

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

http://dx.doi.org/10.1109/TVLSI.2014.2344113

http://hdl.handle.net/10251/65131

Institute of Electrical and Electronics Engineers (IEEE)

Lacruz Jucht, JO.; García Herrero, FM.; Declercq, D.; Valls Coquillat, J. (2015). Simplified
trellis min-max decoder architecture for nonbinary low-density parity-check codes. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems. 23(9):1783-1792.
doi:10.1109/TVLSI.2014.2344113.

1

Simplified Trellis Min-Max Decoder

Architecture for Non-Binary Low-Density

Parity-Check Codes

Jesús O. Lacruz, Francisco Garcı́a-Herrero, David Declercq Senior Member,

IEEE, Javier Valls Member, IEEE

Abstract

Non-binary Low-Density Parity-Check (NB-LDPC) codes have become an efficient alternative to

their binary counterparts in different scenarios such as: moderate codeword lengths, high order modula-

tions and burst error correction. Unfortunately, the complexity of NB-LDPC decoders is still too high,

specially for the check node processing, which limits the maximum throughput achievable. Although

a great effort has been expended to overcome this disadvantage, the decoders presented in literature

are still away from high speed implementations for high order fields. In this paper a simplified Trellis

Min-Max (TMM) algorithm is proposed, where the check node messages are computed in a parallel

way using only the most reliable information. The proposed check node algorithm is implemented using

an horizontal layered schedule. The complete decoder architecture has been implemented in a 90 nm

CMOS process for the (837,726) NB-LDPC code over GF(32), achieving a throughput of 660 Mbps at

9 iterations based on post layout results. This decoder increases hardware efficiency in 110% compared

to the existing solutions for the same code.

Index Terms

NB-LDPC, T-Min-Max, Layered Decoder, Message Passing Algorithm

J. Lacruz is with the Electrical Engineering Department, Universidad de Los Andes, Mérida, 5101, Venezuela. (e-mail:

jlacruz@ula.ve)

F. Garcı́a, and J. Valls are with the Instituto de Telecomunicaciones y Aplicaciones Multimedia, at Universitat Politècnica de

València, 46730 Gandia, Spain (e-mail: fragarh2@epsg.upv.es, jvalls@eln.upv.es).

D. Declercq is with the ETIS Laboratory, ENSEA/Univ. Cergy-Pontoise/CNRS-UMR-8051, 6, Avenue du Ponceau, F-95000,

Cergy-Pontoise, France (e-mail: david.declercq@ensea.fr).

February 13, 2016 DRAFT

2

I. INTRODUCTION

Non-binary low-density parity-check (NB-LDPC) codes have become an interesting alternative

to its binary counterparts for codes with moderate length. The main drawback of NB-LDPC codes

is that the complexity of the decoder limits the maximum throughput that can be achieved in

hardware implementations.

NB-LDPC are lineal block codes characterized by a sparse parity check matrix H with M

rows and N columns. Each non-zero element hm,n of H belongs to the Galois field GF(q = 2p).

In this paper we only consider regular NB-LDPC codes with constant row weight dc and column

weight dv. NB-LDPC codes can also be characterized by a bipartite graph called Tanner Graph

[1], where two types of nodes can be differentiated, the ones representing the rows of the parity

check matrix called check nodes (CN) and the ones that represent the columns in H, called

variable nodes (VN). Decoding algorithms for NB-LDPC codes use iterative message exchange

between check nodes and variable nodes and vice versa to extract the most reliable codeword

from the noisy received sequence.

Different decoding algorithms have been proposed since NB-LDPC codes were discovered.

First, the Q-ary Sum Product algorithm (QSPA) was proposed in [2] as an extension of belief

propagation (BP) algorithm for binary LDPC codes. Unfortunately, its complexity was too high to

be suitable for hardware implementations. Several approaches such as FFT-SPA [3], log-SPA and

max-log-SPA [4], were proposed to overcome the limitations of QSPA. These solutions reduce

the complexity of the check node processing equations without introducing any performance

loss. In [5] an approximation of QSPA, called Extended Min-Sum (EMS), is proposed, where the

complexity of the check node is reduced considerably involving only comparisons and additions.

In [6], Min-Max algorithm was presented. This algorithm applies comparisons to compute

the maximum reliability values instead of additions, unlike EMS algorithm. This improvement

prevents the growth of the data length of the decoder without introducing any performance loss

with respect to EMS algorithm.

On the other hand, EMS and Min-Max algorithms still suffer from a bottleneck on check

node caused by the use of forward - backward metrics for the extraction of check to variable

messages. In [7] the Trellis Extended Min-Sum (T-EMS) is introduced. This algorithm computes

the combination of the most reliable messages avoiding the use of forward-backward metrics and

increasing the degree of parallelism. The decoder presented in [7] was improved in [8] where

February 13, 2016 DRAFT

3

an extra column is added to the original trellis with the purpose of generating in a parallel

way the check to variable messages. This algorithm allows hardware designers to derive higher

throughput architectures. The main drawback of the approach presented in [8] is that requires a

lot of area, reducing the overall efficiency of the decoder.

To further improve the T-EMS efficiency, we propose in this paper a simplification of this

algorithm, building the extra column of the trellis and generating the output messages of the

check node using only the most reliable information. The extra column information and two most

reliable messages are computed to generate the check to variable messages in a efficient way

improving both area and latency of the decoder. On the other hand, we look for the maximum

value instead of adding the reliabilities for the generation of the extra column values. For this

reason we name the algorithm Trellis Min-Max (TMM).

