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 9 

Abstract 10 

This paper describes the determination of optimum values of the parameters of a 11 

Simplified Fuzzy ARTMAP neural network for monitoring dry-cured ham processing 12 

with different salt formulations to be implemented in a microcontroller device. The 13 

employed network must be set to the limited microcontroller memory but, at the same 14 

time, should achieve optimal performance to classify the samples obtained from this 15 

application. 16 

Hams salted with different salt formulations (100% NaCl; 50% NaCl+50% KCl and 17 

55% NaCl + 25% KCl + 15% CaCl2+ 5% MgCl2) were checked at four processing 18 

times, from post-salting to the end of their processing (2, 4, 8 and 12 months).  19 

Measurements were taken with a potentiometric electronic tongue system formed by 20 

metal electrodes of different materials that worked as nonspecific sensors. This study 21 

aimed to discriminate ham samples according to two parameters: processing time and 22 

salt formulation.  23 

The results were analyzed with an artificial neural network of the Simplified Fuzzy 24 

ARTMAP (SFAM) type. During the training and validation process of the neural 25 

network, optimum values of the control parameters of the neural network were 26 



determined for easy implementation in a microcontroller, and to simultaneously achieve 27 

maximum sample discrimination. The test process was run in a PIC18F450 28 

microcontroller, where the SFAM algorithm was implemented with the optimal 29 

parameters. A data analysis with the optimized neural network was achieved, and 30 

samples were perfectly discriminated according to processing time (100%). It is more 31 

difficult to discriminate all samples according to salt formulation type, but it is easy to 32 

achieve salt type discrimination within each processing block time. Thus we conclude 33 

that the processing time effect dominates salt formulation effects. 34 

1. Introduction  35 

One priority of the food industry and food safety controllers is the development of 36 

fast, cheap measuring devices to be applied to analyze and control food products and 37 

processes. In fact, the ideal situation would consist in measuring the properties of 38 

interest of all products at any point of the food process. It is, therefore, appropriate to 39 

apply quick and easy measurement techniques that provide qualitative results from the 40 

sample. For this purpose, electronic tongue systems have been developed to achieve 41 

these objectives, which are being gradually implemented into the food field [1]. The 42 

applications started with liquid samples [2], followed by some works done on solid 43 

samples with a high water content; e.g, fresh meat [3] and fish freshness [4]. In these 44 

cases, it is necessary to use electrodes for solid samples that can be easily inserted into 45 

samples and make good physical contact. Thus, a set of different metal electrodes that 46 

generate a spontaneous voltage and a reference electrode were used because metal 47 

electrodes are more easily and reliably inserted into samples. Electronic tongues use 48 

nonspecific sensors which, in our case, were metal electrodes. Nevertheless, they are 49 

able to respond in some way differentially to a group of related chemical species, whose 50 

global response can sometimes be related with certain parameters or characteristics of 51 



the analyzed samples. To achieve this discrimination with no specific electrodes, it is 52 

often necessary to use different types of electrodes that may display a distinct behavior 53 

to either analyzed parameters or the presence of certain chemical species. Sample 54 

discrimination is usually performed by multivariate analysis techniques. 55 

Among the various electrochemical techniques available, we chose a potentiometric 56 

technique because it is easier and faster to perform, and measuring equipment is simpler 57 

than other techniques such as voltammetry and impedance spectroscopy. Measuring 58 

equipment for qualitative sample analyses is developed from these approaches, which is 59 

useful for in situ measurements. 60 

This work stemmed from an interest in developing low-sodium cured products. 61 

Cutting the amount of sodium chloride added to dry-cured hams has been proposed to 62 

reduce dietary sodium intake in Mediterranean countries. The effect of substituting 63 

sodium chloride with potassium chloride, calcium chloride and magnesium chloride on 64 

some dry-cured ham physicochemical characteristics throughout the dry-cured ham 65 

process has been previously evaluated [5-7]. 66 

One of the main goals of electronic tongue systems is to obtain portable measurement 67 

equipment that can measure and analyze the results in situ. An electronic tongue system 68 

was applied herein to monitor the salting and curing of dry-cured hams to obtain 69 

equipment that automatically classifies various sample types quickly and easily. 70 

