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HIGHLIGHTS 

Optoelectronic pyrometer provides similar results compared with a conventional 

method 

Lower injection pressure results in higher radiation 

Higher ambient temperature and higher in-cylinder gas density produce higher radiation 

Larger lift-off length reduces the soot volume fraction and the spectral intensity 

An increase on swirl number, load and CA50 provide a lower total radiation 

Lower values of EGR implies a decreased on radiation intensity  
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ABSTRACT 

The efficiency and CO2 are one of the main concerns of automotive manufacturers. 

There are several strategies under investigation to solve this problem. In the present 

work, the research effort has been focused on improving knowledge of in-cylinder heat 

transfer and its impact on engine efficiency. In particular, soot radiation was studied 

since it can be considered a significant source of the efficiency losses in modern diesel 

engines. Considering previous studies, the portion of total chemical energy released 

during combustion lost due to radiation heat transfer varies widely from 0.5 up to 10%, 

depending on engine parameters and combustion process. Thus, the main objective of 

this work was to evaluate the amount of energy lost to soot radiation relative to the 

input fuel chemical energy during the combustion event under different operating 

conditions in a completely controlled environment provided by an optical engine. Under 

these simplified conditions, two-color method was applied by using high speed imaging 

pyrometer with cameras (two dimensional results) and optoelectronic pyrometer (zero 

dimensional results). Once a detailed comparison between both diagnostics was 

performed, optoelectronic pyrometer was used to characterize radiant energy losses in a 

fully instrumented 4-cylinder direct-injection light-duty diesel engine. In particular 

swirl ratio, EGR and combustion phasing effects on radiation heat transfer were 

evaluated. 



1. INTRODUCTION 

The increasing concern due to the effect of GHG emissions is pushing the researchers 

and manufacturers to look for more efficient engines with lower fuel consumption and 

CO2 emissions. Thus, different strategies are proposed to achieve these objectives; 

thermal management improvement [1][2], indicated cycle optimization [3][4], in- 

cylinder heat transfer (HT) reduction [5][6], reduction of friction and auxiliaries losses 

[7][8], engine downsizing [9], new combustion concepts [10][11] among others. In the 

present work, the research effort has been focused on improving knowledge of in-

cylinder heat transfer. 

Combustion process in Direct Injection (DI) diesel engines includes different physical 

and chemical processes. During the turbulent diffusion flame, an important balance 

between soot formation and oxidation occurs in the spray. During oxidation process, the 

in-cylinder soot emission is luminous and generates an important source of radiant 

energy [12]. Carbon dioxide and water vapor molecules also emit radiation, however it 

is concentrated in a narrow spectral bands and its magnitude is assumed much smaller 

than soot particles. Moreover, radiation may also be emitted by many intermediate 

species formed during the combustion process, but since their concentration levels are 

small, their effect on radiation heat transfer is less important as is described in [13]. 

Thus, soot radiation can be considered a significant source of the efficiency losses in 

modern diesel engines [14]. In this sense, there are different studies in the literature, 

which quantify the amount of fuel chemical energy lost by soot radiation [14]. 

Depending on soot conditions, studies provide very different results. From 0.5-1% [15] 

up to 5-10% [12][16] of the total chemical energy released during combustion process 

can be considered as radiant losses.  Not only the amount of radiant fraction is a 

controversy, but also the contribution of radiation to the total heat transfer varies 

significantly as well from 11% up to 40% [12]. The significant differences between 

authors are directly related with the uniqueness of the radiant emission in each 

combustion system considering particular engine geometry and the operating conditions 

tested. Therefore, it could be stated that the relationship between all these combustion 

and engine parameters and its radiant emission is not fully understood currently.  

The two-color pyrometry method has been used to determine radiation heat transfer 

along with the in-cylinder temperature and the soot volume fraction (using KL factor) 



from diesel engine flames [17][18]. A detailed description of the two-color pyrometry 

method can be found in [19]. Thus, pyrometry can be performed by using two different 

strategies; two dimensionally using a fast sampling high-speed camera [20][21] or zero 

dimensionally based on a collecting lens and an optical fiber in combination with a 

photo diode [14]. The first method provides spatial and temporal resolution of soot 

temperature and KL. Therefore, radiant emission can be calculated through this 

technique. This method is applied in particular to constant volume vessels, which can 

reproduce diesel engine like environment or in optical engines. The second method is 

applied in production engine experiments where the room for optical access to the 

combustion chamber is limited. The recorded signal in this case represents the spatially 

integrated information of a three dimensional complex phenomena which is 

characterized by significant gradients of spatial equivalence ratios and temperature 

along with the combination of reactive and non-reactive zones as well as different 

absorption coefficients and soot particle densities along the line of sight. [14]. 

Independent of the measurement technique method, there always exists some 

uncertainty of fouling impact from in-cylinder soot in the optical device or from 

occlusion of the field of view by geometric factors of the measurement system. 

Consequently, more research and efforts are needed in this field. 

The main objective of this work was to evaluate the amount of energy to soot radiation 

relative to the input fuel chemical energy during the combustion event under different 

operating conditions in a completely controlled ambient provided by an optical engine. 

