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Abstract

This paper presents the implementation of Active Noise Control (ANC) sys-

tems over a network of distributed acoustic nodes. For this purpose we define

a general acoustic node consisting on one or several microphones and one or

several loudspeakers together with a unique processor with communication ca-

pabilities. ANC systems can use a wide range of adaptive algorithms, but we

have considered specifically the Multiple Error Filtered-x Least Mean Square

(MEFxLMS), which has been proved to perform very well for ANC systems

with multiple microphones and loudspeakers, and centralized processing. We

present a new formulation to introduce the distributed version of the MEFxLMS

together with an incremental collaborative strategy in the network. We demon-

strate that the distributed MEFxLMS exhibits the same performance as the

centralized one when there are no communication constraints in the network.

Then, we re-formulate the distributed MEFxLMS to include parameters related

to its implementation on an acoustic sensor network: latency of the network,

computational capacity of the nodes, and trustworthiness of the signals mea-

sured at each node. Simulation results in realistic scenarios show the ability of

the proposed distributed algorithms to achieve good performance when proper
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values of these parameters are chosen.

Keywords: Active noise control, Distributed networks, Acoustic control,

Adaptive filters, Acoustic sensor networks.

1. Introduction

It has been more than a decade since the wireless sensor networks (WSN)

were considered as a cheap, flexible and efficient solution for environmental

and habitat monitoring, as well as for monitoring and maintenance of industrial

equipment [1–3]. From the very first moment different acoustic applications were

proposed [4, 5], which paved the way for the specific wireless acoustic sensor net-

works (WASN) whose sensor devices are microphones. These microphones are

usually connected to a processor with some kind of communication and compu-

tation capability [6]. Applications that make use of these kind of acoustic nodes

are numerous, see [7] and references therein, but they focus on the estimation

of a common signal or parameter that can be measured by all the nodes [8], or

on the estimation of node-specific signals sharing some common properties or

parameters [9, 10]. Another typical feature of a node relates to its configura-

tion: the acoustic node is usually composed of a microphone plus a processor,

where the processing unit is dedicated to recording, control and transmission

tasks, and can eventually perform some signal processing algorithms before the

transmission. However, for applications involving sound control in general, and

particularly for active noise control (ANC) systems, this typical node structure

needs to be modified in two aspects. First, the node should have the capacity

of acting on the environment to control the sound rendering, that is, the node

should be able to emit sounds through a loudspeaker or actuator. Secondly,

the network should focus not only on the estimation of a particular signal or

some related parameter, but on the design of the signals that will feed the loud-

speakers and will control the sound field. To our knowledge, no WASN has

been proposed where nodes have the capacity of control and modify their own

environment.
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Therefore, we will consider a generic acoustic node as a node with a cer-

tain computation capability to process signals, that can communicate to other

nodes to exchange local and network status information, and which is also able

to act on its own environment. The node can record signals through one or

more microphones (sensors) and can emit sound signals via one or more loud-

speakers (actuators). Moreover, nodes should make use of the network topology

to process their own signals in a proper way. Some common topologies are: the

total diffusion networks, where all nodes are interconnected with the rest of the

nodes; the mesh networks, where each node can communicate with a certain

set of nodes; the tree networks, where communication between nodes is hierar-

chical; and the ring networks, where communication between nodes follows an

incremental ordering along the network [11].

The specific application described in this paper is an active noise canceller

or active noise control (ANC) system [12]. ANC systems try to reduce some

unwanted noise by the addition of one or several secondary sounds specifically

designed to cancel the first. In particular the system is intended to reduce the

unwanted, also called primary, noise at the microphones’ location. Fig. B.1

shows an ANC system with K microphones and J loudspeakers. The signals

recorded at the microphones are called error signals and denoted ek(n), the

loudspeakers, called secondary sources, emit the filter output signals yj(n), and

the acoustic channel impulse response between loudspeaker j and microphone k

is modelled as a FIR filter. The unwanted noise is not depicted in Fig. B.1, but

the reference signals xi(n) entering the multichannel adaptive controller are cor-

related with it, and they will be used by the adaptive controller to appropriately

design the output signals yj(n).

The algorithmic approach proposed in this paper is based on well known

multichannel adaptive filters originally stated for a centralized system [12, 13],

where all signals ek(n) and xi(n) are available at the multichannel controller.

Particularly, we have implemented the Multiple Error Filtered-x Least Mean

Square (MEFxLMS) algorithm [14] over a distributed network, which in turn is

based on the commonly used Least Mean Square (LMS) algorithm [15]. Regard-
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ing previous works on the implementation of the LMS algorithm on distributed

systems, the first thorough studies were presented in [8, 16], where distributed

LMS is used on networks connected by incremental and diffusion strategies re-

spectively. The authors show that the distributed LMS approach achieves good

performance allied with low communication and computational requirements

for linear estimation tasks. Although the algorithm proposed herein is based

on distributed LMS-type algorithms [8, 17], it has been extended to consider

that our acoustic nodes do not only sense the environment but also modify it

through its own actuators.

In the particular case of sound control systems, a distributed ANC system

was first introduced in [18]. This system, called decentralized since their pro-

cessors did not collaborate or interchange any local information, was based on

a filtered-x scheme of the LMS algorithm [19]. Its main advantage is the scal-

ability and the ability of distributing the computational burden, but it cannot

overcome the centralized system performance except for uncoupled actuators

and microphones. A similar decentralized ANC system is considered in [20]

using adaptive non-linear filters. In both decentralized systems [18, 20], each

error signal ek(n) is only used by the corresponding processor, whereas refer-

ence signal x(n) is common to all of them. For the herein proposed network of

acoustic nodes, we consider a common reference signal is available.

Consequently, the cooperation provided by a WASN would help ANC sys-

tems to achieve similar performance to centralized solutions, whereas they would

also benefit from the advantages of distributed systems as scalability and low

computational cost. The main contributions of the work herein presented can

be summarized as:

• The MEFxLMS algorithm is formulated for WASN’s as the distributed

MEFxLMS (DMEFxLMS) where the calculation of the adaptive filters is

carried out in a distributed way over a ring topology with incremental

communication [8]. The computational burden is then shared among all

the processors.
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• We have extended the DMEFxLMS to a network whose communication is

affected by a constant latency. To deal with this latency, the DMEFxLMS

has been re-formulated introducing two new parameters: the first one acts

in the meantime between two network information arrivals, deciding if the

node adapts itself based on its local measurement or just waits for the new

network information. The second parameter only acts when the network

information arrives at each node, providing different combinations of both

network and local information.

• We have carried out a set of simulations using real acoustic channel re-

sponses in order to evaluate the influence of the new defined parameters on

the ANC system performance. We propose proper values of both param-

eters depending on the network latency, the node computational capacity,

and the level of coupling of the acoustic channels.

The paper is organized as follows: in Section 2 we develop the distributed

MEFxLMS algorithm for WASN’s without communication constraints. In Sec-

tion 3 a constant latency in the network is considered and a re-formulation of

the distributed MEFxLMS is provided and discussed. Simulated results for un-

constrained and constrained communication networks are shown in Section 4

including a discussion on the parameters affecting the algorithm behaviour. Fi-

nally Section 5 outlines the main conclusions of the present work.