One of the most widely used methods for sample classification in electronic tongues 71 

systems are artificial neural networks (ANN), formed by algorithms inspired in 72 

biological neural systems. In an initial training stage, these networks fix coefficients that 73 

relate the input data to different output categories. The process is completed with the 74 

subsequent verification and test stages so that classification is determined as being 75 

correct or incorrect by other measures that did not participate in training. 76 



The neural network training and validation phases are usually carried out in the 77 

laboratory after collecting enough data and using software that is normally run on PCs. 78 

The test phase can also be run on a PC, or transferred to microprogrammable systems to 79 

facilitate the use of portable systems; that is, to obtain classification results quickly and 80 

efficiently, a neural network should be implemented into the same measuring 81 

equipment. Then the classification of measures can be made in situ which, in our case, 82 

was in ham-processing plants. For this reason, it is necessary to have electronic systems 83 

that can host the algorithms that constitute them. 84 

An effective and simple way to implement an algorithms ANN test in a portable 85 

measuring system is to use microcontroller devices, which are programmable digital 86 

electronic systems whose memory stores the program being run. The program must 87 

have a control system to read input data and to activate the corresponding outputs of 88 

each network category. The microcontroller memory does not usually have memory the 89 

power and capacity of management informatics systems, like PCs. So a network that is 90 

not complex and does not require a large memory must be selected for implementing 91 

algorithms into a microcontroller.  92 

Among the different artificial neural network types, the best known is probably the 93 

Multi-Layer Perceptron (MLP), which offers good performance for classifying data into 94 

categories, but the algorithm can be complex with a high computational cost. A good 95 

alternative to such neural networks are Fuzzy ARTMAP-type networks [8]. They are 96 

based on the Adaptive Resonance Theory [9] and their main characteristics are relative 97 

simplicity, good performance with limited data and low computational cost. These 98 

neural networks were used initially in electronic nose systems [10] and their use has 99 

extended with electronic systems tongues [11]. With electronic tongue systems, we have 100 

conducted several works to compare the results of the MLP and Fuzzy ARTMAP types, 101 



and have verified that the results obtained with such neural networks are generally 102 

better. This comparison has been applied mainly to food quality control [12-14].  103 

A Fuzzy ARTMAP neural network by means of an algorithm that can operate in a PC 104 

type computer is described. However, it can also be included in a microcontroller to 105 

take field measurements, in which case it is convenient to use a simplified version of the 106 

original algorithm, called Simplified Fuzzy ARTMAP (SFAM) [15]. However, the 107 

algorithm obtained when training an SFAM network does not require the optimal 108 

architecture to be implemented into a microcontroller. This type of test algorithm of the 109 

neural network must be limited to minimize the problems that are incorporated into the 110 

microcontroller memory.  111 

This simplified algorithm has been used in various application fields, such as 112 

explosives detection [16] and environmental applications [17]. One problem with this 113 

neural network is that its performance depends partly on the order of entry of training 114 

patterns, which suggests improvements based on genetic algorithms [18-19]. In recent 115 

years, we have used Simplified Fuzzy ARTMAP (SFAM) networks to compare results 116 

with other classification methods, namely partial least square analyses [20], and MLP 117 

networks and linear discriminatory analyses [21]. In the present study, we also 118 

conducted a comparative study of the memory used by a specific MCU (PIC18F4550) 119 

according to SFAM network size. 120 

To determine the parameters required to program the SFAM network test algorithm in 121 

the microcontroller, a graphical user interface (GUI) was developed employing 122 

MATLAB [22]. With this GUI program, the minimum neural network memory 123 

(mapfield) to size to optimize the microcontroller memory was obtained. Specifically, 124 

this interface was used to calculate the optimal values of the parameters that determine 125 

neural network algorithm performance, and to also achieve the most successful sample 126 



classification with a minimum memory size.   127 

This work aimed to develop an artificial neural network (Simplified Fuzzy ARTMAP) 128 

with optimal parameters for it to be embedded in a microcontroller to monitor the 129 

processing of hams salted with different salt formulations by means of a potentiometric 130 

electronic tongue. 131 

2. Materials and Methods 132 

2.1. Raw material 133 

Thirty-nine hind limbs (hams) from white pigs fattened in confinement and fed with a 134 

commercial diet were selected from the same batch in a local slaughterhouse. pH was 135 

controlled within the 5.5-6.0 range, with an average weight of 10.6±0.8 kg. Three of the 136 

hams were used as a control of raw material. The remaining 36 hams were randomly 137 

divided into three batches: salted using 100% NaCl salt (batch I); salted with a mixture 138 

of NaCl and KCl at 50% (batch II);  salted with a mixture of 55% NaCl, 25% KCl, 15% 139 