Under these simplified conditions, two-color method was applied by using high speed 

imaging pyrometer with cameras (two dimensional results) and optoelectronic 

pyrometer (zero dimensional results). Once a detailed comparison between both 

strategies was performed, an optoelectronic pyrometer was used to characterize radiant 

energy in a fully instrumented production 4-cylinder direct-injection light-duty diesel 

engine under several representative engine loads and speeds. In addition, the effect of 

swirl ratio, EGR rates and injection timing will be also shown. 

2. MATERIALS AND METHODS 
 

2.1. Experimental test facilities 



Two different test benches were used to perform this work, an optically accessible 

single-cylinder engine and a multi-cylinder engine.  

2.1.1. Single-cylinder engine: optically accessible  

This facility was based on a 2-stroke single-cylinder direct-injection diesel engine 

(Jenbach JW 50). Further information can be found in [22]. The engine had a three liter 

displacement with 150 mm bore and 170 mm stroke. It was motored at low engine 

speed (500 rpm). Intake and exhaust gas exchange was handled by ports in the liner. 

The cylinder head was specially designed to provide optical access to the combustion 

chamber. A cylindrical combustion chamber was designed to avoid spray wall 

impingement. The chamber had an upper port where the injector was mounted and four 

lateral accesses. One of these accesses was used for placing a high speed pressure 

transducer where as the other three were equipped with oval-shaped quartz windows, 88 

mm length, 37 mm width and 28 mm thickness as shown in figure 1. The cylinder head 

and the engine temperatures were controlled by means of a coolant loop. Coolant 

temperature was set to 353 K for all tests, to ensure good lubricant oil performance. 

 

Ports on 
the liner

Injector

Cylindrical
chamber

combustion Oval-sharep
quartz

Windows (4)

b) a) 

Figure 1. Scheme of the cylinder head and liner arrangement. a) Front view, b) Side view 

In order to keep in-cylinder conditions constant (pressure and temperature), the engine 

was operated under skip-fired mode. One injection event took place every 30 cycles, 

which ensured that in-cylinder conditions were not influenced by residual gases from 

previous cycle.  

A common-rail Bosch injection system was used along with a piezoelectric injector and 

a single-hole 140 μm outlet diameter nozzle. The injector hole was 1 mm long with 

conical shape (Ks factor of 1.5). The injected mass was relatively small compared to the 

volume of air utilized /the equivalence ratio is calculated in the section 3.1 and comes 



from 0.05 up to 0.09). Hence, it can be assumed that the thermodynamic conditions 

inside the combustion chamber were barely affected by the fuel evaporation. Due to the 

low injection frequency used during tests, the temperature of the injected fuel can be 

considered constant and controlled during the tests. 

2.1.2. Multi-cylinder Light Duty Diesel engine  

A production-type GM 1.9L Diesel engine was used for the second part of the study. 

The 4-cylinder engine uses a Common-Rail fuel injection system, variable geometry 

turbocharger (VGT), an exhaust gas recirculation system and an intake throttle valve. 

The engine had four valves per cylinder, centrally located injectors, and a re-entrant 

type combustion chamber. The swirl number was variable from 1.4 up to 3 and could be 

adjusted by a dedicated valve. All relevant engine data as well as injection system are 

given in table 1. This engine was set up with EURO IV calibration. 

Engine Type DI, 4-cylinder,charged,4-
stroke 

Displaced volume 1900 cc 
Stroke 90.4 mm  
Bore 82 mm  
Combustion Chamber Re-entrant type  
Compression ratio 17.5:1 
Max. Power [kW] 110 @4000rpm 
Max. Torque [Nm/min-1] 320 / 2000-2750 

Injection System 
Bosch Common Rail 
(solenoid)  

Max. Rail Pressure [bar] 1600 
Nozzle hole diameter [mm] 0.141 
Injector Nozzle Holes 7  
Hydraulic flow rate [cm3 

(30s) at 100 bar] 
440 

Table 1. Engine and injection system specifications 

The engine was directly coupled to an electric dynamometer that allowed control of the 

engine speed and load. The installation also included complete instrumentation to 

measure different fluid temperatures and mass flows. The list of the relevant 

instrumentation is given in table 2. 

Variables to measure Sensors Range 

Temperature of liquids 
(coolant, oil, cooling 
water at exchangers…) 

Thermoresistances 
(PT100) ‐30 - 350 ⁰C 



Temperature of gases 
(inlet and exhaust lines, 
EGR…) 

K-type 
Thermocouples ‐200 - 1250 ⁰C 

Fuel mass flow AVL 733s.18 0-41.67 g/s 

Air mass flow AVL Flowsonix 
Air 0-1400 kg/h 

Coolant Flow DN25 Flow meter 8.8-350 l/min 
Torque Dynamometer 0-500 Nm 

In-cylinder pressure Kistler 6125C10 0-300 bar. 

Table 2. Test cell instrumentation 

A combination of thermocouples and resistance temperature detectors (PT100) was 

selected to measure liquid and gas temperatures.  

The in-cylinder pressure was measured for each cylinder with Kistler 6125C10 glow-

plug piezoelectric transducers and Kistler 4603B10 charge amplifiers. A crank angle 

increment of 0.5° was used for the in-cylinder pressure acquisition [23], which was 

performed using DRIVVEN [24]. 25 consecutive cycles were measured. 