Notation: The following notation is used throughout the paper: boldface

upper-case letters denote matrices (e.g.,A), boldface lower-case letters denote

vectors (e.g., a), and italics denote scalars, (e.g., a or A). Superscript (·)T

stands for matrix or vector transpose. The expression [A](i:j,l:k) stands for a

new matrix formed by selecting the rows i to j and columns l to k of A. If all

the rows or all the columns are selected, then the subscript changes to [A](:,l:k)

or [A](i:j,:) respectively. 0I×J is an all-zero matrix of I rows and J columns.
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2. Distributed adaptive algorithms for active noise control

In this section we will develop the MEFxLMS adaptive algorithm for dis-

tributed active noise control over a WASN without communication restrictions.

Regarding the communication within the network, we consider an incremental

collaborative strategy where each node transmits information to an adjacent

node in a consecutive order. For the sake of clarity, we consider a distributed

network of single channel acoustic nodes in a homogeneous network. That

means that all the nodes are equipped with a single microphone and a single

loudspeaker as depicted in Fig. B.2, and they have the same computational ca-

pacity and run the same algorithm. In Appendix A we will extend the obtained

distributed algorithm to a network whose nodes can handle different number of

microphones and loudspeakers. Examples of commercial devices that could be

used as nodes for ANC applications are tablets, smartphones, notebooks, hear-

ing aids, etc.

2.1. Centralized MEFxLMS algorithm for ANC

Consider a generic multichannel control system comprised of I reference

signals, J secondary sources and K error sensors as the one depicted in Fig. B.1,

which is devoted to minimize a function of the measures at the error sensors.

This function is usually called cost function and is related to the acoustic field

in the controlled zone by

C(n) =

K∑
k=1

f [ek(n)] , (1)

where f [·] is a time-invariant function of its argument and ek(n) is the error

signal recorded at the kth microphone.

Although there are many centralized adaptive strategies that the system of

Fig. B.1 can use, as the LMS, the Affine Projection (AP) [21] or the Recur-

sive Least Squares (RLS) [13] algorithms, we consider in this work the most

commonly used algorithm for ANC applications, the multiple error filtered-x

LMS (MEFxLMS) [14, 22] based on the LMS strategy. There are other adap-

tive algorithms usually applied in multichannel ANC scenarios that could also
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be considered in the developed distributed strategies. Some examples are the

Least Maximum Mean Squares (LMMS) [23] and the scanning error LMS [24].

Regarding the MEFxLMS algorithm, it is devoted to minimize the sum of the

squares of the measured signals at the K error sensors. Thus the corresponding

cost function is derived from (1) and given by

C(n) =

K∑
k=1

e2k(n) , (2)

where the number of sensors is such that K ≥ J .

The MEFxLMS algorithm needs to know all the acoustic channel responses

since it is based on the filtered-x scheme [19]. Therefore, the acoustic channels

that link each secondary source with each error sensor must be estimated in a

previous stage. A specific multichannel ANC system based on the MEFxLMS

algorithm is illustrated in Fig. B.3 where the estimated acoustic channel between

the jth source and the kth sensor is denoted by ĥjk, and wij stands for the

adaptive filter that links the reference signal xi(n) with the jth secondary source.

The centralized controller recursively computes a solution for the IJ adaptive

filters as follows

wij(n) = wij(n− 1)− µ
K∑

k=1

vijk(n)ek(n) , (3)

where the [L × 1] vector wij(n) is used in Fig. B.3 to filter the ith reference

signal and obtain the corresponding signal contribution to secondary source

yj(n). Constant µ is the step-size parameter and vijk(n) denotes a [L × 1]

vector obtained by filtering the ith reference signal xi(n) with the M -length

estimated acoustic channel ĥjk:

vijk(n) = Xi(n)ĥjk , (4)

where Xi(n) is a circularly arranged matrix of the last M +L samples of xi(n):

Xi(n) =


xi(n) xi(n− 1) · · · xi(n−M + 1)

xi(n− 1) xi(n− 2) · · · xi(n−M + 2)
...

... · · ·
...

xi(n− L+ 1) xi(n− L+ 2) · · · xi(n− (L+M) + 2)

 . (5)
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Once the filter is calculated in (3), the jth output signal that feeds the

correspondent actuator is obtained as

yj(n) =

I∑
i=1

wT
ij(n) [Xi(n)](:,1) , (6)

where [Xi(n)](:,1) is the [L× 1] vector formed by the first column of Xi(n).

It should be noted that in (3) all the error signals ek(n) are necessary for the

computation of each filter wij(n), hence the requirement of a centralized proces-

sor. In the following section we will discuss how to implement the MEFxLMS

algorithm stated in (3)-(6) in a network of distributed wireless acoustic sensors.

2.2. Distributed MEFxLMS (DMEFxLMS) algorithm for ANC

Consider now a WASN of N single-channel nodes that will support an ANC

system composed by N error sensors and N secondary sources. The objective

of each node is to obtain its own adaptive filters such that they approach the

minimization of (2) but relying only on local data and some proper network

information, and distributing the computational burden among the different

nodes. For this purpose we introduce the distributed version of the adaptive

algorithm stated in (3)-(6), which we call distributed MEFxLMS (DMEFxLMS).

Let us define a global [ILN × 1] filter vector w(n) as the ordered concate-

nation of all the filter vectors implemented at each node

w(n) =
[
wT

1 (n),wT
2 (n), . . . ,wT

N (n)
]T

, (7)

where wk(n) =
[
wT

1k(n),wT
2k(n), . . . ,wT

Ik(n)
]T

contains the IL filter coefficients

that will be used at node k, and wik(n) was introduced in (3). Consequently

we define the [ILN × 1] vector vk(n) similarly to w(n) in (7) as

vk(n) =
[
vT
1k(n),vT

2k(n), . . . ,vT
Nk(n)

]T
, (8)

where vjk(n) denotes a [IL× 1] vector obtained as

vjk(n) =


v1jk(n)

v2jk(n)
...

vIjk(n)

 =


X1(n)

X2(n)
...

XI(n)

 ĥjk = X(n)ĥjk , (9)
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following the definition of vijk(n) given in (4). Matrix X(n) is the vertical con-

catenation of matrices Xi(n) defined in (4) which contain the last L+M samples

of all the reference signals xi(n) properly arranged to perform the filtering.

Once the previous notation is stated, the filter updating equation in (3) can

be extended to the whole network as

w(n) = w(n− 1)− µ
N∑

k=1

vk(n)ek(n) . (10)

In distributed networks only local data, ek(n) and ĥjk for j = 1, . . . , N , are

available at each node, thus the kth term in the sum of (10) can only be calcu-

lated by the kth node. The error signal ek(n) is picked up at the microphone

of the kth node, and the secondary paths that link all the loudspeakers with

the kth microphone, ĥjk for j = 1, . . . , N , can be estimated in a set-up stage.