CaCl2 and 5% MgCl2 (batch III). Salt formulations were chosen according to the results 140 

obtained in previous works into low-sodium dry-cured loin [23]. The salting stage was 141 

carried out at 3±1ºC and 90% air relative humidity for 10 days, and all the hams were 142 

weighed daily. Hams were salted by rubbing and kneading with the three salt 143 

combinations. The amount of salt mixture added was 3% of the initial ham weight, and 144 

200 ppm of KNO3 and 100 ppm of NaNO2 were added as curing agents to each ham 145 

mixture. 146 

After salting, hams were post-salted at 4.5ºC and at 75-85% relative humidity. At the 147 

end of the post-salting stage, hams underwent the last processing stage (dry-ripening), 148 

where the temperature progressively increased from 6ºC to 20ºC, and relative humidity 149 

lowered from 80% to 65%. The process ended when total weight loss reached 34% of 150 

the initial weight, which fell within the typical industrial values range [24]. 151 



2.2. Sampling time 152 

Four sampling times were set during dry-cured ham processing. Sampling time 1 was 153 

set after 60 processing days (2 months) when the post-salting stage ended. Sampling 154 

times 2 and 3 were respectively set in the drying-ripening stages at 115 days (4 months) 155 

and 230 days (8 months). Sampling 4 times was set at the end of the process when total 156 

weight loss reached 34% of the initial weight (approximately 365 days of processing, 12 157 

months). 158 

2.3. Electrodes 159 

The potentiometric electronic tongue consisted of a set of electrodes made of silver, 160 

copper and gold, 0.8 mm in diameter and 4 cm long. To choose the materials that were 161 

to form the electrode set, the following metals were considered: metallic electrodes of 162 

zero order, e.g., gold and silver, that are sensitive to the redox potential [25]; other metal 163 

compounds, e.g,. metal/metal oxide electrodes, that are used to determine pH in aqueous 164 

solutions [26]; other electrodes of metal/metal insoluble salt that have been used to 165 

determine anions [27]. In a pure form, these metals have already been used in previous 166 

experiments and their sensitivity to changes in the characteristics of the sample to be 167 

tested has been proven [28]. However, evidence for some instability of the obtained 168 

signal appeared for the silver and copper electrodes. In order to reduce this, the 169 

electrodes surface underwent an oxidative process by heat oxidation, which respectively 170 

generated a layer of silver oxide and copper oxide on their surface. The remaining three 171 

electrodes were obtained by electrolysis processes. After running several tests with the 172 

electrodes, we chose silver (Ag), gold (Au), copper (Cu), silver chloride (AgCl), copper 173 

sulfide (Cu2S) and silver bromide (AgBr). These salts were selected for their greater 174 

adherence to metal and longer duration. A reference electrode of Ag/AgCl (provided by 175 

Crison, model 5240) was used. They were all attached to connectors in order to carry 176 



the signal generated by the potentiometric measurement system (Fig. 1).  177 

 178 

Fig. 1. Metallic electrodes of the electronic tongue system 179 

The potentiometric electronic tongue was connected to self-built electronic equipment 180 

that suited the requirements of the multi-channel potentiometric measurements. The 181 

equipment was composed basically of two stages. First a conditioning circuit for the 182 

electrical signal generated by the electrodes. It consisted mainly of a very high input 183 

impedance electrometric amplifier LMC6001 (www.national.com) and an active filter to 184 

eliminate the signals from the electrical network. The second stage was a data 185 

acquisition system for further analysis, which comprised analog-digital converters. The 186 

data acquisition system also displayed information in real time. An Adlink PCI-9112 187 

card (www.nudaq.com) and the VEE-Pro software (Agilent Technologies, Santa Clara, 188 

CA, USA, www.home.agilent.com) were used in the computer to view data on the 189 

computer screen and to store data for subsequent processing. Details of the entire 190 

measurement system can be found in previous works [29]. 191 

2.4. Data acquisition 192 

At each sampling time, nine potentiometric measures were taken arbitrarily on the 193 

widest transverse section of the ham, thus 108 measures were taken: 4 sampling times x 194 