The mean variables were acquired at a low sample frequency of 100 Hz using 

SAMARUC, a CMT-developed test system that collects the signals of different sensors 

and controls the electric dynamometer [25].  

2.2. In-cylinder pressure signal analysis 

The combustion analysis was performed with a single zone model named CALMEC, 

which is fully described in [26].This combustion diagnosis tool uses the in-cylinder 

pressure signal as its main input. The in-cylinder pressure was measured with its 

corresponding pressure transducer coupled with a charge amplifier for each engine. The 

pressure traces from engine cycles were recorded. Thus, each individual cycle's pressure 

data was smoothed using a Fourier series low-pass filter. Once filtered, the 25 collected 

cycles were ensemble averaged to yield a representative cylinder pressure trace, which 

was used to perform the analysis. Then, the first law of thermodynamics was applied 

between IVC (intake valve close) and EVO (exhaust valve open), considering the 

combustion chamber as an open system because of blow-by and fuel injection.  
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Where ߙ is the crank angle degree, m, dT, dV and dQ are the instantaneous mass in the 

chamber, gas temperature variation, volume variation and instantaneous heat transfer to 



the chamber walls respectively, c୴ is the specific heat which depends on the 

instantaneous temperature and composition, dm୤,ୣ୴ is the variation of injected mass, 

h୤,୧୬୨ and u୤,୥ are the injected fuel enthalpy and internal energy of the evaporated fuel, R 

is the gas constant and dmୠୠ is the variation of blow-by leakage. Additionally, the heat 

transfer to the chamber wall Q together with a lumped conductance model allowed for 

accurate calculation of the RoHR.  

The ideal gas equation of state was used to calculate the mean gas temperature in the 

chamber. Along with these two basic equations, several sub-models: a filling and 

emptying model was used to calculate the trapped mass [27]; the specific heat of the gas 

depends on both temperature and composition [28]; blow-by model was based on the 

evolution of the gas in an isentropic nozzle [26]; the chamber volume deformation due 

to pressure and inertia was calculated by means of a simple deformation model [29];the 

heat transfer coefficient in the chamber walls was calculated with a modified Woschni-

like model [30]: 

݄ ൌ ଴.଼ܶି଴ହଷ݌଴.ଶିܦܥ ቂܥௐଵܿ௠ ൅ ௐଶܿ௨ܥ ൅ ଶܥ
௏೏்಺ೇ಴
௏಺ೇ಴௣಺ೇ಴

ሺ݌ െ ଴ሻቃ݌
଴.଼
  (2) 

where C and C2 are constants whose values are 0.12 and 0.001, cm is the mean piston 

speed, cu is the instantaneous tangential velocity of the gas in the chamber that was 

adjusted using CFD calculations [30], p0 is the pressure during motoring conditions 

assuming a polytrophic evolution, and finally CW1 and CW2 are constants, whose values 

were adjusted for each engine by means of a combination of experimental and 

modelling methodology [31]. 

2.3. Two color method  

This method was applied to two different optical setups - High Speed imaging and an 

Optoelectronic Pyrometer. Two color pyrometry is an optical thermometry technique 

that makes use of the presence of radiating soot inside the flame. The intensity of 

radiation emitted by soot particles (Isoot) is proportional to the radiation emitted by a 

black body at the same temperature (T). This proportionality is determined by the 

emissivity of the particles, which can be expressed in terms of soot concentration, 

working wavelength (λ) and a constant parameter (α) [32]. Therefore, Isoot can be 

expressed a  th l i uas e fol ow ng eq tion: 

,ߣ௦௢௢௧ ሺܫ ܶ, ሻܮܭ ൌ ௕,ఒܫఒߝ ൌ ቂ1 െ ݌ݔ݁ ቀെ௄௅మ಴
ఒഀ

ቁቃ ଵ
ఒఱ

௖భ
ቂ௘௫௣ቀ೎మഊ೅ቁିଵቃ

                           (3) 



Where c1 = 1.1910439 x 10-16 Wm2sr-1 and c2 = 1.4388 x 10-2mK. Zhao et al. [33] 

reported that α values are less dependent on the wavelength in the visible range than in 

the infrared.  

In this regard, 550 and 650 nm with ± 10nm FWHM were chosen when the method was 

used with two High-Speed CMOS cameras and 600 and 950 nm with ± 50nm FWHM 

were used when the method was applied using the Optoelectronic Pyrometer. In this 

study α was assumed to be 1.39, which is a commonly used for most of fuels [34]. The 

dependence of the emissivity on the soot amount within the optical path is usually 

expressed in terms of KL2C=ksootL. This variable accounts for the total contribution of 

the soot along the optical path, independent of the soot distribution or geometrical size.  

Two high speed cameras with two CMOS sensors were employed to measure soot 

radiation. The signal “S” depends on the detector spectral response, the radiation itself, 

the area A of the sooting flame within the field of view of the detector and the solid 

angle Ω subtended by the detector. Several simplifications can be applied [32], and a 

final expression (equation (4)) is obtained for each wavelength: 

ఒܵ ൌ ,ߣ௦௢௢௧ሺܫఒܥ ܶ,  ሻ  (4)ܮܭ

Where Cλ is a constant that takes into account A, Ω and λ. This parameter has to be 

calculated by means a radiance calibration procedure. For this purpose, calibration 

curves were obtained by means of a previously calibrated light source, as it is described 

by Payri et al. [32]. The slope of these curves is the transformation factor (Cλ) presented 

in equation (4).  