The simplified check node algorithm is implemented using an horizontal layered scheduling

which establishes a compromise between overall area of the decoder and latency.

To show the efficiency of the proposed NB-LDPC decoder over high order fields, the (837,726)

NB-LDPC code over GF(32) has been chosen. To the best knowledge of the authors, the proposed

architecture achieves 110% higher efficiency (Mbps / Million Gates) than the most efficient

decoder proposed in literature [9], for the same code. Moreover, the proposed design has lower

latency and higher throughput than any proposed NB-LDPC decoder for high order fields.

The rest of the paper is organized as follows: in Section II we introduce the T-EMS decoding

algorithm. The proposed algorithm and check node architecture is presented in Section III.

Section IV describes the overall layered decoder architectures and the synthesis and post layout

results of the proposed design. Section V includes comparisons with others proposed decoders.

Conclusions are outlined in Section VI.

II. TRELLIS EXTENDED MIN-SUM ALGORITHM

Let us define the parity check matrix H with M rows and N columns. Each non-zero element

hm,n of H belongs to the Galois field GF(q = 2p). In this paper, we only consider regular NB-

LDPC codes with constant row weight dc and column weight dv. Let N (m) (M (n)) be the set

of variable nodes (check nodes) connected to a check node (variable node) m (n). Let Qm,n(a)

and Rm,n(a) be the messages from variable node to check node and from check node to variable

node for each symbol a ∈GF(q) respectively. Ln(a) denotes the channel information and Qn(a)

the a posteriori information.

February 13, 2016 DRAFT

4

Let c = c1,c2, · · · ,cN and y = y1,y2, · · · ,yN be the transmitted codeword and received symbol

sequence respectively, with y = c+ e and e is the error vector introduced by the communica-

tion channel. The log-likelihood ratio (LLR) for each received symbol is obtained as Ln(a) =

log[P(cn = zn|yn)/P(cn = a|yn)] where zn is the symbol associated to the highest reliability. The

previous definition ensures that all messages Ln(a) are non-negative and that the smaller the

value, the more reliable the message.

Algorithm 1 includes the T-EMS check node algorithm where the first step consists in the

delta domain transformation of input messages. This transformation ensures that the most reliable

messages are always in the first row of ∆Qm,n(η j) and the rest of the symbols are reordered

and considered as deviations of the most reliable one, according to step 1. Step 2 involves the

calculus of check node’s syndrome β using the most reliable symbol zn for each check node

incoming message. For the syndrome calculation, all nonzero elements of H are taken as α0 = 1

thanks to the pre-processing of the incoming messages outside of the node, as will be explained

in later sections.

Step 3 makes use of the configuration sets originally proposed in [5] with the aim of building

the output messages by just using the most reliable information. con f (nr,nc) is defined as the

configuration set that includes the most reliable paths that satisfy the parity check equation.

Each of these paths can be formed by the most reliable nr messages for a symbol a deviating at

most nc times from the zero-order configuration [5], [10]. These combinations usually take the

name of paths. Implementation of the step 3 requires the reordering of the delta messages in a

trellis fashion and the computation of an extra column ∆Q(a). ∆Q(a) is calculated by adding

the reliability values of con f (nr,nc) with the highest reliability (minimum value).

Hereinafter, we only consider the case when nr = 2 and nc = 2 for T-EMS algorithm. In this

case combinations with the two most reliable symbols are analyzed to build the extra column

values with the higher reliability. This means that combinations of min1-min1, min1-min2, min2-

min1, min2-min2 must be analyzed (and combinations with the rest of corresponding messages

are avoided) to extract the paths with higher reliability that deviate at most 2 times from the most

reliable path. min1 and min2 represent the first and second most reliable messages respectively

i.e. minimum values. For the same path, no more than one message from the same column of the

trellis is considered. When higher order fields and larger check node degree dc are considered,

implementation of step 3 requires larger computation in parallel, increasing the total complexity

of the decoder.

February 13, 2016 DRAFT

5

Algorithm 1: T-EMS Algorithm

Input: Qm,n , zn = argmina∈GF(q)Qm,n(a) ∀ n ∈N (m)

for j = 1→ dc do

1 ∆Qm,n j(η j = a+ zn j) = Qm,n j(a)

end

2 β = ∑
dc
j=1 zn j ∈ GF(q)

3 ∆Q(a) = minη′j(a)∈con f (nr,nc)∑
dc
j=1 ∆Qm,n j(η

′
j(a)),a ∈ GF(q)

for j = 1→ dc do

4 ∆Rm,n j(a+η′j(a)) = min(∆Rm,n j(a+η′j(a)),∆Q(a)−∆Qm,n j(η
′
j(a)))

5 Rm,n j(a+β+ zn j) = λ ·∆Rm,n j(a),a ∈ GF(q)

end

Output: Rm,n

Output messages in delta domain ∆Rm,n j(a) are generated subtracting the reliability values

of configurations to the information collected in the extra column of trellis ∆Q(a) (step 4 of

Algorithm 1). When more than one configuration converges to the same point, the minimum

value is considered, because it contains the highest reliability. The use of an extra column in the

trellis allows us to compute the output messages in parallel, which reduces the data dependency

between the dc elements involved in the check node and hence improves the overall throughput

of the decoder.