Regarding the reference signals, xi(n), needed to calculate (5) and (9), we will

assume they arrive to the nodes through a different channel from that used by

the network. For example, in Fig. B.2 the reference signals are transmitted

through a broadcast radio channel to the WASN. In other cases, as for narrow-

band noise whose fundamental frequency is known, reference signals correlated

with the noise could be self-generated by each node.

To deal with a distributed processing, let us remember that the local updat-

ing is performed following an incremental strategy [8]: for a given time instant

n, a complete round is performed along the network where each node computes

its term of the summation in (10), aggregates it to the given filter vector and

passes it to the following node in a incremental order. To develop the for-

mulation for this strategy, we start with equation (10) but with all the terms

explicitly expressed as:

w(n) = w(n− 1)− µv1(n)e1(n)− µv2(n)e2(n)− · · · − µvN (n)eN (n) . (11)

Let us define the local version of the filter coefficient vector w(n) of (7) at
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node k as

wk(n) =


wk

1(n)

wk
2(n)
...

wk
N (n)

 , (12)

and assume that at time n, node k = 1 has available the updated global vector

obtained at time n − 1, w(n − 1). Then at node k = 1 the following equation

can be computed:

w1(n) = w(n− 1)− µv1(n)e1(n) . (13)

Then, node 1 passes its local version of the global vector to node 2 and this

node updates its own local version as:

w2(n) = w1(n)− µv2(n)e2(n) . (14)

Afterwards node 2 passes its local version of the global vector to node 3 and

so on, till a whole round is done and at node k = N we obtain

wN (n) = wN−1(n)− µvN (n)eN (n) , (15)

which is equal to the expression of w(n) in (10), that is, we have obtained

the updated global filter as the local version of the vector at the last node

w(n) = wN (n). Therefore, from (13)-(15), we can state the general form of the

filter updating at each node as

wk(n) = wk−1(n)− µvk(n)ek(n) , 1 ≤ k ≤ N , (16)

assuming that the local version of the first node vector is given by w0(n) =

wN (n− 1) = w(n− 1).

Finally, once the global updated vector at time instant n has been obtained

as w(n) = wN (n), their values are disseminated to the rest of the nodes. Notice

that only the local vector that corresponds to the IL coefficients from IL(k −

1) + 1 to ILk of w(n) defined as

wk(n) = [w(n− 1)](IL(k−1)+1:ILk) , (17)
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is needed to generate the kth node output signal yk(n):

yk(n) = wT
k (n) [X(n)](:,1) , (18)

where [X(n)](:,1) is the [IL×1] vector corresponding to the first column of X(n)

defined in (9).

It should be noted that the proposed cooperation requires a high data trans-

fer speed and a properly synchronization among the nodes. A data stream of

2ILN(N − 1) samples should propagate through the nodes in an incremental

manner for each sample collected at the error sensors. For example, if the sam-

pling rate is fs = 16 kHz the collaborative tasks should allow a data stream of

32ILN(N − 1) Ksamples/s.

A summary of the algorithm instructions executed per sample time n, in-

cluding the required multiplications involved in each operation is given in Al-

gorithm 1. The number of multiplications can be directly calculated from the

equations but a remark on the for loop of lines 8-10 is needed: The number of

multiplications to obtain the L samples of vjk(n) is ILM , which would make

a total of ILMN multiplications. However, the oldest L− 1 samples of vjk(n)

have been already calculated in the previous iterations, so only IM new values

are computed, resulting in a total number of IMN multiplications. Conse-

quently, the computational cost of the DMEFxLMS algorithm per iteration and

per node is (IL(N+1)+IMN+1) multiplications. It can be easily verified that

the DMEFxLMS algorithm has exactly the same computational complexity as

the centralized algorithm (MEFxLMS).

The main advantage of this strategy is that the computation of the DME-

FxLMs is distributed among the nodes, reducing the computational requirement

of the processing units. Moreover, the performance of the DMEFxLMS algo-

rithm is identical to the centralized MEFxLMS algorithm in terms of conver-

gence speed and final residual noise under an incremental strategy and an ideal

network, as it can be noticed comparing (10) and (16). As said before, the ex-

tension of the DMEFxLMS algorithm to the case of a WASN with multichannel
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Algorithm 1 DMEFxLMS algorithm.

Initialize: w(0) = wk(0) = [0, . . . , 0]T , ∀k ; X(0) = 0IL×(M+L)

1: n = 1 % Start sample time

2: repeat

3: w0(n) = w(n− 1) % Needed at node k = 1 in line 12

4: Obtain reference signals xi(n), i = 1, . . . , I

5: for all Node 1 ≤ k ≤ N do

6: wk(n) = [wk(n− 1)](IL(k−1)+1:ILk)

7: yk(n) = wT
k (n) [X(n)](:,1) (Multipl.: IL)

8: for all 1 ≤ j ≤ N do

9: vjk(n) = X(n)ĥjk (Multipl.: IMN)

10: end for

11: vk(n) =
[

vT
1k(n) vT

2k(n) · · · vT
Nk(n)

]T
12: wk(n) = wk−1(n)− µvk(n)ek(n) (Multipl.: ILN + 1)

13: end for

14: w(n) = wN (n) % Updated vector

15: for all Node 1 ≤ k ≤ (N − 1) do

16: wk(n) = w(n) % Disseminate updated vector

17: end for

18: n = n+ 1 % Update sample time

19: until ANC system stops

nodes is given in Appendix A.

In the next section we will address some issues regarding a non ideal network,

such as limited rate communication and limited computational load at the nodes,

which can make the WASN cooperation difficult in practice. For this purpose,

we will introduce new parameters in the formulation of the distributed adaptive

algorithm and evaluate the performance loss based on these parameters.

3. Cooperation-constrained distributed adaptive algorithms

We now examine the case in which the algorithm DMEFxLMS is used in a

non ideal network, which we have called a constrained network in the sense it
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works under a limited data rate. This limited rate introduces a constant latency

between two network information exchanges at each node with respect to the

acquisition sample time Ts seconds. As stated in previous equations, n stands

for the discrete time, which in turn represents a continuous time of t = nTs

seconds. It has to be noticed that the adaptive algorithms are referred to n as

the updating time.

From this point on we assume a first change in the algorithm due to com-

munication constraints: the dissemination of the global filter w(n) = wN (n)

from node N to the rest of the nodes (lines 15-17 of Algorithm 1) will not be

carried out. Therefore, the local version of the global filter, wk(n), is considered

equal to the global filter w(n) only at node N . For the rest of the nodes, their

local version of the global vector, wk(n), will not be, in general, equal to w(n).

This consideration will particularly affect their local filters since their values are

taken from the corresponding elements of their local versions as

wk(n) = [wk(n− 1)](IL(k−1)+1:ILk) . (19)

Moreover, the nodes at the first positions according to the incremental strat-

egy will be more affected by the removal of the dissemination step. One possible

solution to alleviate this effect could be to cyclically change the order of the

nodes in the network, but this solution has not been considered in this paper.

