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Abstract
In practical applications of computed tomography imaging (CT), it is often the case that the

set of projection data is incomplete owing to the physical conditions of the data acquisition

process. On the other hand, the high radiation dose imposed on patients is also undesired.

These issues demand that high quality CT images can be reconstructed from limited projec-

tion data. For this reason, iterative methods of image reconstruction have become a topic of

increased research interest. Several algorithms have been proposed for few-view CT. We

consider that the accurate solution of the reconstruction problem also depends on the sys-

tem matrix that simulates the scanning process. In this work, we analyze the application of

the Siddon method to generate elements of the matrix and we present results based on real

projection data.

Introduction
In medicine, the diagnosis based on computed tomography (CT) is fundamental for the detec-
tion of abnormal tissues that are frequently not clearly distinguished by radiologists. However,
excessive X-ray radiation exposure is not desirable. In the last three decades, several CT imag-
ing methods have been proposed to obtain the internal structure of an object; for example, [1].

In CT, owing to the physical conditions of the data acquisition process, it is common to find
noisy, incomplete set of unequally spaced projections. In these cases, iterative methods demon-
strated their superiority in reconstruction of images compared to analytical methods. They are
capable to provide the optimal reconstruction of the image from a limited set of projections [2].

However, for practical use, iterative algorithms must be as efficient as possible. One way to
reduce the radiation dose is to decrease the number of rotations during data acquisition. As a
consequence, undesired artifacts appear in the reconstruction. With the development of com-
pressed sensing theory [3, 4], compressed-sensing-based iterative algorithms have drawn much
attention in medical imaging. Subsequently, many algorithms have been developed for few-
view CT image reconstruction. Yu andWang [5] adapted a soft-threshold filtering (STF) algo-
rithm for total variation (TV) minimization in image reconstruction. With the aim to eliminate
the streak artifacts and preserve the edge structure, Yu and Zeng [6] developed an iterative
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reconstruction algorithm based on weighted total difference (WTD) minimization for few-
view CT. To solve the model effectively, the soft-threshold filtering method and a fast iterative
shrinkage thresholding algorithm have been employed to accelerate the convergence speed.

To update the current reconstruction, both methods, STF for TV andWTD, use the simul-
taneous algebraic reconstruction technique (SART) which is a classical reconstruction algo-
rithm in CT imaging [7]. However, owing to the lineal convergence of this method, the
computational cost of the algorithm is high, especially in 3D reconstruction, which makes
SART difficult for practical uses.

In our previous research, we proposed the parallel implementation of the method for sparse
linear equations and sparse least squares (LSQR) to resolve the reconstruction problem [8, 9].
In this work, we analyse the system matrix that simulates the scanning process and affects the
quality of the reconstructed image. Furthermore, we apply the Siddon method to generate the
elements of the system matrix and present results based on real projection data.

The rest of the paper is organized as follows: in the next section, the mathematical aspects of
the methods used in this work are presented. Subsequently, we describe the methodology used
to perform the experiments and present some results of the implementation of these algo-
rithms. Finally, we summarize our conclusions.

Mathematical Aspects
The problem of image reconstruction from projections can be can considered as a system of
linear equations of the form:

Ax � b; ð1Þ
where the system matrix A simulates CT operation and may not be square; its elements depend
on the projection number and the angle at which the projections have been acquired. The val-
ues of the column matrix x represent the intensities of the image, and the column matrix b rep-
resents projections collected by a scanner.

For a given angle, we assume that the number of projections ranges from 1 tom. For k dif-
ferent angles, in Eq (1), b hasM=mxk elements, x has N elements, and A is anMxN rectangu-
lar matrix.

A ¼

a11 a12 . . . a1N

a21 a22 . . . a2N
. . . . . . . . . . . . . . . . . . . . . . . .

aM1 aM2 . . . aMN

2
66664

3
77775
; b ¼ ½b1; b2 . . . bM�T ; x ¼ ½x1; x2 . . . xN �T :

2.1 Analysis of the systemmatrix
Many properties of the reconstructed image depend on the approximations when calculating
the system matrix. In this work, we intend to find the best way to compute elements of the
matrix on a rectangular grid. It was shown that among methods such as Joseph, Siddon or the
cube method, the Siddon method gives the best results in calculating the elements of the system
matrix A [10].