Last step of T-EMS algorithm involves the inverse transformation from delta to “normal

domain” using the hard decision symbols zn and the syndrome value β. Before the inverse

transformation, a scaling factor λ can be applied to outgoing check node messages to improve

the performance of the decoding algorithm.

In the next section, we introduce several simplifications to Algorithm 1, reducing the com-

plexity of the check node and improving both latency and area of the proposed decoder.

III. SIMPLIFIED TRELLIS MIN-MAX ALGORITHM

T-EMS algorithm introduces a novel approach that allows the computation of the check node

messages in parallel by means of using an extra column in the trellis. This output message

February 13, 2016 DRAFT

6

calculation (Step 4 of Algorithm 1) involves q×dc subtractions and also q×dc minimum finders

(min finders) which becomes the bottleneck of the check node processing. Taking into account

this drawback, we propose a simplified algorithm which reduces considerably the processing

load of the check node messages (it avoids the use of subtractions and minimum finder) without

introducing any performance loss.

A. Algorithm Description

The modified algorithm introduces a copy of the extra column reliability value ∆Q(a) on

output message ∆Rm,n j(a) when the configuration path has no deviation at column j for symbol

a. On the other hand, when the configuration has any deviation on column j, we have two

choices: a) if the configuration path for symbol a has only one deviation, output value is filled

with the second most reliable value for the corresponding symbol (second minimum); or b) the

most reliable value (first minimum) is used to fill output message when the configuration path

has more than one deviation.

The simplification introduced in last paragraph takes advantage from the fact that only config-

urations with the most reliable message from each row are taken into account. This reduces the

possible paths by a factor of four with respect to taking configurations with the two most reliable

messages for each row of the trellis. Due to that, only combinations of min1-min1 messages

must be analyzed leaving out combinations of min1-min2, min2-min1 and min2-min2.

As explained in Section II, the extra column ∆Q(a) contains the paths formed by the most reli-

able combination of symbols (Step 3 of Algorithm 1). On the other hand, messages ∆Qmn(a) ∀ a 6=
0 can be treated as deviations from the most reliable symbol, so ∆Q(a) is the estimation of

distance from the most reliable configuration when a 6= 0. Moreover, in [6] the use of the

maximum value as a measure of distance is used in the context of Min-Max algorithm. Applying

this idea, we propose the use of the maximum operator instead of the addition to compute the

extra column ∆Q(a) values. Making use of the maximum value to measure distances prevents

the data length growth associated to the summation, introducing an important area reduction due

to the parallel processing of the trellis algorithm. In (1) the modifications made on step 3 of

Algorithm 1 are presented, converting the T-EMS on T-Min-Max algorithm (TMM).

∆Q(a) = min
η′j(a)∈con f (nr,nc)

{
max

j=1→dc

(
∆Qm,n j(η

′
j(a))

)}
,a ∈ GF(q) (1)

February 13, 2016 DRAFT

7

Algorithm 2: Simplified TMM Algorithm

Input: Qm,n , zn = argmina∈GF(q)Qm,n(a) ∀ n ∈N (m)

for j = 1→ dc do

1 ∆Qm,n j(η j = a+ zn j) = Qm,n j(a)

end

2 β = ∑
dc
j=1 zn j ∈ GF(q)

3 [m1(a),m1col(a),m2(a)] = ψ{∆Qm,ni(a)
∣∣∣dc

i=1
}

4 ∆Q(a) = minη′k(a)∈con f ∗(1,2)

{
maxk=1,2

(
m1(η′k(a))

)}
for j = 1→ dc do

5 if η′1(a) 6= j or η′2(a) 6= j then
∆Rm,n j(a) = ∆Q(a)

else if η′1(a) = η′2(a) then
∆Rm,n j(a) = m2(a)

else
∆Rm,n j(a) = m1(a)

end

6 Rm,n j(a+β+ zn j) = λ ·∆Rm,n j(a),a ∈ GF(q)

end

Output: Rm,n

Must be pointed out that the proposed method for building ∆Q(a) can be also applied in the

T-EMS algorithm [8].

The complete proposed algorithm is presented in Algorithm 2, where step 3 of Algorithm 1

has been split onto two basis tasks. In step 3 of Algorithm 2 function ψ extracts the two most

reliable messages for each symbol a ∈GF(q) (considering the two most reliable symbols those

having the least magnitude). First and second minimum are denoted as m1(a) and m2(a). The ψ

function also extracts the position of the most reliable message (m1col(a)), so it can take values

from one to dc.

Step 4 of Algorithm 2 involves the processing of the trellis extra column values using

information related to the most reliable symbol m1(a). The configuration set con f (nr,nc) from

February 13, 2016 DRAFT

8

Algorithm 1 [8] includes the set of symbols η′j(a) which contains information about all nodes

through which pass the configuration. In this approach we redefined the configuration set to

con f ∗(nr,nc), where the difference is that η′k(a) only retains information from the nc columns

where deviations from the zero-order configuration are made instead of keeping information

from all nodes. This new definition of configuration sets implies that k can take values from

one to nc. In the rest of paper we focus on the case in which only configurations with the most

reliable message for each symbols a (nr = 1) and a maximum of two deviations (nc = 2) are

considered.

In the proposed algorithm, when ∆Q(a) is formed by only one deviation, the corresponding

η′1(a) and η′2(a) will have the same values. This situation contributes to simplifications in the

hardware implementation of Algorithm 2 as we will see in next sections.