2.4. Optical set-up 

2.4.1. High Speed Imaging Pyrometer  

The light emitted by the flame pass through a beam splitter which transmits and reflects 

50% of the soot radiation to each of the two High-Speed CMOS cameras employed: a 

Phantom V12 for 650 nm and Photron SA5 for 550 nm. Both cameras were equipped 

with a 100 mm focal length and f/2 lens. In order to ensure frame-to-frame 

synchronization, both cameras were connected in a Master/Slave mode.  They were set 

to record at 15000 fps, with 5 to 8 μs exposure time for 650 nm and 8 to 12 μs for the 

550 nm, depending on test conditions. A scheme of the set-up is shown in figure 2. 
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Figure 2: High Speed Imaging pyrometer Set-up 

A spatial transformation is required to match both images pixel by pixel. A spatial 

transformation matrix was calculated, considering translation, rotation and scaling. For 

both images, background segmentation was also applied. A threshold value was 

obtained, considering a percentage of the total dynamic range of each image. The value 

of this percentage was set to 5% for all the tests performed, which has shown good 

accuracy on the flame boundary detection for all the tests. Only pixels with an intensity 

greater than the above mentioned 5% are considered part of the flame. Once both 

images are coupled, equation (3) was applied for each wavelength and KL2C and 

temperature were obtained for each instant with a resolution of two spatial dimensions. 

In figure 3, an example of the application is shown.  

A B

33
KL2C [-]
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Figure 3. Composition of instantaneous soot natural luminosity at 550 and 650 nm (A) and the 
corresponding KL (B) and Temperature (C) distributions. Data was taken for 30% Decane -70% 

Hexadecane, at ρc = 23.4 kg/m3, Tc = 800 K and Pinj = 50 MPa.  

2.4.2. Optoelectronic Pyrometer   

The in-cylinder soot radiation measurements were also performed with an 

optoelectronic signal converter with a selection of photodiodes and narrow band optical 

filters adapted to specific applications for combustion engine flame and radiation 

measurement.  This light probe has been developed by AVL and is known as 



VisioFEM. A sapphire lens at the tip of the probe captures the light from the 

combustion chamber with a view angle of 90º. The soot radiation is conducted through 

optical fibers and is split to two filters at wavelengths of 600 and 950 nm. Then, the 

photodiodes convert the intensity to a voltage signal. The signals from the photodiodes 

are amplified and recorded every 0.5°CAD aTDC. Signal conversion and signal 

conditioning ensures highest possible linearity of input radiation intensity to output 

signal voltage. The Optoelectronic raw signals and the absolute light intensities are 

linked by a calibration of the whole measurement chain using a halogen lamp, which 

provides a homogenously illuminated surrounding.  A particular testing methodology is 

recommended by AVL with the aim of preventing the undesired errors in transmission 

due to soot deposits during a measurement campaign [35]. A schematic of the signal 

path from the flame to the data acquisition device is presented in figure 4. 

 
Figure 4. Signal path from flame to data acquisition device 
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Once both voltage signals are recorded, spectral intensity is obtained considering gain, 

transmission and sensitivity. Thus, once the voltage signal are converted, equation (3) is 

applied for each wavelength and KL2C and temperature can be obtained at each instant. 

It is interesting to remark that with the Optoelectronic probe only temporal resolution is 

obtained for the soot temperature and KL results. 

For the sake of clarity, figure 5 presents the optical set up when the optoelectronic 

pyrometer was used in both experimental engines. 

 
Figure 5 Optoelectronic pyrometer set up Left) Optical accessible engine configuration and Right) Light 

duty engine configuration 



3. CHARACTERIZATION OF RADIATION UNDER 
OPTICAL ENGINE CONDITIONS 

The objective of this section is twofold. First, the effects of variations in different 

engine operating parameters on spectral intensity in a test rig with a completely 

controlled environment are presented. Second, some experiments were performed with 

the aim of evaluating the validation of the Optoelectronic Pyrometer (OP) versus a 

conventional optical set-up, High Speed Imaging Pyrometer (HSIP), in terms of KL and 

in-cylinder soot temperature. Then, an evaluation of the radiant fraction from the total 

energy supplied to the chamber is presented. 

3.1. Operating conditions 

The test matrix includes eight different engine operating conditions (table 3). The 

injected fuel mass was obtained with an injection rate meter. To determine the intake 

pressures and temperatures required for the test plan, an accurate characterization of the 

engine was performed, covering its full operation range. In-cylinder thermodynamic 

conditions were calculated from measured pressure, using first-law thermodynamic 

analysis. This analysis took into account blow-by, heat losses and mechanical 

deformations. The trapped mass was estimated using intake temperature and volume at 

EVC. Instantaneous in-cylinder temperature evolution during the cycle was calculated 

using the equation of state and correcting the trapped mass with blow-by estimations. 

Mechanical deformations can lead to a correction on instantaneous geometric volume; 

however, in this specific engine they have been neglected. 

TDC 
Temp. 