3.1. Constrained DMEFxLMS algorithm with partial updates (P-DMEFxLMS)

As stated before, the limited rate of the communication network introduces a

constant latency between two network information exchanges at each node with

respect to the acquisition sample time Ts seconds. For homogeneous nodes,

this latency can be modelled through a constant parameter p such that data

communication between two consecutive nodes takes pTs seconds to be carried

out, being p a positive integer. Therefore, in our incremental network, a node

receives the information from its precedent node every NpTs seconds, the time

it takes a round to be completed. Since the adaptive algorithm works at sam-

ple rate Ts, the filter updating in (16) must be modified to take into account
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what to do in the meantime. Notice that p should be a positive integer since

Algorithm 1) iterates at every discrete-time instant n.

We present here the distributed MEFxLMS algorithm with partial updates

(P-DMEFxLMS). Its basic idea is similar to the conventional partial update

algorithms [25, 26] where, generally speaking, only a subset of coefficients is

updated at each iteration. As described before, in this collaborative scheme

each node aggregates the estimations from its precedent node every Np itera-

tions, while it uses local information to update its filter coefficients during the

remainder Np− 1 iterations.

The coefficients update equations are stated as follows,

• If [(n−1) mod Np] is equal to p(k−1), where mod denotes modulo opera-

tion, then node k combines its own local information with the information

from the precedent node k − 1:

wk(n) = αkw
k(n− 1) + (1− αk)wk−1(n)− µvk(n)ek(n) , (20)

where 0 ≤ αk ≤ 1 is a constant that weights the local estimate in node

k, wk(n− 1), and the data received from node k − 1, wk−1(n). It can be

considered as a measure of the trustworthiness [28] that node k assigns to

its interaction with node k − 1 .

• Otherwise node k uses its local data

wk(n) = wk(n− 1)− βkµvk(n)ek(n) , (21)

where βk ∈ [0, 1] is a binary weight that decides if node k performs a local

updating (βk = 1) or just waits for the arrival of new network information

(βk = 0).

The complete P-DMEFxLMS algorithm is summarized in Algorithm 2.

Notice that we have modelled parameter p as a constant for homogeneous net-

works. For heterogeneous networks, p could be modelled as a different constant

for each node, pk, provided that the statement at line 12 was accordingly mod-

ified.
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Algorithm 2 P-DMEFxLMS algorithm.

Initialize: w(0) = wk(0) = [0, . . . , 0]T , ∀k ; X(0) = 0IL×(M+L)

1: n = 1 % Start sample time

2: repeat

3: w0(n) = wN (n− 1) % Needed at node k = 1 in line 13

4: Obtain reference signals xi(n), i = 1, . . . , I

5: for all Node 1 ≤ k ≤ N do

6: wk(n) = [wk(n− 1)](IL(k−1)+1:ILk)

7: yk(n) = wT
k (n) [X(n)](:,1) (Multipl.: IL)

8: for all 1 ≤ j ≤ N do

9: vjk(n) = X(n)ĥjk (Multipl.: IMN)

10: end for

11: vk(n) =
[

vT
1k(n) vT

2k(n) · · · vT
Nk(n)

]T
12: if [(n− 1) mod Np] == p(k − 1) then

13: wk(n) = αkw
k(n − 1) + (1 − αk)w

k−1(n) − µvk(n)ek(n) (Multipl.:

3ILN + 1)

14: else

15: wk(n) = wk(n− 1)− βkµvk(n)ek(n) (Multipl.: βk(ILN + 1))

16: end if

17: end for

18: n = n+ 1 % Update sample time

19: until ANC system stops

3.1.1. On the use of αk and βk in the P-DMEFxLMS algorithm

A detailed discussion on the use of αk and βk for the ANC system is needed

since the grade of collaboration among the nodes and their computational ca-

pacity will determine the accuracy of the global filter w(n) obtained by P-

DMEFxLMS with respect to the DMEFxLMS solution of (11).

• The value of αk = 1 in (20) means that no network information is available

at node k, similar to the decentralized approach described in [29, 30]. As

stated in [30], this strategy can outperform collaborative implementations

in case the interaction caused by secondary sources different from that of
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node k is not significant. Assuming a dynamic network, the value of αk = 1

can be occasionally assigned to those nodes that are not interacting with

the rest of the network from an acoustical point of view. Note that in that

case, the value assigned to βk will mainly affect the speed of convergence

of the algorithm: for βk = 0 the local updating will be done every Np

iterations in (20), whereas for βk = 1 it will be done at sample rate by

means of (20)-(21). We call non-collaborative distributed MEFxLMS (NC-

DMEFxLMS) the adaptive algorithm corresponding to a value of βk = 1

and αk = 1 , ∀k, and its description is given in Algorithm 3. Notice that

although the NC-DMEFxLMS algorithm corresponds to the extreme case

such that nodes do not collaborate at all, it can be useful for the sake of

comparison to any other level of collaboration in the network.

• The value of αk = 0 in (20) means that local estimate wk(n − 1) is

discarded every Np iterations because the network information is totally

trustworthy with respect to the local estimate. Moreover, αk = 0 makes

even more sense in combination with βk = 0 (the node just waits for the

network data) for WASN’s with limited power that should be devoted to

save as much energy as possible.

• For values within 0 < αk < 1, the P-DMEFxLMS behaves in a collabora-

tive way, with a level of collaboration managed by αk. For a given αk, the

parameter βk will mainly affect the speed of convergence, together with

the step size µ, and the node power consumption as well. The solution

obtained will differ to a greater or lesser extent from that of the uncon-

strained distributed algorithm (DMEFxLMS): firstly because the network

takes Np iterations to achieve a global solution at node N , and secondly,

because the incremental strategy of communication implies that the kth

node will use a more updated global filter version than (k − 1)th node to

calculate its own secondary source.

A complete theoretical analysis of the performance of the P-DMEFxLMS

algorithm is out of the scope of this work. However, a theoretical analysis
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Algorithm 3 : NC-DMEFxLMS algorithm.

Initialize: wk(0) = [0, . . . , 0]T , ∀k ; X(0) = 0IL×(M+L)

1: n = 1 % Start sample time

2: repeat

3: Obtain reference signals xi(n), i = 1, . . . , I

4: for all Node 1 ≤ k ≤ N do

5: yk(n) = wT
k (n− 1) [X(n)](:,1) (Multipl.: IL)

6: vkk(n) = X(n)ĥkk (Multipl.: IM)

7: wk(n) = wk(n− 1)− µvkk(n)ek(n) (Multipl.: IL+ 1)

8: end for

9: n = n+ 1 % Update sample time

10: until ANC system stops

that provides the mean steady-state behaviour of the adaptive weights at each

node has been developed in Appendix B. The analysis relies on the statistical

characteristics of both reference and noise signals, and on the algorithm free

parameters as well (αk, βk, µ, p).

We end this section with a remark on the use of distributed constrained

strategies based on diffusion implementation [27] instead of incremental ones.