Step 5 of Algorithm 2 presents a simplified way to obtain delta domain output messages using

a simple assignation of ∆Q(a), m1(a) or m2(a) depending only on the deviation information

from η′k(a). If no deviation for the most reliable path is made on column j for symbol a,

then extra column information ∆Q(a) is directly assigned to the corresponding output message

∆Rm,n j(a). On the other hand, if any deviation is made for column j and the corresponding path

is build with only one deviation, then the second most reliable message for symbol a (m2(a))

is assigned to the corresponding output message. In the case of paths formed by more than one

deviation, m1(a) is assigned to the output message.

Step 6 of Algorithm 2 includes the “normal domain” output message generation where the

scaling factor λ is included to improve the performance of the proposed approach. The scaling

factor value λ is selected among the possible hardware friendly values that do not increase the

area of the decoder.

B. Frame Error Rate Performance

For testing the performance of the simplified algorithm, simulations were made for (837,726)

NB-LDPC code over GF(25) where H is generated using the methods in [11], with dc = 27

and dv = 4, and using transmission over BPSK modulation and AWGN channel. We compare

the proposed approach to QSPA [2], Relaxed Min-Max (RMM) [9] and T-EMS algorithms [12].

Fig. 1 shows the frame error rate (FER) simulation results for layered schedule.

A TMM algorithm floating point (fp) simulation was done to be compared to T-EMS and

QPSA performance. The configuration set parameters are nr = 1 and nc = 2 for the TMM

February 13, 2016 DRAFT

9

algorithm although for T-EMS algorithm nr = 2, nc = 2 were used. For both algorithms λ = 0.5

and 15 iterations (it) for the iterative decoding were used. In Fig. 1 we can see that the proposed

approach has a coding gain of 0.05dB with respect to T-EMS approach even considering that

the T-EMS approach analyze configurations with two most reliable messages instead of use only

the most reliable information as in TMM algorithm.

For QSPA algorithm [2], the nm parameter is set to 32 and the number of iterations is equal to

15. Using these values for the QSPA algorithm, it can be seen that TMM algorithm has 0.2 dB

of performance loss, which can be assumed considering the complexity involved in the check

node implementation of any version of QSPA algorithm (FFT-SPA, log-QSPA or max-log-SPA).

The quantized version of TMM algorithm was also simulated where 6 bits (6b) has been used

for the datapath of the decoder. The cases with 9 and 15 iterations were considered for the

iterative decoding. The case with 15 iterations has 0.05 dB of performace loss with respect to

fp implementation with the same number of iterations.

The proposed quantized approach with 9 iterations was compared with RMM [9]. For RRM

algorithm 5 bits are used for the datapath and the number of iterations are set to 15. In Fig. 1

we can see that both algorithms perform equal with the parameters described before. Despite

this, the TMM approach requires less iterations than the method from [9] to achieve the same

performance which will improve throughput and latency, as we will see in next sections.

IV. CHECK NODE ARCHITECTURE

In this section, the design of the check node cell based on TMM algorithm is explained. The

check node architecture is presented in Fig. 2, where parallel processing is adopted to generate

the output messages Rm,n(a).

The first step in the check node processing requires transformation from “normal” to delta

domain. This delta domain transformation is made using a permutation network similar to the

one proposed in [13]. This network requires q · log2(q) multiplexors of two inputs to perform

the delta domain transformation of each input vector message Qm,n. Therefore, the check node

requires dc permutation networks where multiplexors are addressed by tentative hard decision

symbols zn. The same structure is used for inverse transformation to “normal domain” applied

to output messages ∆Rm,n(a), where instead of addressing multiplexors using tentative hard

decisions symbols, zn+β sum is applied. The check node’s syndrome β is calculated adding all

February 13, 2016 DRAFT

10

3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No (dB)

FE
R

QSPA (15 it - fp)
T-EMS (15 it - fp)
TMM (15 it - fp)
TMM (15 it - 6b)
TMM (9 it - 6b)
RMM (15 it - 5b)

Fig. 1. FER of (837,726) NB-LDPC over GF(32) under AWGN channel. Layered schedule is used for all algorithms. λ = 0.5

for both T-EMS and TMM algorithms

Fig. 2. Proposed top level check node structure.

dc tentative hard decision symbols. This is performed by means of a GF adder in a tree structure

fashion.

Next step of the check node processing involves the implementation of the function ψ, which

extracts the two most reliable messages for each symbol a∈GF(q). This function is implemented

February 13, 2016 DRAFT

11

using a 2-min finder tree structure where also the position of the first minimum is extracted [14].

Only q−1 cells are required to implement all ψ functions, because in delta domain messages

from the most reliable symbols remain on the first row and their magnitudes are equal to zero.

Each ψ function requires dc inputs because of the row-wise processing of the delta messages.

The approach followed to implement the ψ function is the tree structure proposed on [14] since

it provides a good compromise between area and latency.