[K] 

TDC 
Density 
[kg/m3] 

Injection 
Pressure 

[bar] 

Injected 
fuel 

mass  
[mg/stk] 

Equivalence 
ratio [-] 

800 
23.4 500/1000

/1500 
13.4/20.3

/25.4 
0.05/0.07/ 

0.09 

18.9 1000 20.1 0.08 

900 
23.4 500/1000

/1500 
13.4/20.3

/25.4 
0.05/0.07/ 

0.09 

18.9 1000 20.1 0.08 

Table 3. Experimental conditions optical engine 

Energizing time was set to 2ms for all conditions, which resulted in an approximate 

4.5ms hydraulic injection duration. The injector was triggered at -6.05º aTDC (SoE) and 



the injection started at -5.9º aTDC (SoI), to minimize variations of in-cylinder 

conditions during injection event. Each test was repeated 20 times to reduce 

measurement uncertainties due to engine operating variability as well as to improve 

signal-to-noise ratio.  

In this work, one blend using two different fuels, n-decane and n-hexadecane, were 

employed. In fact, the fuel used was a blend of both single component fuels at a 30%-

70% volume fraction. They were chosen due to their simplicity (pure fuels) and 

similarity with diesel fuel in terms of physical and chemical properties. Table 4 shows 

main fuel properties. 

 

Fuel 30 % C10H22 – 70% C16H34 

Density @ 373 K 
[kg/m3] 703.7 

Dynamic 
Viscosity @  
373 K [mPa*s] 

6.67 

Derived Cetane 
Number 85.4 Vapor Pressure 

at 373 K [kPa] 7.72 

H/C 2.15 Lower heating 
value [MJ/kg] 43.995 

Table 4. Fuel properties at 1atm and 100ºC 

3.2. Effect of injection pressure, temperature and in-
cylinder gas density on in-cylinder spectral intensity 

Figure 6 shows the temporal evolution of the spectral intensity (Isoot) measurements for 

High Speed Imaging Pyrometer (HSIP). In particular, sub-figure a) presents the 

injection pressure variation effects, sub-figure b) shows the in-cylinder gas density 

effects and finally, sub-figure c) describes ambient temperature effects on Isoot. It is 

noted that the positive crank angle degree corresponds with CAD after TDC. It is 

interesting to remark that only values in the quasi steady state part of the diffusion 

combustion process are shown. In each sub-figure, curves represent the average of 20 

fired cycles together with their standard deviation for 550 nm and 650 nm. Thus, an 

average image per instant with spatial resolution is obtained and later, a spatial average 

of the complete image in each instant was performed.  



Independent of the wavelength, it can be stated that when higher injection pressure was 

used, lower Isoot was obtained. In the same way, use of lower in-cylinder gas density and 

temperature also provided lower spectral intensity. As it is expected, the higher the 

wavelength, higher the Isoot. Regarding measurements dispersion, higher the 

wavelength,  higher the standard deviation.  

 

Figure 6.  Temporal evolution of the spectral intensity for both 550nm and 650 nm wavelengths, and their 
corresponding standard deviation, a) Injection pressure effect; b) In-cylinder gas density effect; c) 

Ambient temperature effect. 
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To provide further insight into the effect of injection pressure, in-cylinder gas density 

and ambient temperature on Isoot, in figures 7, 8 and 9 are represented the axial evolution 

of spectral intensity in the center line of the spray during quasy-steady state of 

combustion diffusion process along with the maximum spectral intensity at the flame 

lift-off length, LoLFLAME. This parameter is defined as the first axial position from the 

injector orifice where natural luminosity was acquired. 

 

Figure 7. Axial evolution of spectral intensity in the center line of the spray together with the maximum 
value at the Flame Lift-off Length using three different injection pressures; 500, 1000 and 1500 bar. In-

cylinder gas density and ambient temperature were maintained constant. 
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Considering figure 7, it can be stated that, independent of the axial position and 

wavelength tested, higher the injection pressure, lower the Isoot. Thus, when the injection 

pressure was reduced, the first occurances of natural luminosity moved closer to the 

injector implying a shorter flame lift-off length. Consequently the soot volume fractions 

increased [18][36]. In this sense, the peak of spectral intensity was also higher when the 

injection pressure was reduced as shown in figure 7. In fact, when the injection pressure 

was varied, no significant changes in the mixture fraction field were attained, 

nevertheless, it is well-known that the OH lift-off length is reduced due to a different 

balance between flow and flame velocities [36]. This behavior seems to be also valid for 

the LoLFLAME parameter. 

 

Figure 8. Axial evolution of spectral intensity in the center line of the spray together with the maximum 
value at the Flame Lift-off Length using two different ambient densities; 18.9 and 23.4 kg/m3. Ambient 

temperature and injection pressure were maintained constant. 

550 nm
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Figure 8 represents the axial evolution of spectral intensity at 550 nm and 650nm in the 

center line of the spray together with the maximum spectral intensity value at the flame 

lift-off length under two different ambient densities; 18.9 and 23.4 kg/m3. Ambient 

temperature and injection pressure were maintained constant at 900 K and 1000 bar 

respectively. Thus, when in-cylinder gas density was decreased, the spectral intensity 

was also reduced independent of the wavelength tested as well as the axial position in 

the spray center line. The flame lift-off length moved farther from the injector hole and 

soot and the maximum spectral intensity were also reduced. 