2.1.1 Description of the matrix. In CT imaging, during the dada acquisition, the scanning
range is 0−360 degrees (see Fig 1). As described in details previously [8], in this range, the sys-
tem matrix that simulates the data acquisition process contains symmetric blocks of data struc-
ture as shown in Fig 2.
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Fig 1. The data acquisition process during scanning.

doi:10.1371/journal.pone.0143202.g001

Fig 2. Sparsity pattern of the systemmatrix. The figure shows a part of the matrix data structure that corresponds to 7000 rows and 16000 columns.
doi:10.1016/j.procs.2013.05.308.

doi:10.1371/journal.pone.0143202.g002
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In practice, A is a rectangular nonsymmetrical sparse matrix and therefore it is appropriate
to use a compact storage format that only allows the storage of nonzero elements, such as com-
pact sparse row (CSR) or compact sparse column (CSC). The dimensions of A increase propor-
tionally to the resolution of the image to be reconstructed and the number of projections, thus
increasing the computational cost.

2.1.2 Simulation of elements. The elements of the matrix give the proportion of ray i pass-
ing through the pixel j (Fig 3(a)). One ray can be simulated with a set of lines that traverse the
digital image and are registered by a detector on the other side. The crossed area of the pixel
gives the corresponding element of the system matrix. The simulation is shown in Fig 3(b).

An element aij of matrix A can be expressed by the equation:

aij ¼
Xn

k¼1

likj; ð2Þ

where n is the number of lines per ray.
How many lines should be taken to simulate one ray? We have performed simulations with

different number of rays and analyzed the norm of the error of the reconstructed image. In our
simulations, the length of the detector panel was 500 mm and we considered 256 detectors.
Therefore, the length of each detector was 1.9 mm. Fig 4 shows the behavior of the norm of the
error ||b–Ax|| as a function of number of lines per detector. We concluded that the error
decreases and becomes practically stable when using 20 lines per detector, or 5 lines per 1 mm
of the detector.

This conclusion has been used in our simulations when we generated the system matrix
with the Siddon method [11].

2.1.3 Using the symmetry of the block structure. The symmetric block structure of the
matrix A allows us to generate the matrix only in the range 0–90 degrees and project the data
in the range 0–180 or 0–360 degrees. For example, in Fig 5, line 1 and line 2 are symmetric
with respect to the x axis and the relation between the pixels crossed by these two lines can be
expressed as follows:

Let x = {x1, x2 . . . xN} be a digital image with N = nxn.

Fig 3. Schematic representation of an X-ray passing through pixel j and registered by a detector bi.

doi:10.1371/journal.pone.0143202.g003
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For pixel j:
row = int (j,n) denotes the integer division that returns the entire part after division of j by n.
column = mod (j,n) represents the modulo operation that determines the reminder after the

division of j by n.
Corresponding pixel j� is: j� = (n–row) n + column.
The symmetric block structure of the matrix A allows us to reduce system memory usage,

loading and generation time of the matrix.

2.2 The Siddon method
The projection of a ray is proportional to the sum of projections of the lines that compose the
ray. The projection of each line on a pixel is similated by the length of the intersection of this
line and the pixel, weighted by the density of this pixel.

In 1985, Siddon proposed a method to calculate the length of a ray that crosses the rectangu-
lar grid [11] that represents a digitalized image. The algorithm can be summarized as follows:

1. Compute all intersection points of the line i with the grid limits.

2. Order the set of intersection points.

Fig 4. Norm error as a function of number of lines per detector after 100 iterations.

doi:10.1371/journal.pone.0143202.g004
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3. Identify the pixel j.

4. Calculate the length between the intersection points that define the pixel j.

In [10] it is shown that the Siddon’s method gives better results in calculating elements of
the system matrix. For comparison purposes, we generated the matrices with Siddon’s and
Joseph’s [12] methods simulating the scanning process with 256 detectors and considering 1
and 20 lines per detector. The source-detector distance was 140 cm, the detector panel length
was 50 cm, and the maximum opening angle of the beam was 20.25 degrees. Fig 6 shows recon-
structions of 256x256 pixels made with the LSQR algorithm [13] from 100 projections using
matrices generated with Siddon’s and Joseph’s methods. To evaluate the reconstructions we
used measures described in seccion 2.4. The results of quantitative comparison of the recon-
structions with the reference image reconstructed from 400 projections are summarized in
Table 1. The results confirm that the Siddon’s approach provides better quality
reconstructions.

In this work, we have adopted the Siddon’s approach to compute the elements of the matrix
A in a rectangular grid considering 5 lines per mm per detector.

