustable parameters

Linear xT
a xa′ None

2nd-order polynomial (xT
a xa′)2 None

3rd-order polynomial (xT
a xa′)3 None

Gaussian exp(− ||xa−xa′ ||
2

2σ ) σ
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Table 2

PCs R2 SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 2 0.705 6.4% 1.6% 4.8% 1.6%

K-PCA (second-order polynomial) 2 0.743 6.4% 0.8% 4.0% 0.8%
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Table 3

SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 79.5% 89.1% 0.3% 5.6%

K-PCA (second-order polynomial) 0.3% 1.1% 0.0% 0.0%
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Table 4

Variability increase Variability decrease

Fault detection Fault diagnosis Fault detection Fault diagnosis

VCS-VWU
PCA D NO NO NO

K-PCA D, SPE DD, VR NO NO

TCS-VWU
PCA D, SPE NO D NO

K-PCA D, SPE DD, VR D DD, VR

TCS-BWU
PCA D, SPE D D D

K-PCA D, SPE DD D DD
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Table 5

Stage #1 Stage #2 Stage #3 Stage #4

Function Type 3-rd order polynomial Gaussian Gaussian Gaussian

CV-σ - 23.8 15.0 12.8

PCs 3 2 2 2

R2 0.852 0.850 0.798 0.775
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Table 6

PCs R2 SPEISL=11.1% DISL=11.1%

Classical PCA 2 0.790 11.1% 11.1%

K-PCA (third-order polynomial) 2 0.830 11.1% 11.1%
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Table 7

SPEISL=11.1% DISL=11.1%

Classical PCA 30.4% 69.2%

K-PCA (third-order polynomial) 17.4% 65.2%
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Table captions

• Table 1: Kernel functions referred to in this article and list of their adjustable parameters

• Table 2: Overall Type I (OT I) risk values for the SPE and the D-statistic control charts re-
sulting from both the classical PCA- and the K-PCA-based monitoring schemes. The table
lists also the number of principal components (PCs) and the goodness of fit (R2) of the two
different models

• Table 3: Overall Type II (OT II) risk values for the SPE and the D-statistic control charts
resulting from both the classical PCA- and the K-PCA-based monitoring schemes

• Table 4: Summary of the results obtained in the different simulated case-studies. The table
shows which of the classical PCA- or K-PCA-based control charts and contribution plots
were able to detect and diagnose the considered faults, respectively

• Table 5: Parameters of the K-PCA in-control models built for every process stage

• Table 6: Type I (T I) risk values for the SPE and the D-statistic control charts resulting from
both the classical PCA- and the K-PCA-based monitoring schemes. The table lists also the
number of principal components (PCs) and the goodness of fit (R2) of the two different mod-
els

• Table 7: Type II (T II) risk values for the SPE and the D-statistic control charts resulting
from both the classical PCA- and the K-PCA-based monitoring schemes
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Pseudo-sample based contribution plots: innovative

tools for fault diagnosis in kernel-based batch

process monitoring

Supporting Material

Section 1 - Data simulation

The data simulation was carried out generating a 750x2 set of scores, which
define 2 classes of 15 different trimmed circular profiles of 25 observations
each, as shown in SM.1.

SM. 1: On- (blue thin line) and off-specification (red thick line) simulated
batch scores trajectories

Every trimmed circular profile represents a proper batch score trajectory,
which may describe its progression in the latent variable space of a 2-

1



component PCA model built on a VWU data array. Multiplying this set of
scores by a 2x7 transposed matrix of loadings (obtained performing PCA on
real process data), a 750x7 dataset was constructed, which contains the tra-
jectories of 7 variables in 30 different runs, constituted by 25 time samples
each. Three noisy variables were also included for verifying the effectiveness
of the pseudo-sample-based approach for diagnostic purposes.
As shown in SM. 2, the data simulation generated off-specification batches
characterized by an increase in the variance of variables x1-x7, but not in
their mean value with respect to the NOC ones.

SM. 2: Temporal evolution of the variables of the simulated dataset for a
NOC (blue thin line) and a faulty (red thick line) batch
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Section 2 - Variability increase detection case study

TCS-VWU

Table SM. 1: Overall Type I (OTI) risk values for the SPE and the D-
statistic control charts resulting from both the classical PCA- and the K-
PCA-based monitoring schemes. The table lists also the number of principal
components (PCs) and the goodness of fit (R2) of the two different models

PCs R2 SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 2 0.631 6.4% 1.6% 4.8% 1.6%

K-PCA (second-order polynomial) 2 0.729 6.4% 1.6% 5.6% 1.6%

Table SM. 2: Overall Type II (OTII) risk values for the SPE and the
D-statistic control charts resulting from both the classical PCA- and the
K-PCA-based monitoring schemes

SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 6.9% 13.6% 0.0% 0.0%

K-PCA (second-order polynomial) 0.0% 0.0% 0.0% 0.0%

SM. 3: Classical PCA: a) SPE and b) D-statistic contribution plots related
to the first sampling point of the first faulty test batch. The displayed
profiles are consistent with those observed for all the other out-of-control
signals
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SM. 4: K-PCA: Overall DD plot related to the first faulty test batch. The
solid red line represents the 90% confidence limit calculated for the DD
values of every variable by a jackknife-based procedure