In addition, two cases varying the ambient temperature have been studied in figure 9 

with the aim of examining its effect on Isoot. In these cases, ambient temperature was 

reduced up to 800K maintaining constant injection pressure, 1000 bar and in-cylinder 

gas density, 23.4 kg/m3. Thus, when the ambient temperature was reduced, the radiance 



also decreased independently of the axial position for both wavelengths tested. In fact, 

the axial position of the maximum spectral intensity moved closer to the injector hole. 

This behavior implies a similar result as when the injection pressure was increased or 

the ambient temperature was reduced, the flame lift-off length was enlarged and 

therefore the amount of soot decreased as well as its spectral intensity.   

 

Figure 9. Axial evolution of spectral intensity in the center line of the spray together with the maximum 
value at the Flame Lift-off Length using two different ambient temperatures; 800 K and 900K3. In-

cylinder gas density and injection pressure were maintained constant. 
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Once the effects of injection pressure, in-cylinder gas density and temperature on Isoot 

have been described it is necessary to evaluate and validate the Optoelectronic 

Pyrometer (OP) under similar conditions. Figure 10 shows the temporal evolution of the 

spectral intensity (Isoot) measurements for OP. Following similar analysis as the HSIP, 

three different sub-figures are presented, a) shows the injection pressure variation 

effects, b) presents the in-cylinder gas density effects and finally, c) is describes 

ambient temperature effects on Isoot. Independent of the sub-figure, the profiles 

represented are the average of the same 20 fired cycles at each data point. Standard 

deviation of measured points is also shown in the same figures. The wavelengths used 

for this system were 600 nm and 950 nm. This fact implied that a direct comparison 

with HSIP was not possible. Nevertheless, consistent results were obtained from the two 

different optical systems. An increase in ambient temperature and/or in-cylinder gas 

density as well as a decrease in the injection pressure implied higher spectral intensity.  



 

Figure 10. Temporal evolution of the spectral intensity for both 600 nm and 950 nm wavelengths, and 
their corresponding standard deviation, a) Injection pressure effect; b) In-cylinder gas density effect; c) 

Ambient temperature effect. 

To compare both optical systems results, figure 11 shows the spectral intensity 

registered by HSIP and OP. In particular, an average value of the Isoot during the quasi 

steady state portion of diffusion combustion is shown along with its standard deviation. 

Thus, it can be stated that OP results follow similar trend as HSIP for the different 

operating conditions tested. Moreover, OP 600nm results presented values quite close to 

HSIP 650 nm and 550 nm results. It is also interesting to remark that the dispersion 

obtained with OP was higher than with HSIP.  

 

Figure 11: Average Isoot during the quasy steady state of diffusion combustion and its standard deviation 
for HSIP and OP in each corresponding wavelengths measured a) Injection pressure effect; b) In-

cylinder gas density effect; c) Ambient temperature effect. 

3.3. Effect of injection pressure, ambient temperature and 
in-cylinder gas density on in-cylinder soot 
temperatures and optical thickness (KL) 

Figure 12 shows the temporal evolution of the soot temperature and optical thickness 

using equation (3) for High Speed Imaging Pyrometer (HSIP) along with their 



corresponding standard deviation. In particular, sub-figure a) presents the injection 

pressure variation effects, sub-figure b) shows the in-cylinder gas density effects and 

finally, sub-figure c) describes ambient temperature effects on KL and in-cylinder soot 

temperature. Adiabatic flame temperature was also included to compare with soot 

temperature at each operating point. Thus, adiabatic flame temperature was calculated 

with the assumption of constant pressure at each step of calculation, adiabatic burning 

of the stoichiometric fuel/air mixture and considering a conventional chemical 

equilibrium model, following the scheme proposed by Way [37].  

Considering optical thickness results it can be stated that values obtained are from 0.15 

up to almost 0.4 independent of the operating condition. Focusing on injection pressure 

effect it is shown that when the injection pressure is decreased, KL is increased. This 

behavior can be explained considering figure 7. Lower the injection pressure, shorter the 

flame lift-off length and higher the expected soot. Regarding in-cylinder gas density and 

temperature effects it is stated that lower in-cylinder gas density and/or temperature, 

results in lower KL. In this sense, figure 8 and 9 shows that a decrease in the in-cylinder 

gas density and/or temperature implies that the flame lift-off length moves farther from 

the injector hole and therefore the soot expected is also reduced in both cases.  

 

Figure 12: Average Isoot during the quasy steady state of diffusion combustion and its standard deviation 
for HSIP and OP in each corresponding wavelengths measured a) Injection pressure effect; b) In-

cylinder gas density effect; c) Ambient temperature effect 



The soot temperature values are lower than the adiabatic flame temperature, by around 

350K, This observation agrees with soot thermometry studies reported in the literature 

for diesel engines [38]. Soot thermometry measures the soot temperature, which is not 

exactly equivalent to the flame temperature in particular for diffusion flames. This fact 

does not imply that soot radiation has no influence on the peak flame temperatures. 

Radiative cooling from soot can reduce the gas temperatures in the sooting area, which 

are coupled to the high temperature flame by conductive heat transfer. [38] 

Thus, soot temperature results for the three different injection pressures as well as for 

the two different ambient densities show quite similar values. This is because these 

operating conditions are low-radiation environments and consequently the impact of 

soot radiative heat transfer is similar and relatively minor for these particular conditions. 