In diffusion networks all the nodes simultaneously exchange information with

its neighbours, thus the latency is considered null and the problem is mainly

focused on how to combine the local and network information [28]. Depending

on the value of αk, its global solution would be similar to the unconstrained

DMEFxLMS algorithm of Section 2.2. Diffusion implementation can obtain

the non collaborative NC-DMEFxLMS solution for αk = 1 , ∀k. Nevertheless,

we have only considered a network with an incremental communication in the

simulations of Section 4.

4. Simulation results

In this section we present a set of simulations carried out to evaluate the

performance of the distributed algorithms introduced in Sections 2.2 and 3.1 for
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unconstrained and constrained networks respectively. All the simulated WASN’s

use real acoustic responses measured inside a listening room of 9,36 meters long

by 4,78 meters wide by 2,63 meters high located at the Audio Processing Labo-

ratory of the Polytechnic University of Valencia, and modelled as FIR filters of

M = 256 coefficients. This room has an array of 96 independent-driven loud-

speakers deployed in an octagonal shape. A photograph of the listening room

can be seen in Fig. B.4. We have simulated two homogeneous acoustic networks

of eight and four nodes each considering two different settings of loudspeakers

and microphones:

System 1: Eight loudspeakers were selected from one of the lines with a uni-

form separation of 20 cm between adjacent loudspeakers. A sketch of the

simulated WASN is depicted in Fig. B.5(a). The eight microphones were

mounted on a linear platform with an equal separation of 20 cm between

adjacent microphones. The microphones were placed opposite to the loud-

speakers and separated 27 cm away from them. Each node was formed by

one loudspeaker and the corresponding microphone opposite to it.

System 2: A sketch of the simulated eight-node WASN for System 2 is depicted

in Fig. B.5(b). Regarding the loudspeakers, four were selected from the

same line used in System 1, but with a minimum separation of 80 cm be-

tween them. Then, the remaining loudspeakers were taken from the lines

perpendicular to the first linear sector, two from the right and two from

the left, with a minimum separation of 80 cm between them. Each micro-

phone was placed opposite to one loudspeaker, separated 27 cm away from

it, to form a node. Notice that the larger separation between loudspeakers

in System 2 will affect the acoustic coupling between nodes, which in turn

will affect the performance of the algorithms.

For both System 1 and System 2, the simulated four-node WASN was

formed by selecting nodes 1 to 4 (with gray microphones and loudspeakers)

in Fig. B.5(a) and Fig. B.5(b) respectively. All microphones and loudspeakers

involved were located at a height of 1,47 m.
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The ANC system tries to cancel an unwanted noise by means of N secondary

sources. In this case, the reference signal (I = 1) is a Gaussian random noise

of zero mean and unit variance and is provided to all the nodes of the WASN

as well as to the primary signal loudspeaker. This reference signal is emitted

by one loudspeaker of the array shown in Fig. B.4, but located at the opposite

side of the line of loudspeakers forming the WASN. Therefore, the unwanted

noise recorded at the nodes is the reference signal filtered through the acoustic

plants between the primary loudspeaker and their corresponding microphones.

The adaptive filters to be designed have a length of L = 150 coefficients. A

fixed step size of µ = 0.001 has been used in all the algorithms for the sake of

fair comparison. All the signals and filters work at a sample rate of 16000 Hz.

In order to evaluate the performance of different algorithms and parameters,

we define the instantaneous Noise Reduction at node k, NRk(n), as the ratio

in dB between the instantaneous estimated error power with and without the

application of the active noise controller,

NRk(n) = 10 log10

[
e2k(n)

d2k(n)

]
, (22)

where dk(n) is the signal that would be measured by the kth microphone if the

ANC system was inactive. The noise reduction (NR) can be depicted versus

the number of iterations providing the learning curves for each sensor and each

algorithm. In all the figures presented in this section, the curves represent the

averaged NR over 100 independent runs.

In the first scenario the performances of the DMEFxLMS and the NC-

DMEFxLMS algorithms compared to the centralized MEFxLMS have been

evaluated. Fig. B.6 presents the NR obtained by a WASN of four nodes for

the three algorithms. Fig. B.6.(a) shows the NR’s for the node with the best

performance (denoted as best node), whereas Fig. B.6.(b) shows the results for

the node with the poorest performance (denoted as worst node). In both cases

DMEFxLMS and centralized MEFxLMS exhibit equal performance as it has

been theoretically stated in section 2.2 so both curves are labelled as DME-

FxLMS. Regarding System 1, it can be observed that NC-DMEFxLMS starts
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cancelling the noise but at a certain point it turns unstable and does not con-

verge. However DMEFxLMS and MEFxLMS algorithms are stable, providing

30 dB of noise reduction for the best node and more than 10 dB for the worst.

Results for System 2 are quite different. Both distributed and non-cooperative

approaches achieve similar results in both Fig. B.6.(a) and Fig. B.6.(b), with a

slight improvement in the convergence of NC-DMEFxLMS compared to DME-

FxLMS.

The results for an eight-node WASN are depicted in Fig. B.7.(a) for the

best node and Fig. B.7.(b) for the worst one. The NR curves present a similar

behaviour to the four-node case, although the unstable tendency of the NC-

DMEFxLMS algorithm in System 1 is further stressed. Notice that the NR

achieved in the worst node, Fig. B.7.(b), is very poor for both configurations,

particularly for System 2 whose NR fluctuates around 0 dB. This is due to the

physical location of the microphone belonging to the worst-performance node.

The physical acoustic paths between the loudspeakers and the referred micro-

phone presented much lower average energy values than the best-performance

node, limiting the attenuation achieved by the ANC system at that node.

From the results obtained in Fig. B.6 and B.7 for this first scenario, we can

conclude that the proposed distributed DMEFxLMS algorithm has the same

performance as the centralized MEFxLMS. Both show a robust behaviour re-

garding stability, although the achieved NR depends on the WASN settings

(number of nodes and location of microphones and loudspeakers). On the con-

trary, the non-cooperative NC-DMEFxLMS appears to be very sensitive to

WASN settings, as it can be seen from the unstable behaviour obtained for

System 1 in both four and eight-node networks.

A second simulation using only the four-node WASN of System 1 has been

carried out to evaluate the partial update algorithm (P-DMEFxLMS) for dif-

ferent latency values of the network, p, and different choices of αk and βk.

For the sake of simplicity we consider αk = α , ∀k and βk = β , ∀k, i.e., we

assume the nodes are homogeneous in their behaviour. We will compare P-

DMEFxLMS with the unconstrained DMEFxLMS and the non collaborative
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NC-DMEFxLMS algorithms. First we study the effect of the α parameter and

assume α = 0 in (20) so all nodes discard their local estimates every Np itera-

tions. The NR curves (22) of the best node in the network for α = 0 and different

latency values of p are presented in Fig. B.8.(a) for β = 0, and Fig. B.8.(b) for

β = 1. For both values of β, the performance of the P-DMEFxLMS algorithm

worsens as p increases, but the deterioration due to the latency is much more em-

phasized when β = 0. However, for β = 1 the behaviour of the P-DMEFxLMS

presents steady-state values close to the DMEFxLMs for all p. These prelim-

inary results have been confirmed for α = 0.5, which equally combines local

estimate and network information at each node. The NR for different latency

values of p is presented in Fig. B.9.(a) for β = 0, and Fig. B.9.(b) for β = 1.