SM. 5: K-PCA: Overall V R plot related to the first faulty test batch. The
solid red line represents the 90% confidence limit calculated for the V R
values of every variable by a jackknife-based procedure
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TCS-BWU

Table SM. 3: Type I (TI) risk values for the SPE and the D-statistic control
charts resulting from both the classical PCA- and the K-PCA-based mon-
itoring schemes. The table lists also the number of principal components
(PCs) and the goodness of fit (R2) of the two different models

PCs R2 SPEISL=20% DISL=20%

Classical PCA 2 0.746 20.0% 20.0%

K-PCA (Gaussian, σ=89.1) 2 0.976 20.0% 20.0%

Table SM. 4: Type II (TII) risk values for the SPE and the D-statistic
control charts resulting from both the classical PCA- and the K-PCA-based
monitoring schemes

SPEISL=20% DISL=20%

Classical PCA 0.0% 0.0%

K-PCA (Gaussian, σ=89.1) 0.0% 0.0%

SM. 6: Classical PCA: a) SPE and b) D-statistic contribution plots related
to the first faulty test batch. The vertical dotted red lines mark the sep-
aration between the contributions at the different sampling times of two
consecutive process variables
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SM. 7: K-PCA: Overall DD plot related to the first faulty test batch. The
solid red line represents the 90% confidence limit calculated for the DD
values of every variable at the different time instants by a jackknife-based
procedure. The vertical dotted red lines mark the separation between the
DD values at the different sampling times of two consecutive process vari-
ables
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Section 3 - Variability decrease detection case study

VCS-VWU

Table SM. 5: Overall Type I (OTI) risk values for the SPE and the D-
statistic control charts resulting from both the classical PCA- and the K-
PCA-based monitoring schemes. The table lists also the number of principal
components (PCs) and the goodness of fit (R2) of the two different models

PCs R2 SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 2 0.703 4.8% 1.6% 4.8% 1.6%

K-PCA (second-order polynomial) 2 0.697 4.8% 2.4% 6.4% 2.4%

Table SM. 6: Overall Type II (OTII) risk values for the SPE and the
D-statistic control charts resulting from both the classical PCA- and the
K-PCA-based monitoring schemes

SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 96.5% 98.9% 51.7% 84.0%

K-PCA (second-order polynomial) 100% 100% 90.1% 100%
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TCS-VWU

Table SM. 7: Overall Type I (OTI) risk values for the SPE and the D-
statistic control charts resulting from both the classical PCA- and the K-
PCA-based monitoring schemes. The table lists also the number of principal
components (PCs) and the goodness of fit (R2) of the two different models

PCs R2 SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 2 0.638 4.8% 1.6% 4.8% 3.2%

K-PCA (second-order polynomial) 3 0.812 5.6% 2.4% 4.8% 1.6%

Table SM. 8: Overall Type II (OTII) risk values for the SPE and the
D-statistic control charts resulting from both the classical PCA- and the
K-PCA-based monitoring schemes

SPEISL=5% SPEISL=1% DISL=5% DISL=1%

Classical PCA 85.9% 91.7% 0.7% 24.5%

K-PCA (second-order polynomial) 56.3% 76.5% 0.0% 0.0%

SM. 8: Classical PCA: a) SPE and b) D-statistic contribution plots related
to the first sampling point of the tenth faulty test batch. The displayed
profiles are consistent with those observed for all the other out-of-control
signals
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SM. 9: K-PCA: Overall DD plot related to the tenth faulty test batch. The
solid red line represents the 90% confidence limit calculated for the DD
values of every variable by a jackknife-based procedure

SM. 10: K-PCA: Overall V R plot related to the tenth faulty test batch.
The solid red line represents the 90% confidence limit calculated for the V R
values of every variable by a jackknife-based procedure
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TCS-BWU

Table SM. 9: Type I (TI) risk values for the SPE and the D-statistic control
charts resulting from both the classical PCA- and the K-PCA-based mon-
itoring schemes. The table lists also the number of principal components
(PCs) and the goodness of fit (R2) of the two different models

PCs R2 SPEISL=20% DISL=20%

Classical PCA 2 0.737 20.0% 20.0%

K-PCA (Gaussian, σ=19.3) 3 0.943 20.0% 20.0%

Table SM. 10: Type II (TII) risk values for the SPE and the D-statistic
control charts resulting from both the classical PCA- and the K-PCA-based
monitoring schemes

SPEISL=20% DISL=20%

Classical PCA 60.0% 0.0%

K-PCA (Gaussian, σ=19.3) 33.3% 0.0%

SM. 11: Classical PCA: a) SPE and b) D-statistic contribution plots re-
lated to the first faulty test batch. The vertical dotted red lines mark the
separation between the contributions at the different sampling times of two
consecutive process variables
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SM. 12: K-PCA: Overall DD plot related to the first faulty test batch.
The solid red line represents the 90% confidence limit calculated for the
DD values of every variable at the different time instants by a jackknife-
based procedure. The vertical dotted red lines mark the separation between
the DD values at the different sampling times of two consecutive process
variables
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Section 4 - Further details on the chemical process
dataset under study

SM. 13: Temporal evolution of the variables of the chemical process dataset,
identified as having a high contribution to the fault, in the NOC batches
(blue thin lines) and in the fifth faulty test process run (red thick line).
The vertical dotted red lines mark the end point of every process stage. a)
variable x1; b) variable x4; c) variable x5; d) variable x22
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