By contrast, when the ambient temperature is increased, the soot temperature is also 

increased clearly. This behavior is completely expected considering the proportional 

dependency of the flame temperature on ambient temperature [37]. 

With the aim of comparing directly HSIP and OP, figure 13 presents the temporal 

evolution of KL and soot temperature differences between both optical systems and its 

standard deviation a) Injection pressure effect; b) In-cylinder gas density effect; c) 

Ambient temperature effect 

 

Figure 13: Temporal evolution of KL and soot temperature differences between HSIP and OP and its 
standard deviation for HSIP and OP a) Injection pressure effect; b) In-cylinder gas density effect; c) 

Ambient temperature effect 



Regarding optical thickness slight differences were attained comparing both optical 

systems. These discrepancies were higher when the soot generated was lower. 

Concerning soot temperature, in spite of higher differences between OP and HSIP, it 

should be clarified that in relative terms, this difference was even lower than in the case 

of KL. Thus, in general it can be stated that both systems present a similar response and 

therefore similar results are expected, consequently the validity of the OP versus HSIP 

has been demonstrated.  

 

3.4. Calculation of radiant fraction 

Considering the local soot temperature and optical thickness correspond to a blackbody 

spectral intensity (Ib,λ) and soot spectral emissivity (ελ) at each instant , the total 

radiation in Joules, Qrad, is given by equation (5) 

ࢊࢇ࢘ࡽ ൌ ׬࣊ ׬ ׬ ࣅ,࢈ࡵࣅࢿ
 
ࣅ

 
࡭

 
࢚  (5)               ࢚ࢊ ࡭ࢊ ࣅࢊ

where t represents the exposure time in which the optical system is registering flame 

luminosity, and A is the flame area obtained by equation (6): 

࢚࡭ ൌ ૛׬࢘࣊  ࢞ࢊ
࢞                 (6) 

where r is the flame radius, which is determined from a temporal image of the flame 

and dx, is the axial widths. In this case, the axial width corresponds with one pixel.  

It is worthy to note that radiation is also emitted by CO2 and H2O molecules but it is 

concentrated in a narrow spectral bands and its magnitude is assumed to be much 

smaller than that of soot particles [13]. Thus, as in Musculus [38] and Skeen [15], the 

radiant fraction, Xrad, is defined as the fraction of the total chemical energy released 

during injection that is lost due to radiation heat transfer. This is expressed as: 

ܺ௥௔ௗ ൌ  
ܳ௥௔ௗ

݉௙ܳ௅ு௏൘                      (7) 

where mf represents the mass of fuel injected and QLHV is the lower heating value of 

30% Decane and 70% Hexadecane (43995 KJ/Kg). 



Figure 14 presents the radiant fraction results for the different operating conditions.  

Sub-figure a) shows the effect of injection pressure and ambient temperature. Sub-figure 

b) presents the effect of in-cylinder gas density variations. Considering soot temperature 

and KL obtained in previous section, expected trends of radiant fraction were attained. 

Thus, when the injection pressure was decreased and/or ambient temperature and/or in-

cylinder gas density were increased, the radiant fraction was also increased.  

 

Figure 14: Radiant fraction a) effect of different injection pressures and ambient temperature; b) effect of 
different densities 

Skeen [15] has presented results in a combustion vessel using an injector with single 

hole nozzle of 90 µm nominal diameter, n-dodecane as fuel under ECN spray conditions 

(1500 bar; XO2 = 15%; ρ = 22.8 kg/m3) and sweeping the ambient temperature. Thus, 

some operating conditions are quite similar to the ones presented in this research.  For 

the conditions of Skeen’s research, at 850K ambient temperature the radiant fraction 

was 0.007% and at 900K it was 0.068%. Thus, results present similar values compared 

with those obtained in the present work. In particular, when higher injection pressure 

was used, the results presented in this study were similar to the ones presented by 

Skeen. Taking into account the significant differences in the experimental procedure, it 

is remarkable that there is consistency between the present work and the research 

performed by Skeen. It should also be remarkable that alkane blends tested were less 

prone to produce soot compared with a real diesel fuel, which should contain some 

aromatic compounds. Consequently, some slight underestimation in terms of radiant 

fraction was attained, although trends obtained under different operating conditions are 

correct.  

Following similar analysis as Musculus [38] and Skeen [41] and with the aim of better 

understanding the consistency of radiant fraction results, figure 15 shows the theoretical 



maximum radiant fraction for the maximum soot temperature blackbody radiating 

during the whole injection process, 4.5 ms, for each operating conditions. Thus, the 

maximum observed radiant fraction from the spectral data was approximately an order 

of magnitude less than that expected from the maximum soot temperature blackbody 

having the same surface area and emitting over the full injection hydraulic period.  

 

Figure 15: Theoretical maximum radiant fraction considering a blackbody flame a) effect of different 
injection pressures and ambient temperature; b) effect of different densities 

Taking into account real soot cloud differences in terms of partial transparency and a 

probably smaller emitting area due to a considerable spacing between jets, the 

differences obtained between spectral data and the maximum soot temperature 

blackbody radiant fraction seem reasonable [38].  It is worthy to note that other studies 

of soot radiative heat transfer for higher-sooting conditions have reported much  higher 

peak radiant fraction from 5-10% [12][16]  than the ones showed in the present 

research. In this sense, it should be considered that in the optical engine very low load 

with low-shooting conditions are tested.  