Results show a similar behaviour to Fig. B.8 suggesting the following conclusion:

for networks with a limited data rate, convergence performance can be greatly

improved if the nodes are allowed to update their filter coefficients by setting

β = 1 in (21). This statement is true for networks with an acoustic interaction

among the nodes similar to the one analysed.

A second scenario consisting on a two-node WASN has been considered to

study the behaviour of the ANC system regarding the weighting value αk. For

this purpose we have built a WASN with 2 nodes with three different relation-

ships between their acoustic paths. These acoustic paths have been selected

from the real acoustic responses measured inside the listening room of Fig. B.4,

such that they fulfil the conditions described below. Regarding the unwanted

noise and reference signals of the ANC system, they are the same signals used

in the first scenario.

To identify the type of interaction between nodes, let us define the Level of

Interaction (LI) of node j over node i as the ratio between the energy of acoustic

paths hji and hii:

LIji =

∑M
m=1 h

2
ji(m)∑M

m=1 h
2
ii(m)

=
Ehji

Ehii

, (23)
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where hji(m) is the mth coefficient of the acoustic path between the jth loud-

speaker and the ith microphone and Ehji
is the energy of acoustic path hji.

To clarify the meaning of the proposed ratio (23), assume all the secondary

sources were fed with the same energy. Then for small values of LIji, the

secondary source of node j would barely contribute to the error signal measured

at node i with respect to its own secondary source i. On the contrary, big

values of LIji would indicate a great contribution from node j to node i, that

is, generally speaking they would be acoustically coupled.

We have designed three different settings to show different levels of interac-

tion LIji between the nodes. For the sake of fair comparison, we have simulated

in the three cases a symmetric WASN where h12 = h21 and h11 = h22, con-

sequently LI12 = LI21. Table B.1 shows the value of LI for each type of ANC

system. Depending on the value of LI12, we have called the ANC system un-

coupled for a LI12 near to 0, coupled for LI12 near to 1, and forced coupled for

LI12 much larger than 1. Table B.1 also includes the value of the normalized

cross-covariance coefficient ρ12 defined as

ρji =

∑M
m=1 hji(m)hii(m)√∑M

m=1 h
2
ji(m)

√∑M
m=1 h

2
ii(m)

. (24)

We have run the simulations with 0 ≤ αk ≤ 1 in steps of 0.1, and βk ∈ [0, 1].

We consider homogeneous nodes and we have stated α1 = α2 = α and β1 =

β2 = β. The average steady-state NR for both nodes is plotted in Fig. B.10

versus parameter α for latency values of p = 2, 4, 10 and for (a) β = 0 and (b)

β = 1. Notice that a value of β = 0 in (21) means that the filter coefficients are

updated only every Np samples, see also line 15 in Algorithm 2, whereas for

β = 1 the filters are updated every sample.

For the case of β = 0, we can see in Fig. B.10.(a) that the network latency

determines the steady-state NR achieved by the WASN, except for the case of

coupled systems that does not vary so much. The performance of uncoupled

systems is better for α = 1 (no network information) where the node updates

its filter coefficient every Np iterations using its local information (third term
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in (20)). A good performance is also obtained for α = 0 where every Np it-

erations the node discards its own estimate and uses the network information

together with its local information. Any other combination provided by α wors-

ens its behaviour. It seems that relying on its own information (α = 1) or

totally discarding it (α = 0) is the best option, while any other combination

interferes to achieve the best performance. In the case of forced coupled sys-

tems, NR increases with α, which means that the nodes should totally trust on

the estimate provided by the network (α = 0). Finally, the performance of the

coupled system does not vary with the latency, neither with α.

For β = 1 shown in Fig. B.10.(b), it can be seen that the uncoupled sys-

tem keeps the same tendency to work well for any value of α, the best being

α = 1, whereas the forced coupled system stresses the need for any kind of

collaboration, 0 ≤ α < 1, obtaining no NR when α = 1. However, the coupled

system is affected by neither α nor p, and it achieves the worst performance.

A possible explanation of this behaviour is given observing the cross-covariance

between the nodes in Table B.1. The value of ρ12 is close to 1 in the coupled

system which means that acoustic path h12 is very correlated to h22, and due

to the symmetry of the WASN, acoustic path h21 has the same correlation with

h11. As a consequence the four acoustic paths are very correlated, thus they

have quite similar responses. Therefore the poor NR achieved can be explained

since the two-node ANC system presents a unique secondary path (all hij are

fully correlated), but it is trying to cancel two unwanted noises, one recorded at

node 1 and other recorded at node 2. Regarding the other two ANC systems,

notice that their cross-covariance terms in Table B.1 are close to 0. Conse-

quently their acoustic paths are uncorrelated and their secondary sources can

be independently driven.

Finally, it should be noted that all the conclusions stated in this paper are

derived from the particular settings and parameter configuration. For instance,

the use of a specific step size for each algorithm would improve the NR obtained

and would also affect their speed of convergence.
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5. Conclusions

In this paper an active noise canceller has been implemented over an acoustic

sensor network that makes use of incremental communication strategies. For

this purpose several distributed versions of the centralized adaptive algorithm

MEFxLMS have been introduced to deal with unconstrained and constrained

networks. In the case of constrained networks, the distributed algorithm can

be configured by means of two parameters whose values can be adjusted to

control the collaboration in the network. Indeed, these parameters affect the

performance of the ANC system as well. We have provided simulations to

demonstrate the performance of the proposed algorithms in different scenarios

where the number of nodes, the acoustical interactions between them, and the

network constraints have been varied.
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Appendix A. Generalization of the DMEFxLMS algorithm to mul-

tichannel nodes

In this section we will extend the algorithm provided in Section 2.2 to the

general case of a WASN with multichannel nodes just considering that each node

is equipped with a maximum of K ′ sensors and a maximum of J ′ loudspeakers.

The problem formulation and notation is derived from the single channel nodes

case, and the algorithm is straightforwardly extended from the corresponding

equations simply redefining some matrices and vectors.

Firstly, the local version of the global filter vector w(n) in every node is

comprised of INJ ′ filters of size L unlike the single-channel nodes case that

uses IN filters. From (12) we can define the local version of the global filter in
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node k, wk(n) as comprised of N vectors wk
q (n), q = 1, . . . , N , which correspond

to the kth local version of the IJ ′L filter coefficients of the qth node, and whose

expression is given by

wk
q (n) = [wk

11q(n)T . . .wk
I1q(n)T . . .wT

ijq(n) . . .wk
1J′q(n)T . . .wk

IJ′q(n)T ]T ,

(A.1)

where the wijq(n) are vectors of size L. Considering the case of non homoge-

neous networks, if node k has a number of loudspeakers J ′k such that J ′k < J ′,

the corresponding coefficients of filters denoted by sub-index j = J ′k + 1, . . . , J ′

in (A.1) will be zero.