Extra column elements ∆Q(a) are generated using configurations composed by the most

reliable message of each symbol a∈GF(q) as explained in Section III. The architecture designed

for building the extra column is presented in Fig. 3. As an example, ∆Q(α0) is obtained for

GF(8). The entire cell is similar for all GF(q) symbols except for the reordering networks in

the left side of Fig. 3, which are particularized for each GF(q) symbol. Since a maximum of

two deviations have been considered in the check node implementation addressed in this paper,

then symbols are wired in a way that the GF sum of the symbols, in conjunction with symbol a,

meet the parity check equation. For each symbol a ∈ GF(q), there are q/2−1 pair of symbols

such that the result of the addition is the symbol a. For example, in Fig. 3, the corresponding

pair of symbols are α1+α3, α2+α6 and α4+α5. Since the paths with only one deviation have

been also considered, the reliability values corresponding to symbol a (symbol α0 on Fig. 3) is

passed to the block responsible of finding the most reliable path for the corresponding symbol

a (“1 mind find” block of Fig. 3).

Once the symbols have been wired, the maximum of the corresponding reliabilities is derived.

Next, a validation process is made, in which the reliability values arising from the same column

are discarded, since only deviations from different columns are taken into account. The method

used for discarding invalid reliabilities is through comparing the origin of the most reliable

messages for a symbol a. If the source column of both reliabilities is the same, then the maximum

value for the quantization scheme is assigned to the corresponding “1 min finder” input.

When one and two deviations are considered, the one minimum finder must have q/2 inputs

and three outputs which correspond to the reliability value for the symbol a of the extra column

and the two more outputs that correspond to the column numbers where deviations were made,

called d1(a) and d2(a). For generating the path info for extra column ∆Q(a), the “1 min find”

outputs d1(a) and d2(a), with dlog2 dce bits each one, are passed through two binary to one

hot converters. The outputs of the converters are combined using an OR gate to obtain a unique

signal of dc bits, which contains the total information of the columns where deviations were

February 13, 2016 DRAFT

12

Fig. 3. Architecture for extra column extraction. Example for generation of message ∆Q(α0) over GF(8).

Fig. 4. Output message generation in delta domain. Example for symbol α0

made. Each bit of this signal is used as a control signal for the output message generation (step

5 of Algorithm 2) in conjunction with the signal m1/m2 sel. This signal contains information

about the number of deviations taken in each path (one or two deviations).

Once the extra column values have been obtained, the output values in delta domain must be

generated. The process for building the output messages ∆Rm,n(a) have been greatly simplified

with respect to the approach presented in [12].

In [12] ∆Rm,n(a) generation is made subtracting from the extra column ∆Q(a) the contributions

of symbols in which deviations were taken. On the other hand, when more than one configuration

converge to the same point the minimum value is considered as explained in Section II. As can

February 13, 2016 DRAFT

13

be seen, the output message generation requires minimum finders and subtractions that increase

hardware requirements limiting the maximum throughput.

The proposed simplified structure for the output message generation is presented in Fig. 4. In it

dc+1 multiplexors of two inputs are only needed to obtain the output messages for each symbol

a. The structure presented in Fig. 4 implements step 5 of Algorithm 2, where each ∆Rm,n(a)

message takes its value from m1(a), m2(a) or ∆Q(a) depending on the value of control signals

obtained during extra column generation. The scaling factor (λ) applied to the output messages

can be incorporated in the input messages to the multiplexors shown in Fig. 4. The multiplexors

used for the output message generation and for the delta domain inverse transformation can

reduce the width of datapath depending on the scaling factor value. As an example, for λ = 0.5

(value used for generation of FER curves on Fig. 1), these multiplexors can reduce in one bit

the datapath. This has an important impact in the area saving since parallel processing has been

adopted in this design. It is also important to remark that the decoder proposed in this paper is

focused in high order Galois fields.

In the following section, the check node unit presented is integrated with the rest of the blocks

that conform the entire decoder architecture based on non-binary layered schedule.

V. ARCHITECTURE FOR THE COMPLETE DECODER

In this section the top level design of the NB-LDPC decoder, which includes the CN proposed

in Section III, is presented. The proposed decoder has been designed for QC-NB-LDPC codes

over GF(q) constructed using the methods included in [11], where H is formed by (q− 1)×
(q−1) circulant sub-matrices that can be composed of zero elements or cyclic shifted identity

matrix with non-zero elements from GF(q).

A. Decoder Schedule

For the proposed decoder, horizontal layered schedule is adopted due to its inherent hardware

efficiency. This schedule requires less decoding iterations to achieve a desired performance

compared to the flooding schedule. In Algorithm 3 the layered schedule for the proposed decoder

is presented, where the check node processor corresponds to the simplified TMM (Algorithm

2).

February 13, 2016 DRAFT

14

Algorithm 3: Layered schedule for proposed decoder

Input: Ln(a) = log[P(cn=zn|yn)
P(cn=a|yn)

]

Inicialization:

Q(1)
n (a) = Ln(a), R(0)

mn(a) = 0, t = 1

Main Loop:

while t ≤MaxIter do

for m = 1 to M do

1 Q′ (t)mn (a) = Q(t)
n (hmna)−R(t−1)

mn (a)

2 Q′ (t)mn = min
{

Q′ (t)mn (a)
}
∀ a ∈ GF(q)

3 Q(t)
mn(a) = Q′ (t)mn (a)−Q′ (t)mn

4 R(t)
mn(a) = TMM

{
Q(t)

mn(a) ∈N (m)
}

5 Q(t+1)
n (h−1

mna) = R(t)
mn(a)+Q(t)

mn(a)

end

6 t = t +1

end

Output: c̃n = argmin
(

Q(t)
n (a)

)
∀ a ∈ GF(q)

The decoding process starts loading the channel information on the variable nodes Qn(a) and

then the iterative message passing algorithm continues with steps 1 to 5 until the maximum

iteration number (MaxIter) is reached.