3 salting batches x 3 hams x 3 measures. No order which depended on the salting 195 

http://www.nudaq.com/
http://www.home.agilent.com/


batches was established for measuring. After each measurement however, electrodes 196 

were cleaned with distilled water, rubbed with a brush and dried with paper to remove 197 

all traces of previous samples that could interfere with the next measurements. 198 

To calibrate the measurement system, a dissolution was prepared consisting in 199 

HEPES buffer solution, pH 7.5, 10% dissolved in distilled water (90%) and 0.5 g of 200 

KCl was added per 100 cl of dissolution. Several tests were run with this solution at the 201 

beginning of each measurement day and the results were used as a reference. Finally, 202 

the reference measurement value of each electrode was subtracted from the value of the 203 

meat measures of the respective electrode. 204 

Measurements on hams were taken by introducing electrodes into the sample; the 205 

reference electrode was placed on the meat sample by applying light pressure to ensure 206 

perfect contact between both elements. The measurement was taken for about 5 min to 207 

achieve stabile electrochemistry. Sampling was collected in 5-second fractions. The 208 

signals obtained during this time were stored in an Excel file for further statistical 209 

analyses, and work was done with the latest sampling data average. 210 

3. Fuzzy ARTMAP neural networks 211 

To perform a quantitative data analysis and to determine the electronic tongue capacity’s 212 

to classify the samples tested, artificial neuronal networks of the Fuzzy ARTMAP type 213 

were used. The Fuzzy ARTMAP network performed a supervised data classification and 214 

was composed of two Fuzzy ART type networks [30]. 215 

Fuzzy ART is a neuronal network class that performs incremental non-supervised 216 

classification learning of analogical input patterns (V) in different output categories (C) 217 

(Fig. 2), depending on the relationship between the input data. Clustering is set by three 218 

control parameters: vigilance parameter rho (ρ), learning parameter beta (β), and biasing 219 

parameter alpha (α). Vigilance parameter (ρ) takes a value between 0 and 1. Values 220 



close to 1 denote strong clustering (two samples need to be similar to be classified into 221 

the same cluster). Values close to 0 enable larger categories to form (fewer output 222 

nodes). So the best ρ value should cluster similar data in the same group, but cluster in 223 

separate groups with different data. Learning parameter (β) determines the velocity at 224 

which the network learns. High β values imply a quick learning process, but noise can 225 

also increase. So a vector of weights (wj), which related each output category and the 226 

input data, was finally established. A weight matrix with all the output categories was 227 

obtained. Parameter α indicates the number of subclasses to be created, and usually 228 

takes a value close to zero. 229 

The Fuzzy ARTMAP network was composed of two types of Fuzzy ART networks. 230 

One used the training data (C) and the other utilized the verification data (V). The 231 

relationship between both Fuzzy ART networks was performed by a memory map called 232 

mapfield. The input data were normalized to 1 and duplicated by adding their 233 

complement (I). Thus a data vector, which allowed the network weights (w) and the 234 

maximum and minimum input values to be found, was obtained. 235 

After network training, several parameters (ρ, β, weight array and mapfield) were 236 

obtained. These parameters were used to program the verification algorithm, which can 237 

be included in the microcontroller. The maximum and minimum data values of each 238 

input variable are also required to normalize the input data. Weight matrix size may 239 

preclude implementation in the microcontroller due to limited memory space. 240 

Therefore, obtaining the minimum memory size and the best sample classification rate 241 

was the primary objective of this work to, thus, classify ham samples.  242 



 243 

Fig. 2. Block diagrams of the Fuzzy ART (A) and Fuzzy ARTMAP (B) neural networks 244 

3. 1. Optimization of Fuzzy ARTMAP neural networks algorithms 245 

Despite the numerous applications of the Fuzzy ARTMAP network, their algorithm 246 

can be complex and redundant. It can also present difficulties in applications with a 247 

memory restriction to support the algorithm. In most of the above applications, the 248 

algorithm is implemented on a PC, where memory is often large enough for the 249 

algorithm to work properly. The problem arises when we wish to incorporate the Fuzzy 250 