The IJ ′L filter coefficients used to generate the output signals at node k,

equation (17) for single channel nodes, are taken now as

wk(n) = [wk(n− 1)](ILJ′(k−1)+1:ILJ′k) . (A.2)

The output signals at time n that feed the actuators of node k form the

J ′-size vector yk(n), given by

yk(n) = (WkJ ′(n))T [X(n)](:,1) , (A.3)

where WkJ ′(n) is a IL × J ′ matrix created rearranging the elements of the

wk(n) vector defined in (A.2) ,

WkJ′(n) =
[
wk(n)(1:IL) wk(n)(IL+1:2IL) . . . wk(n)(IL(J′−1)+1:IJ′L)

]
.

(A.4)

Notice again that in case a node has less than J ′ actuators, the corresponding

element in vector yk(n) will be zero. The ILN vector vk(n) introduced in (9)

is extended to a matrix Vk(n) of ILJ ′N ×K ′ dimensions composed of matrices

Vjk(n) with dimensions IL×K ′ as Vk = [VT
1k(n) VT

2k(n) . . . VT
(J′N)k(n)]T ,

where

Vjk(n)) = X(n)Ĥjk, ∀ 1 ≤ j ≤ J ′N (A.5)

with

Ĥjk = [ĥj[K′(k−1)+1] . . . ĥj[K′k]]. (A.6)
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Similarly to the previous notation, and assuming again that a node can have

less than J ′ actuators and K ′ error sensors, only the corresponding secondary

paths contained in Ĥjk are different from zero.

Finally, we define the ek(n) vector that contains theK ′ error signals obtained

at time n in the kth node as

ek(n) = [eK′(k−1)+1(n) . . . eK′k(n)] , (A.7)

and assume that the corresponding position of vector ek(n) is zero if node k has

less than K ′ sensors.

In the following we summarize the changes required in Algorithm 1 of

Section 2.2 in order to extend the DMEFxLMS algorithm to the case of a WASN

of multichannel nodes. Notice that the elements of the coefficient vector wk(n)

in (12) have been redefined as in (A.1), and that the global vector w(n) has the

same element ordering than wk(n). For Algorithm 1:

• Replace line 6 by equation (A.2).

• Replace scalar calculation of line 7 by vector calculation of (A.3).

• Replace vector calculation of line 9 by matrix calculation of (A.5).

• Define matrix Vk(n) accordingly to line 11 and (A.5).

• Update the filter coefficients of line 12 considering matrix Vk(n) and error

vector (A.7).

Appendix B. Mean steady-state weight behavior of the P-DMEFxLMS

algorithm

In this section the mean weight behaviour of the P-DMEFxLMS algorithm

is analysed assuming that all nodes in the WASN are homogeneous in their

parameters, thus αk = α, ∀k and βk = β, ∀k. This analysis describes the mean

behaviour of the adaptive weights at each node of the network and provides the

corresponding steady-state mean weight vector.
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The P-DMEFxLMS algorithm updates the adaptive weights at every node

according to equations (20) and (21). Particularizing these expressions for a

generic node k with p > 1, both equations can be merged as

wk(n) = (1− α)Nwk(n−Np)

−µ
N−1∑
m=0

(1− α)mv(k−m)(n−mp) e(k−m)(n−mp)

+α

N−1∑
m=0

(1− α)m
[
w(k−m)(n− (N +m)p)

−βµ
Np−1∑
q=1

v(k−q)(n− q −mp) e(k−q)(n− q −mp)

]
.

(B.1)

It should be noted that for m ≥ k, w(k−m)(n) = w(N+k−m)(n), v(k−m)(n) =

v(N+k−m)(n) and e(k−m)(n) = e(N+k−m)(n).

Taking expectations of both sides of (B.1), we get

E[wk(n)] = (1− α)NE[wk(n−Np)]−

µ

N−1∑
m=0

(1− α)mE[v(k−m)(n−mp) e(k−m)(n−mp)]

+α

N−1∑
m=0

(1− α)mE[w(k−m)(n− (N +m)p)]

−βµα
N−1∑
m=0

(1− α)m
Np−1∑
q=1

E[v(k−q)(n− q −mp) e(k−q)(n− q −mp)].

(B.2)

The error signal at the kth node at time n is given by (see Fig. B.1),

ek(n) = dk(n) +
[
hT
1kX(n)T , hT

2kX(n)T , . . . , hT
NkX(n)T

]
w(n), (B.3)

where dk(n) is the disturbance or primary signal at the kth error sensor. Con-

sidering perfect secondary path estimation,
[
hT
1kX(n)T , . . . ,hT

NkX(n)T
]

can be

substituted by vT
k (n), which is known by the adaptive controller and it is defined

in (8). Substituting (B.3) in (B.2) and taking the limit as n→∞, we obtain

E[wk(∞)] = (1− α)NE[wk(∞)]− µ{r + RE[w(∞)]}

+α

N−1∑
m=0

(1− α)m

[
E[w(k−m)(∞)]− βµ

Np−1∑
q=1

{r(k−q) + R(k−q)E[w(∞)]}

]
,

(B.4)
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where we have used the steady-state condition E[wk(n)] = E[wk(n − Np)] =

E[wk(∞)]. The previous expression has been derived by means of the following

considerations. On the one hand both the filtered reference signal vectors vk(n)

and the disturbance signals dk(n) are wide-sense stationary. Thus,

E[vk(n−m)dk(n−m)] = E[vk(n)dk(n)] = rk , (B.5)

where rk is the cross correlation vector at the kth node between the primary

and filtered reference signals, and yields

N−1∑
m=0

E(1− α)m[v(k−m)(n−mp) d(k−m)(n−mp)]

=

N−1∑
m=0

(1− α)mE[v(k−m)(n) d(k−m)(n)] =

N−1∑
k=0

(1− α)krk = r.

(B.6)

Regarding matrix R in (B.4), the autocorrelation matrix for the filtered

reference signals at the kth node is given by

E{vk(n−m)vT
k (n−m)} = E{vk(n)vT

k (n)} = Rk, (B.7)

and similar to (B.6), it yields

N−1∑
m=0

E[(1− α)mv(k−m)(n−mp)vT
(k−m)(n−mp)]

=

N−1∑
m=0

(1− α)mE[v(k−m)(n)vT
(k−m)(n)] =

N−1∑
k=0

(1− α)kRk = R.

(B.8)

Finally, (B.4) can be rewritten as

aE[wk(∞)] = α

N−1∑
m=1

(1− α)mE[wk−m(∞)]−BkE[w(∞)]− ck, (B.9)

where

a = 1− α− (1− α)N , (B.10)

Bk = µ

[
R + Rk αβ (p− 1)

N−1∑
m=0

(1− α)m +

{
N−1∑
m=1

R(k−m)

}
αβ p

N−1∑
m=0

(1− α)m

]
(B.11)

ck = µ

[
r + rk αβ (p− 1)

N−1∑
m=0

(1− α)m +

{
N−1∑
m=1

r(k−m)

}
αβ p

N−1∑
m=0

(1− α)m

]
,

(B.12)
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and for indices such that m ≥ k, R(k−m)(n) = R(N+k−m)(n) and r(k−m)(n) =

r(N+k−m)(n).