Implementation of the simplified TMM, in the same way as T-EMS, requires processing the

check node incoming and outgoing messages avoiding GF multipliers inside the check node

processor, similar to the one proposed in [13] for the flooding schedule. In this paper we address

this idea for the horizontal layered schedule. To do this, in step 1 messages Qn(a) are permuted

depending on the corresponding nonzero H element hmn to obtain Qn(hmna). The permuted VN

messages and the last iteration check node outgoing messages R(t−1)
mn (a) are processed to obtain

Q′mn(a) which corresponds to the outgoings VN messages.

February 13, 2016 DRAFT

15

Steps 2 and 3 involve normalization of the VN outgoing messages. This process is necessary

to ensure the numerical stability of the algorithm and, on the other hand, guarantees that all

messages are positive and the most reliable symbol of each message has an associated reliability

value equal to zero. Moreover, normalization avoids the growth of the decoder’s datapath.

Step 4 involves the check node processor where simplified TMM has been used. Check node

outgoing and incoming messages Rmn(a) and Qmn(a) are used for the Qn(a) message actualization

on step 5 of Algorithm 3. In this step inverse permutation of Qn(a) messages have to be done

before processing of a new row of H. The decoding process stops when the maximum number

of iterations is reached, then the output codeword c̃ is formed by the most reliable symbols

associated to the VN messages Qn(a).

B. Decoder Architecture

The block diagram of the complete architecture for the proposed decoder is shown in Fig. 5,

where the datapath for each one of the dc inputs in the check node is presented. Since the design

of the decoder has been addressed for NB-LDPC codes constructed with method proposed in

[11], the Qn(a) messages can be grouped on sets with q−1 messages each one. In total, assuming

w quantification bits for the messages, dc memories with q−1 positions of q ·w bits are required

for Qn(a). Only one message is read and one is written in the same clock cycle from each

memory during the processing of one row of H.

Blocks P and P−1 in Fig. 5 perform direct and inverse permutation of messages Qn(a) as

can be seen in steps 1 and 5 of Algorithm 3, respectively. The permutations are implemented

using multiplexor networks as the ones presented in Fig. 6 for the block P over GF(8). For the

block P−1 the only differences are the connections between multiplexors. Each network requires

(q− 1) · log2(q) multiplexors of w bits. For the entire decoder 2 · dc networks are required to

implement the blocks P and P−1.

Block N in Fig. 5 implements the normalization included in steps 2 and 3 of Algorithm 3. This

block includes a one minimum finder which searches the most reliable value to derive Q′mn(a) as

explained before. In our approach, we take advantage of the one minimum finder to obtain the

most reliable symbol of each Q′mn(a) message using the position to recover the minimum. The

recovered symbol is used as input for the check node (zn). On the other hand, the same symbol

corresponds to the estimated hard decision symbol c̃n at the end of the decoding process.

February 13, 2016 DRAFT

16

Fig. 5. Top level decoder architecture based on the horizontal layered schedule

To generate the last iteration information for the outgoing check node messages R(t−1)
mn (a),

it is necessary to include shift registers (SRL) that synchronize them with the permuted VN

messages. The decoder requires dc shift registers with M stages and q ·w bits per register.

The incoming check node messages Qmn(a) also require passing through a SRL for syn-

chronizing them with Rmn(a) messages (to add them correctly due to segmentation used in the

decoder). For this purpose dc SRL are required.

LLR of the received sequence is initially stored in “LLR Mem.” memories (Fig. 5) and then

extracted to be loaded on VN memories (Qn(a)) when the decoding process starts. dc memories

are required with q−1 positions and q ·w bits each of them. To store the output codeword (c̃n),

dc memories are also included, each of them with q−1 positions of p bits each one. On addition

to these memories, parity check matrix nonzero coefficients hmn need to be stored. Due to the

structure of H, only the coefficients of the first row of each circulant sub-matrix need to be

saved. For doing this dc small memories with dv elements of p bits are added.

February 13, 2016 DRAFT

17

Fig. 6. Permutation network implemented for GF(8)

C. Decoder Timing

The decoding process starts loading the channel information on Qn(a) memories, this process

consumes q− 1 clock cycles. At the same time c̃n is taken out of Qn(a) memories and stored

on “Code Out Mem.”, as can be seen in Fig. 5. This last process requires that the permutation

block P and the subtractor don’t modify the Qn(a) messages. Control signals are included to

this end.

One decoding iteration starts processing q− 1 rows of H, one at a time. Then, the decoder

adds seg clock cycles for emptying the pipeline, where seg corresponds to the number of pipeline

stages of the decoder. After that, the next q−1 rows of H can be processed and seg additional

clock cycles are required. The process continues until all the M rows of H are processed. In

total, one decoding iteration spends M+seg ·dv clock cycles. After that a new decoding iteration

begins, until the maximum number of iterations finishes (MaxIter).

The throughput of the decoder can be obtained applying (2) where q− 1 clock cycles are

added for loading the channel information for a new decoding process and the output codeword

is estimated.