ARTMAP network into portable measuring systems, where low-cost microcontrollers 251 

with limited memory are used. These systems seek algorithms that take up as little space 252 

memory as possible. 253 

For the Fuzzy ARTMAP algorithm to be easily programmable, a Simplified Fuzzy 254 

ARTMAP (SFAM) [14] method was employed. SFAM is a vast simplification of the 255 

Fuzzy ARTMAP. It classifies inputs by its fuzzy set of features and, unlike its 256 

predecessor, it reduces computational overhead and architectural redundancy, used to 257 

develop algorithms in a MATLAB environment [31].  258 

During the training process, the neural network weights (Wl) and output categories 259 

were obtained (ON) and these parameters were used during the network verification 260 

process. Figure 3 offers a block diagram of the verification process, in which the 261 



verification data were initially read, were also normalized to 1 and were complemented. 262 

Subsequently, the weights and categories of the outputs obtained during the training 263 

process were read, starting with a low α value. With these values, the activation 264 

function for all the classes (Tj) was calculated and that which obtained a higher value of 265 

the function was chosen. Having obtained the highest value, the match function was 266 

determined to check if it was higher than the ρ value. If so, the class was selected; if 267 

not, the same task was performed with the following class. If any class did not achieve 268 

the match function, it was assumed that the data were beyond the range; i.e., did not 269 

belong to any category. 270 

 

 

Fig. 3. The Flowchart Validation Process of Network 271 

A Graphic User Interface (GUI) program in the MATLAB platform was developed to 272 

obtain the minimum size of the parameters required to allow microcontroller 273 



programming to generate a maximum success rate [21]. Figure 4 shows a block diagram 274 

of the operation. 275 

The program first performed a partition of the input data to be used as the training and 276 

validation tasks in the proportions determined by the GUI program user. A partition was 277 

made depending on the outputs categories, which usually involves the same number of 278 

members of each output category in both the network training data set and the 279 

validation group. Next the ρ and β values were scanned to determine the combination of 280 

values that yielded a smaller mapfield. The sample classification success rate for each 281 

combination of the ρ and β parameter values was determined. With these results, the 282 

ideal ρ and β values were established and a reduced memory map was obtained. To 283 

check this, none of the data used for calibration and training were employed. 284 



 285 

Fig. 4. Flowchart of training the SFAM network test phase  286 

The program that developed GUI performed all the training and validation network 287 

tasks with various screens, where the input parameters were specified and the results 288 

were displayed. Figure 5 shows the network training screen where multiple parameters 289 

are specified: sweep values ρ and β, the mapfield values for all these values, the success 290 

rate obtained with each mapfield, maximum and minimum values, etc. 291 



 292 

Fig. 5. The main GUI program screen  293 

3. 2. Checking the Fuzzy ARTMAP network test algorithm 294 

After determining the optimal parameters of the neural network algorithm Simplified 295 

Fuzzy ARTMAP (SFAM), they were checked by employing the data not used during 296 

the neural network’s training and validation process. The microcontroller program read 297 

the input data and then followed the routines set in the SFAM network using the 298 

obtained ρ values, weights, mapfield and the maximum and minimum values of entries. 299 

However, it did not use learning parameter (β), which was not included in the algorithm 300 

because the neural network was fixed and there was no learning phase.  301 

PIC18F4550 was the microcontroller used (Microchip Technology Inc). This device 302 

is a PIC18/8-bit family microcontroller, has 2KB of RAM and 32KB of 303 

reprogrammable flash memory, supports up to 32 endpoints and incorporates a range of 304 

features that can significantly reduce power consumption during operation. The 305 

PIC18F4550 microcontroller software was designed to obtain the Fuzzy Artmap 306 



network, was coded in C language for the microcontroller and consisted in two main 307 

routines: a first routine for the data acquisition system, where the microcontroller read 308 

the test data at a voltage from outside; a second routine for neural network 309 

implementation. The test data were obtained by precision potentiometers to achieve 310 

equal voltages of the measures taken on the different ham samples. This task was 311 

performed because it is difficult to regain ham pieces with the same curing time and the 312 

same salt formulations as those samples used to train and test the neural network.  313 