Note that (B.9) is the steady-state mean weight vector at the kth node

and it would only provide the steady-state behaviour of the global network in

some simple cases such as α = 1 and β = 0, where all the nodes converge

to the same solution
(
E[w(∞)] = R−1r

)
. However, to derive a network global

solution we should pose a set of vector equations considering (B.9) at every

node. For example, for a two-node network (N = 2) the steady-state filter

vector is represented at each node by

w1(∞) =

 w1
1(∞)

w1
2(∞)

 ,w2(∞) =

 w2
1(∞)

w2
2(∞)

 , (B.13)

and the global filter vector is given by

w(∞) =

 w1
1(∞)

w2
2(∞)

 . (B.14)

The steady-state solution can be derived solving the following system of

differential equations

a


w1

1(∞)

w1
2(∞)

w2
1(∞)

w2
2(∞)

 = α(1−α)


w2

1(∞)

w2
2(∞)

w1
1(∞)

w1
2(∞)

−
 B1 0

0 B2




w1
1(∞)

w2
2(∞)

w1
1(∞)

w2
2(∞)

−
 c1

c2

 ,
(B.15)

that can be rewritten as
w1

1(∞)

w1
2(∞)

w2
1(∞)

w2
2(∞)

 = −

 c1

c2

 [aI(IL4) − α(1− α)G + B]−1 (B.16)

where I(IL4) is a (IL4 × IL4) identity matrix and G is a permutation matrix
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defined as

G =

 0(IL2) I(IL2)

I(IL2) 0(IL2)

 , (B.17)

being I(IL2) a (IL2 × IL2) identity matrix. Matrix B is a block matrix given

by

B =


B11

1 0(IJ) 0(IJ) B12
1

B21
1 0(IJ) 0(IJ) B22

1

B11
2 0(IJ) 0(IJ) B12

2

B21
2 0(IJ) 0(IJ) B22

2

 , (B.18)

whose non-zero components are the [IJ×IJ ] blocks resulting from the partition

of matrices B1 and B2 defined in (B.11) and used in (B.15):

B1 =

 B11
1 B12

1

B21
1 B22

1

 , B1 =

 B11
2 B12

2

B21
2 B22

2

 . (B.19)

To conclude this section it should be noted that (B.16) provides an esti-

mation of the steady-state weight vector at every node depending on both the

algorithm configuration parameters (α, β, p, µ and N values), and the statistical

characteristics of the filtered reference signals and primary signals.
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Type of ANC system

UNCOUPLED COUPLED FORCE COUPLED

Eh21
� Eh11

Eh21
' Eh11

Eh21
� Eh11

LI21 0.029 0.911 16.160

ρ21 -0.001 0.993 0.018

Table B.1: Levels of Interaction and normalized cross-covariance values of the coupled, un-

coupled and force coupled ANC systems for a two-node WASN.
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Multichannel adaptive controller 

x1(n) x2(n) xI(n)

y1(n) y2(n) yJ(n)

e1(n) e2(n) eK(n)

…

…

…

h1,1 h2,1 hJ,1

Figure B.1: Multichannel active noise controller with K microphones and J loudspeakers.
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Figure B.2: Single-channel acoustic node within a ring topology network.
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Figure B.3: Centralized multichannel ANC system based on the MEFxLMS algorithm. Filter

coefficients are calculated by the MEFxLMS algorithm and then copied to the corresponding

wij to obtain output signals yj(n).
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Fig. 1.Laboratory enclosure during identification experiment.

The identification experiment was associated with the implementation of a very large number of 

measurements enabling estimation of impulse responses between the sound card's control channels 

(connected to the loudspeakers),  and measuring channels (connected to  microphones  located at 

measurement points). The main problem was how to perform efficiently measurements of excitation 

signals generated by the all 96 loudspeakers using microphones located at the 360 measurement 

point, that gives 34,560 different impulse responses. Number of measurements could be reduced if 

each of loudspeakers is excited by the unique signal in the meaning of orthogonality.  Then all 

loudspeakers  could  excite  the  enclosure  at  the  same  time  and  signals  are  recorded  at  given 

measurement point only once. The period of the excitation signal was selected to be 220 samples, 

then  the  signal  was  split  into  25 orthogonal  signals  by transforming the  signal  into  frequency 

domain and for each of the orthogonal signals only selected bins (piratically every 25'th bin) were 

taken, remaining bins were removed, created signals were recorded to file.  Each of the signals 

contain unique frequencies, however, chosen so that the their distribution in the range from 10 Hz 

to 20 kHz is uniform. 

Such approach significantly improved identification experiment  efficiency,  four  measurement 

microphones at different positions were used at the same time, so whole identification experiment 

consisted of 90 smaller experiments. Each of smaller experiments due to system memory limitation 

Figure B.4: Picture of the listening room at the Audio Processing Laboratory of the Poly-

technic University of Valencia.

38



Node	
  
	
  6	
  

Node	
  
7	
  

Node	
  
8	
  

Node	
  
1	
  

Node	
  
2	
  

Node	
  
3	
  

Node	
  
4	
  

Node	
  
5	
  

(a)

N
od

e	
  
	
  7
	
  

N
od

e	
  
	
  8
	
  

N
ode	
  
6	
  

Node	
  
	
  1	
  

Node	
  
	
  2	
  

Node	
  
3	
  

Node	
  
4	
  

N
ode	
  
	
  5	
  

(b)

Figure B.5: Sketch of the simulated eight-node WASN described in (a) System 1 and (b)

System 2. The corresponding four-node WASN was formed by nodes 1 to 4 in gray. The

incremental communication strategy is represented by the dashed lines.
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Figure B.6: Noise reduction obtained by the simulated four-node WASN’s in System 1 and

System 2 using the MEFxLMS, the DMEFxLMS, and the NC-DMEFxLMS algorithms. NR

at the node (a) with the best performance, and (b) with the worst performance.
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Figure B.7: Noise reduction obtained by the simulated eight-node WASN’s in System 1 and

System 2 using the MEFxLMS, the DMEFxLMS, and the NC-DMEFxLMS algorithms. NR

at the node (a) with the best performance, and (b) with the worst performance.
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Figure B.8: Noise reduction obtained at the best node using the P-DMEFxLMS, the DME-

FxLMS, and the NC-DMEFxLMS algorithms in the four-node WASN of System 1. P-

DMEFxLMS algorithm uses α = 0 and (a) β = 0 or (b) β = 1.
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Figure B.9: Noise reduction obtained at the best node using the P-DMEFxLMS, the DME-

FxLMS, and the NC-DMEFxLMS algorithms in the four-node WASN of System 1. P-

DMEFxLMS algorithm uses α = 0.5 and (a) β = 0 or (b) β = 1.
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Figure B.10: Steady-state noise reduction for the P-DMEFxLMS algorithm versus α for the

three types of ANC systems of Table B.1 over a two-node WASN. (a) β = 0 and (b) β = 1.
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