February 13, 2016 DRAFT

18

TABLE I

COMPLEXITY ANALYSIS FOR THE PROPOSED DECODER. FOR THE (837,726) NB-LDPC CODE OVER GF(32)

Logic Gates

(NAND)
Memory bits

Check Node 222K 31K

Permutations

(P and P−1)
76K -

Normalization (N) 58.2K -

Add/Sub 46.7K -

Qn(a) - 160.7K

R(t−1)
mn (a) - 535.7K

LLR mem - 133.9K

Code Out mem - 4.1K

Qmn(a) - 51.8K

Total 402.9K 917.2K

T hroughput =
fclk[MHz] ·N · p

MaxIter · (M+dv · seg)+(q−1)

[
Mb

s

]
(2)

D. Decoder Complexity and Implementation Results

As it has been explained before, the decoder was implemented for the (837,726) NB-LDPC

code over GF(32), with parity check matrix H and parameters dc = 27 and dv = 4. The check

node processor is based on simplified TMM, thus the CN design is entirely combinational logic

and has an equivalent area of 135K NAND gates, using w = 6 bits for the datapath. Additionally,

10 pipeline stages have been used in the decoder to increase the maximum frequency of the

decoder requiring 31K registers.

Outside the check node, the permutation netwotks P and P−1 need 76K NAND gates, and

the normalization blocks (N) uses 58.2K NAND gates. The logic resources of the decoder

implementation are summarized in Table I. VHDL was used for the description of the hardware.

Cadence RTL Compiler was used for the synthesis and SOC encounter for place and route of

the design employing 90 nm CMOS standard cells.

February 13, 2016 DRAFT

19

After routing the design, the maximum frequency achieved is 238 MHz and the total area of

the decoder is 16.12 mm2 with a core occupation of 70%.

Since one iteration of the decoding algorithm takes M+dv · seg clock cycles and considering

10 pipeline stages, 164 clock cycles per iteration are needed. On the other hand, to achieve

the same performance as the approach proposed in [9], as shown in Fig. 1, 9 iterations are

required for the proposed decoding algorithm which implies that the entire iterative decoding

takes 1476+31=1507 clock cycles, where q−1 additional clock cycles are added for the channel

information loading. The proposed decoder achieves a throughput of 660 Mbps using (2), highest

than any other decoder proposed in literature for high order fields, to the best knowledge of the

authors.

As can be seen, the proposed decoder has low latency without using excessive logic resources,

even when higher order Galois fields have been considered. This advantage makes the proposed

decoder suitable for high speed communications systems, where latency is an important require-

ment.

VI. COMPARISONS WITH OTHER NB-LDPC DECODERS

The proposed decoder has been compared to the most efficient NB-LDPC decoder designs.

Table II summarizes the results of different architectures found in literature, where the total gate

count (NAND) is derived assuming that storing one memory bit requires the area of 1.5 NAND

gates [9], [15], [16].

Since the decoders that have been compared are implemented under different CMOS tech-

nologies, we scale technology to include results over a 90 nm CMOS process using first order

approximations [18]. Note that, we compare different algorithms under the same performance,

so each one has a different number of iterations. Efficiency is calculated dividing the normalized

throughput (for 90 nm technology) over area ratio (Millions of NAND gates).

Considering that only the approach presented in [16] includes post layout results, only com-

parisons with [16] can be made for the total decoder area given in mm2. The proposed decoder

outperforms by a factor of four compared to the one presented in [16] the area occupied by the

decoder. On the other hand, our approach has three times higher throughput and fourteen times

more efficiency than the decoder in [16]. Note that in [16] a QPSA approximation is presented,

despite this it involves a high complexity check node requiring only 5 iterations to achieve the

same performance than our proposal.

February 13, 2016 DRAFT

20

TABLE II

COMPARISON OF THE PROPOSED NB-LDPC LAYERED DECODER WITH OTHER WORKS FROM LITERATURE. FOR THE

NB-LDPC CODE (837,726) OVER GF(32)

Algorithm
Simplify-MS

[15]

Trellis

Max-log

QSPA [16]

Min-Max

[17]
RMM [9]

T-EMS

[12]

Simplified

TMM [This

Proposal]

Report Synthesis Post-layout Synthesis Synthesis Synthesis Post-layout

Technology 180 nm 90 nm 130 nm 180 nm 90 nm 90 nm

Quantization (w) 5 bits 7 bits 5 bits 5 bits 6 bits 6 bits

Gate Count

(NAND)
1.29M 8.51M 2.1M 871K 2.75M 1.78M

fclk (MHz) 200 250 500 200 250 238

Iterations 15 5 15 15 12 9

Latency (clock

cycles)
12995 4460 28215 12675 2160 1507

Throughput

(Mbps)
64 223 64 66 484 660

Throughput

(Mbps) 90 nm
149 223 107 154 484 660

Efficiency 90 nm

(Mbps/M-gates)
115.5 26.2 50.9 176.8 176 371.3

Area (mm2) - 46.18 - - - 16.12

Comparing the proposed decoder to the approach presented in [15], we can see that the first

one has more than eight times less latency, more than six times higher throughput and three

times higher efficiency, although our decoder requires 37% more logic elements (NAND gates).

Until now, the decoder presented in [17] was the most efficient decoder for a Min-Max

implementation without introducing approximations in the algorithm, even so, our approach

outperforms it in area (17% less NAND gates), latency (almost 20 times lower), throughput

(almost 10 times higher) and efficiency (almost 7.5 times higher). In addition, the proposed

algorithm do not introduce simplifications on the original Min-Max algorithm ensuring that

performance is not compromised.