4. Results and discussion 314 

4.1. Development of the artificial neural network (Fuzzy ARTMAP) 315 

To classify the data with the Fuzzy ARTMAP artificial neural networks, two 316 

algorithms were developed according to the ham processing variables: processing time 317 

and salt formulation (Fig. 6). The same data were used for both neural networks, but 318 

each network attempted to classify samples according to different criteria. Data (108 319 

measures) were divided into two groups: 72 measures were used to train and validate 320 

networks, and the remaining 36 measures were employed to test the algorithms obtained 321 

and implemented into a PIC18F4550 microcontroller. The measures for each group 322 

were arbitrarily taken, but the number should be representative of the two ham-323 

processing variables. 324 



 325 

Fig. 6. Block diagram of the entire process 326 

4. 1.2.  Fuzzy ARTMAP neuronal network for data classification according to 327 
processing time 328 

The first analysis done with Simplified Fuzzy ARTMAP neural networks was to 329 

evaluate the variable processing time. The measurements taken at months 2, 4, 8 and 12, 330 

were respectively assigned as 1, 2, 3 and 4 (Fig. 7). A file with 75% of the measures 331 

defined for training and validation (54 measures) was introduced into the GUI program 332 

to train the network. The remaining 18 measures were used for validation purposes.  333 

 334 



 335 

Fig. 7. Classification of measures by artificial neural networks according to the processing ham 336 
variables (time processing). 337 

With the GUI program, a sweep of the network’s ρ and β parameters (from 0.1 to 1 338 

with increments of 0.1) was independently performed (Fig. 5) to check the success rate 339 

of each value. The best results for the ρ sweep were obtained from 0.1 to 0.6, and from 340 

0.8 to 0.9 for the β sweep. By employing these sets of values, the minimum map size of 341 

the neural network (mapfield) was obtained (1x4 matrix), with a 100% success rate in 342 

the samples classification. The confusion matrix is reflected in Figure 8, which shows 343 

that all the samples (18) of each class were well-classified. 344 



 345 
Fig. 8: Confusion matrix for ρ=0.6 and β=0.9 for the data classification with Fuzzy the 346 

ARTMAP neural network according to processing time. 347 

Having established the algorithm with the optimal neural network parameters, a 348 

classification test with the 36 data that did not participate in the training and validation 349 

tasks was run. These data were evenly classified into all four output categories.  350 

Data were correctly classified when the test data (36) were applied to the program 351 

inputs of the PIC18F4550 microcontroller, where the final algorithm neural network 352 

was implemented. This result indicates that the electronic tongue system achieves 353 

perfect data classification according to the ham-curing time; that is, provided that each 354 

group has an equitable share of all the categories, the neural network perfectly classifies 355 

data according to this parameter. 356 

4.1.3.  The Fuzzy ARTMAP neuronal network for data classification according 357 
to salt formulation 358 

The second analysis used the Simplified ARTMAP Fuzzy neural networks to evaluate 359 

the variable salt formulations used to salt hams. The measurements taken at class I (Na), 360 

II (Na/K) and III (Na/K/Ca/Mg) were respectively assigned 1, 2 and 3. The measures for 361 

training and validation (75%), and also for testing (25%), were selected by cross-362 

validating groups. The 72 data were divided randomly into four data groups of 18 each, 363 

designated G1, G2, G3 and G4, but the participation of the elements of the four classes 364 



was ensured in each group. Three of these groups were involved in training, while the 365 

fourth was implicated in the validation task. This process was successively repeated by 366 

changing the group involved in validation. For each training-validation act, a sweep of 367 

the ρ and β values was made to generate the highest success rate.  368 

Table 1 provides the results of these four tests, which verified that the best result had 369 

a 100% success rate, achieved using the G3 measures for network validation. In this 370 

case, the mapfield size of the network was 16 components, but the lowest mapfield was 371 

obtained using the G3 measures for validation, which equaled 12 components; thus the 372 

success rate was only 66.7%. Although mapfield size is important, in our case, the 373 

number of successes was more important because we worked with limited data, so the 374 

mapfield sizes were small; thus, the optimum combination of ρ and β was defined 375 

according to 100% success (ρ=0.8, β=1, mapfield size=16, weight array and maximum 376 

and minimum training input values). This optimal combination of control parameters 377 

was included in the neural network test program, which was re-incorporated into the 378 

PIC18F4550 microcontroller. 379 

Table 1. Success rate and minimum mapfield values using cross-validation for data 380 
classification according to salt formulation. 381 

 382 
Training 
Groups 

Validat. 
Group. 