2.3 Reconstruction method
The problem of image reconstruction from a limited number of projections, described by Eq 1,
is considered as an ill-posed problem. To determine the solution, we adopted the LSQR method
[13] that solves Eq 1 by minimizing the norm: min ||Ax–b||2. The LSQR method is based on

Fig 5. The symmetry of the block data structure of the systemmatrix allows to reuse the matrix
generated in the range 0–90 degrees.

doi:10.1371/journal.pone.0143202.g005
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the bidiagonalization procedure of Golub and Kahan [14] and it is the most reliable algorithm
when A is ill-conditioned. The LSQR technique generates a sequence of approximations {xk}
such that the residual norm ||rk||2, where rk = b—Axk, decreases monotonically. The matrix A
is normally large and sparse and is used only to compute products of the form Av and ATu for
various vectors v and u. The main steps of the LSQR procedure are described in [13].

2.4 Performance evaluation
To perform a statistical analysis of the quality difference between the reference image (I1) and a
reconstructed (I2) one, we used the following functions:

• Mean square error:

MSE ¼
Xn

i¼1

Xn

j¼1

½I1ði; jÞ � I2ði; jÞ�2;

• Peak signal-to-noise ratio:

PSNR ¼ 1

n2
log10

MAX2
I

MSE
;

where n corresponds to the resolution (nxn pixels) of the reconstructed image andMAXI is the
maximum possible pixel value of the image.

Table 1. Quality comparison of reconstructions based onmatrices generated with Joseph’s and Sid-
don’s methods.

Measure Joseph Siddon

MSE 0.1250 0.0820

PSNR 57.1617 58.9929

doi:10.1371/journal.pone.0143202.t001

Fig 6. Reconstructions based onmatrices generated with Joseph’s and Siddon’smethods.

doi:10.1371/journal.pone.0143202.g006
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Results and Discussion
In this work we used projection data acquired from a CT scanner of the Hospital Clínic Universi-
tari of València, which is a CT simulator of Metaserto model with an attached Kermath tomogra-
phy system. The system has 512 detectors situated along the detector panel of 50 cm. The
distance between the radiation source and the detectors is 1.4 m. The maximum opening angle
of the beam is 20.25 degrees. One measure of such system consists of 200 rotations in π radians.

So, the initial set of the experimental data (200 projections) were collected by a scanner with
512 sensors in the range 0–180 degrees with a step of 0.9 degrees. We extended the given set up
to 360 degrees using the symmetry of the scanning process. We aimed to analyze the capacity
of the LSQR algorithm in a parallel reconstruction of images from a smaller number of projec-
tions. For this purpose, two sets of equally spaced projections (with an angle step of 3.6
degrees) were derived from the initial set: the first in the range 0–360 degrees (100 projections)
and the second in the range 0–180 degrees (50 projections). These projections were used to
reconstruct images in the ranges 0–360 and 0–180 degrees with LSQR and the corresponding
matrices generated with the Siddon method.

The results have been obtained on the system gpu.dsic.upv.es with a CPU of 2.6 GHz and
NVIDIA TESLA K20c graphical prosessing unit (GPU) card that belongs to the Departamento
de Sistemas Informáticos y Computación of the Universistat Politècnica de València. One
GPU card has been used to perform the experiment. Such a GPU card has a total number of
2496 CUDA cores with 5 GB memory, shared by all processor cores. The algorithm was imple-
mented using the CUDA programming mode.

In the experiment, the system matrices have been generated with the Siddon method in the
ranges 0–90, 0–180 and 0–360 degrees using different number of lines per detector. The images
were reconstructed from 50 projections in the range 0–180 degrees and 100 projections in the
range 0–360 degrees. Fig 7 shows the resulting reconstructions using such matrices and the
LSQR algorithm.

We can see that the image was successfully reconstructed with the matrix generated in the
range 0–90 degrees, which allows the reduction of system memory and matrix generation time,
as shown in Table 2. Furthermore, the loading time of the input data is also reduced. Conse-
quently, the reconstruction time (including loading time) of a slice of 256x256 pixels with the
matrix generated in the range 0–90 degrees is almost four times faster than the obtained using
the matrix in the range 0–360 degrees.

Comparison of results in the ranges 0–90 and 0–180 degrees demonstrates that it is more
efficient to generate the system matrix in the range 0–90 degrees, complete it to 0–180 o 0–360
degrees and then reconstruct the image, than to use a pre-computed matrix in the range 0–180
o 0–360degrees from the beginning.