Although the proposed decoder requires little bit more area than twice the one occupied by

February 13, 2016 DRAFT

21

the decoder presented in [9], our approach is more than twice efficient in term of throughput-

over-area ratio. In addition, the proposed decoder has eight times less latency than [9], which

makes it suitable for high speed implementations.

Recently, a Trellis EMS decoder was presented [12], where the authors introduce a low latency

decoder achieving 484 Mbps of throughput. Thanks to the simplifications presented in this paper,

our proposed decoder outperforms [12] in area (54% less), latency (43% less), throughput (36%

higher) and efficiency (more than two times higher), without introducing any performance loss

compared with [12].

VII. CONCLUSIONS

In this paper we present a simplified Trellis Min-Max algorithm which improves both area

and latency with respect to the most efficient decoders included in literature for high order

fields. The outgoing check node messages are calculated in a parallel way using only the most

reliable symbols, reducing the overhead of the CN by a factor of four compared to the T-

EMS decoder. Using the layered schedule with the proposed check node algorithm reduces the

required maximum number of iterations to achieve a desired performance. On the other hand,

since the proposed approach does not make approximations on the reliability values used for

derive the check node messages, the performance of the algorithm does not show any performance

degradation.

ACKNOWLEDGMENT

This work was supported in part by the Spanish Ministerio de Ciencia e Innovación under

Grant TEC2011-27916 and in part by the Universitat Politècnica de València under Grant PAID-

06-2012-SP20120625. The work of F. Garcı́a-Herrero was supported by the Spanish Ministerio

de Educación under Grant AP2010-5178.

REFERENCES

[1] R. Tanner, “A recursive approach to low complexity codes,” IEEE Transactions on Information Theory, vol. 27, no. 5, pp.

533–547, 1981.

[2] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),” IEEE Communications Letters, vol. 2, no. 6,

pp. 165–167, 1998.

[3] L. Barnault and D. Declercq, “Fast decoding algorithm for LDPC over GF(2q),” in Proceedings 2003 IEEE Information

Theory Workshop, 2003, pp. 70–73.

February 13, 2016 DRAFT

22

[4] H. Wymeersch, H. Steendam, and M. Moeneclaey, “Log-domain decoding of LDPC codes over GF(q),” in 2004 IEEE

International Conference on Communications, vol. 2, 2004, pp. 772–776 Vol.2.

[5] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes Over GF(q),” IEEE Transactions on

Communications, vol. 55, no. 4, pp. 633–643, 2007.

[6] V. Savin, “Min-Max decoding for non binary LDPC codes,” in IEEE International Symposium on Information Theory,

2008, pp. 960–964.

[7] E. Li, K. Gunnam, and D. Declercq, “Trellis based Extended Min-Sum for decoding nonbinary LDPC codes,” in 8th

International Symposium on Wireless Communication Systems (ISWCS), 2011, pp. 46–50.

[8] E. Li, D. Declercq, and K. Gunnam, “Trellis-Based Extended Min-Sum Algorithm for Non-Binary LDPC Codes and its

Hardware Structure,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2600–2611, 2013.

[9] F. Cai and X. Zhang, “Relaxed Min-Max Decoder Architectures for Nonbinary Low-Density Parity-Check Codes,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–1, 2012.

[10] E. Li, “Décodeurs Haute Performance et Faible Complexité pour les codes LDPC Binaires et Non-Binaires,” Ph.D.

dissertation, École Nationale Supèrieure de l’électronique et de ses Applications, à l’Université de Cergy-Pontoise, 2012.

[11] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu, “Construction of non-binary quasi-cyclic LDPC codes by

arrays and array dispersions - [transactions papers],” IEEE Transactions on Communications, vol. 57, no. 6, pp. 1652–1662,

2009.

[12] E. Li, D. Declercq, K. Gunnam, F. Garcı́a-Herrero, J. Lacruz, and J. Valls, “Low Latency T-EMS Decoder for NB-LDPC

Codes,” in Conference Record of the Forty Seventh Asilomar Conference on Signals, Systems and Computers (ASILOMAR),

2013, 2013.

[13] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient Decoder Design for Nonbinary Quasicyclic LDPC Codes,” IEEE Transactions

on Circuits and Systems I: Regular Papers, vol. 57, no. 5, pp. 1071–1082, 2010.

[14] C.-L. Wey, M.-D. Shieh, and S.-Y. Lin, “Algorithms of Finding the First Two Minimum Values and Their Hardware

Implementation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11, pp. 3430–3437, 2008.

[15] X. Chen and C.-L. Wang, “High-Throughput Efficient Non-Binary LDPC Decoder Based on the Simplified Min-Sum

Algorithm,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2784 –2794, nov. 2012.

[16] Y.-L. Ueng, K.-H. Liao, H.-C. Chou, and C.-J. Yang, “A High-Throughput Trellis-Based Layered Decoding Architecture

for Non-Binary LDPC Codes Using Max-Log-QSPA,” IEEE Transactions on Signal Processing, vol. 61, no. 11, pp.

2940–2951, 2013.

[17] J. Lin and Z. Yan, “Efficient Shuffled Decoder Architecture for Nonbinary Quasi-Cyclic LDPC Codes,” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 9, pp. 1756–1761, 2013.

[18] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits: a design perspective. Pearson Education, 2003.

February 13, 2016 DRAFT