Success rate % 
/mapfield 

ρ / β for max. 
success rate 

Mapfield 
min. / success 

rate 

ρ / β for min. 
mapfield 

G2,G3,G4 G1 94,4/15 0.3-0.8 / 0.7-0.9 15/94,4 0,3-0.8 /0.7-0.9 

G1,G3,G4 G2 94,4/19 0.3-0.9/1 15/83.3 0.3-0.8/0.7-0.9 

G1,G2,G4 G3 100/16 0.8/1 12/66,7 0.3-0.4 /0.9 

G1,G2,G3 G4 88.9 /15 0.3-0.7 / 0.6 12 /83,3 0.3-0.6 / 0.3 

 383 

After obtaining the neural network parameters, the remaining 25% of the measures 384 

(36 measures, 12 of each salting formulation) were employed to test the network in the 385 



microcontroller system. Figure 9-a (graph of confusion) and 9-b (graph of Receiver 386 

Operating Characteristic (ROC)) shows the proportion of false-positives and false-387 

negatives from all three sample kinds. As observed, the obtained hit rate was 80.6%. 388 

Despite the good results for training and validation, the result obtained for testing was 389 

not so good; that is, good neural network validation does not ensure its proper operation 390 

with other test data. 391 

 

Fig. 9-a. Confusion matrix for ρ = 0.8 and 
β=1 according to the salt formulation 
obtained by the test data 

 

 

Fig. 9-b. ROC graphic for ρ = 0.8 and β = 1 
according to the salt formulation obtained by 
the test data 

In order to improve the result, other combinations of training groups (G2, G3 and 392 

G4) and validation (G1) were chosen (Table 1). The success rate was 94.4%, but it was 393 

91.7%. when the neural network algorithm was tested in the microcontroller employing 394 

the remaining 36 measures. That is, the combination of groups in which G1 acted as 395 

validation was more stable than the combination in which G3 acted as validation. 396 

According to these results, classification success that depended on the salt 397 

formulation employed more largely depended on measures and how they were grouped 398 

to show their lower influence on the electrical response than on the processing time 399 



variable. So a new study was done, but in this case, the variable salt formulation 400 

according to processing time was taken into account.  401 

4.1.5. The Fuzzy ARTMAP neuronal network for classifying the salt formulation 402 
data in each curing stage 403 

The study was redone, but this time the previous neural network with three outputs 404 

(salt formulation) and the data of each processing time were employed. Data were 405 

clustered into four groups of 27 measures each (four processing times). Fifteen samples 406 

were used for network training, six for validation and the remaining six for testing the 407 

algorithm in the microcontroller. 408 

The analysis results (Table 2) gave an excellent success rate, except for the samples at 409 

2 months. The minimum mapfield values obtained (3), low ρ and high β, also showed 410 

the network’s fast learning capacity. Hence it is possible to classify ham samples 411 

according to the salt formulation type used during each ham-processing period. 412 

Therefore, it is clear that the data were heavily influenced by the curing time of the 413 

analyzed samples. 414 

Table 2. The success rate and mapfield size of the neural networks using the data from all 415 

four ham-curing stages. 416 

Month Validation 
Success rate (%) 

Mapfield ρ β Test success 
rate (%) 

2 100 4 0.1 - 0,6 0.1 - 0.9 83.3 

4 100 3 0.1 - 0.4 0.1 - 1 100 

8 100 3 0.1 - 0.2 1 100 

12 100 3 0.1 - 0.3 0.8 - 1 100 

 417 

5. Conclusion 418 



Monitoring ham curing at four processing time points, from the post-salt to final cure, 419 

and also detecting salt formulation, applied for salting meat pieces, were performed by 420 

potentiometric measurements using various metal electrodes. Throughout this paper, the 421 

optimum parameter values of a Simplified Fuzzy ARTMAP (SFAM) neural network 422 

were determined for them to be implemented into a microcontroller device. The 423 

conclusion drawn from the SFAM neural network results was to achieve optimum 424 

control parameter values with a 100% success rate for samples according to curing time. 425 

Good sample classification according to salt formulation is no easy task, but should be 426 

motivated because the time effect has a stronger influence than salt type. For this 427 

reason, a third sample classification according to formulation type, but in all the ham-428 

curing stages, was made. In this case, a 100% success rate was achieved for all the 429 

microcontroller’s test and validation tasks. The method reported herein is fast, 430 

inexpensive and non-destructive, and can be a useful way to assess ham curing in a 431 

wide range of situations. 432 
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