The experiment has been repeated using the simultaneous algebraic reconstruction tech-
nique (SART), which is a classical iterative reconstruction algorithm in CT imaging. The itera-
tion formula in SART is taken as in the reference [6]. Fig 8 shows the resulting reconstructions
after 100 iterations. It is observed that the images made by SART and LSQR are very similar.
However, the computational cost per iteration for the slice of 256x256 pixels reconstructed
with the matrix generated in the range 0–360 degrees is 12.6 milliseconds for SART and 2.3
milliseconds for LSQR. In addition, these methods lead to different image qualities. The peak
signal-to-noise ratio (PSNR) is for SART 56.51 points and for LSQR 58.99 points.

We also compare the LSQR method with the classical filtered back projection (FBP) method
[1]. In Fig 9, the results obtained from 50 projections show that LSQR reconstructions present
less artifacts and prove that iterative methods are more suitable for reconstruction from less
number of projections.
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Fig 7 shows that the quality of the images improves as the number of lines per detector
increases. Furthermore, the difference becomes less prominent when this number is between
10 and 20. This agrees with Fig 4, which shows the error as a function of the number of lines.

For further evaluation, we performed a statistical analysis of the quality difference between
the reference image and a reconstructed one. We compared reconstructions made with matri-
ces generated with 20 lines per detector. The results are summurized in Table 3. The similarity
of these results with the magnified images in Fig 10 proves that the system matrix generated in
the range 0–90 degrees is sufficient to recontruct the images. The difference of MSE and PSNR
in Table 3 between the first and two other lines could be due to the fact that the initial set of the
data that corresponds to the range 0–180 degrees has been extended to the range 0–360 degrees
in order to be used with the corresponding matrix in this range. An additional factor is the
cumulative computational error [15] that causes small differences, also, in the ranges 0–90 and
0–180 degrees.

Fig 7. Reconstructed images after 100 iterations usingmatrices simulated in ranges: 0–90 (a), 0–180 (b), and 0–360 (c) degrees and considering 1,
5, 10, and 20 lines per detector. The reference image is reconstructed using the FBP algorithm from the complete set of projections (200).

doi:10.1371/journal.pone.0143202.g007

Table 2. Memory size, generation, and reconstruction time used by different systemmatrices.

Matrix range Size Generation time Reconstruction time

0–360 degrees 154 MB 1379 s 2.25 ms

0–180 degrees 77 MB 680 s 1.13 ms

0–90 degrees 39 MB 340 s 0.68 ms

doi:10.1371/journal.pone.0143202.t002
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Finally, it should be mentioned that in the ranges 0–90 and 0–180 degrees, the images are
reconstructed from 50 projections, which means that the radiation dose delivered to patients is
reduced by a factor of 4.

Fig 8. Images reconstructed with SART and LSQRmethods usingmatrices simulated in ranges: 0–90, 0–180, and 0–360 degrees and considering
20 lines per detector. The reconstructions are presented after 100 iterations when convergence is reached.

doi:10.1371/journal.pone.0143202.g008

Fig 9. Images reconstructed with FBP (a-b) and LSQR (c-d) methods.

doi:10.1371/journal.pone.0143202.g009

Table 3. Quantitative comparison of the images reconstructed with LSQR usingmatrices in different
ranges.

Matrix range generation MSE PSNR

0–360 degrees 0.0820 58.9929

0–180 degrees 0.0680 59.8057

0–90 degrees 0.0658 59.9469

doi:10.1371/journal.pone.0143202.t003
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Conclusions
We analyzed the system matrix in the reconstruction process of CT images. The system matrix
contains information on the acquisition geometry of the scanning process. The generation of
the matrix elements affects the quality of the resulting image.

We demonstrated the capacity of the Siddon method to generate the system matrix with
which good-quality images can be reconstructed from a limited number of projections. More-
over, the symmetry of the data structure allows the reduction of the system’s memory usage
and of the reconstruction time.

We further demonstrated that, using the system matrix generated in the range 0–90 degrees,
it is possible to reconstruct images from a limited number of projections, which allows the
reduction of the radiation dose delivered to patients.

The system matrix can be pre-computed, saved, and reused, thus reducing the time of the
entire reconstruction process. The obtained results could have practical application in portable
scanner devices.

In the future, we will continue to use the symmetric block structure of the matrix to further
reduce the range of the initial matrix to 0–45 degrees. We also plan to apply the Siddon method
to generate the elements of the system matrix on fly during the reconstruction process, thus
minimizing the memory usage of the system.
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(TXT)
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