4. CHARACTERIZATION OF RADIATION IN A 
LIGHT DUTY DIESEL ENGINE 

4.1. Operating conditions 

Two different studies have been carried out. In a first step, an evaluation of the load 

effect on radiation, soot temperature and KL was performed. With this aim the engine 

was operated under conditions showed in table 5. In particular, CA50 was set constant 

at 13 CAD aTDC and tests were developed without EGR. In addition, 100 engine cycles 

were recorded for each setting.   



Operation 
condition 2000@2 2000@5 1500@8 1500@14

Torque (Nm) 38 82 133 220 

Injection 
pressure (bar) 450 649 735 1037 

Fuel Flow 
(kg/min) 0.039 0.069 0.08 0.14 

CA50 (ºaTDC) 13 13 13 13 

Tin (K) 315 317 318.5 318.4 
Pin (bar) 1.165 1.371 1.352 1.732 
Pexh (bar) 1.294 1.581 1.555 2.191 
Air Flow 
(kg/min) 2.33 2.63 1.80 2.29 

SN (-) 1.4 1.4 1.4 1.4 
EGR (%) 0 0 0 0 
Equivalence 
ratio 0.244 0.383 0.649 0.893 

Table 5. 4-cylinder engine operating conditions 

In a second step, the effect of swirl ratio, EGR and injection timing (combustion 

phasing) were studied. With this purpose, the 2000@5 BMEP operating point was 

selected and the different settings were varied as shown in table 6. 

Operation 
condition SN = 1.4 SN = 3.0 EGR = 0 % EGR = 25 % CA50 = 6º CA50 = 16º 

Torque (Nm) 82 80 82 82 87 82 

Injection 
pressure (bar) 649 649 649 648 649 649 

Fuel Flow 
(kg/min) 0.069 0.069 0.069 0.07 0.07 0.071 

CA50 (ºaTDC) 13 13 13 13 6 16 

Tin (K) 317 316.8 317 318 316.2 317.9 

Pin (bar) 1.371 1.350 1.371 1.365 1.364 1.357 

Pexh (bar) 1.581 1.529 1.581 1.808 1.602 1.520 
Air Flow 
(kg/min) 2.63 2.47 2.63 1.95 2.55 2.57 

SN (-) 1.4 3 1.4 1.4 1.4 1.4 

EGR (%) 0 0 0 25 0 0 
Equivalence 
ratio 0.383 0.408 0.383 0.524 0.401 0.403 

Table 6. 4-cylinder engine operating conditions for 2000@5 operating point 

Commercially available European diesel fuel was used in this part of the work. Table 7 

shows the main characteristics of the fuel used.  



Fuel Diesel 

Density @ 373 K 
[kg/m3] 821.5 Dynamic Viscosity 

@ 373 K [mPa*s] 2.7 

Derived Cetane 
Number 50.8 Molecular Weight 

[kg/kmol] 215.42 

C/H by weight 6.05 Lower heating value 
[MJ/kg] 43.995 

Table 7. Fuel properties at 1atm and 40ºC 

4.2. Influence of load, swirl ratio, EGR and combustion 
phasing on in-cylinder soot temperature, KL and 
radiation intensity 

In this section, the Optoelectronic Pyrometer was used to evaluate the radiation 

intensity, soot temperature and optical thickness in a multi-cylinder engine. Figure 16 

shows an example of the raw data obtained with the Optoelectronic Pyrometer. The 

temporal evolution of the spectral intensity (MW/m2*m*sr) at both wavelengths, 600 

nm and 950 nm is shown for the 1500 rpm and 8 bar BMEP case.  Each curve 

represents the average and the standard deviation of 100 cycles recorded.   

 

Figure 16. Temporal evolution of the spectral intensity using Optoelectronic Pyrometer at 1500 
rpm and 8 bar BMEP. 



Figure 17 shows the temporal evolution of rate of heat release, radiation intensity, soot 

temperature and optical thickness KL. Sub figure a) shows a comparison between 8 and 

14 bar BMEP cases at 1500 rpm. Sub figure b) presents a similar comparison but in 

these cases at low load conditions, 2 and 5 bar BMEP at 2000 rpm. It is interesting to 

note that these tests were performed maintaining constant the CA50 at 13 CAD aTDC, 

without EGR and with a constant swirl ratio of 1.4.  Different curves represent the 

average and standard deviation of 100 cycles. Injection rate profile was simulated from 

a particular sub-model included in CALMEC [26] which has been calibrated to the 

injector and nozzle used in the present research. Thus, the end of injection for each test 

is marked with a vertical straight line. In addition, it should be also noted that radiation 

intensity is the spectral intensity integrated from 300 nm up to 3000 nm. 

In general, it is possible to state that there were clear differences in radiation intensity 

profiles considering engine speed and overall load. Nevertheless, there was also some 

similarity in the temporal evolution of the different radiation intensity traces. For the 

same engine speed, shape and slopes were quite similar although the peak was different 

and higher when the load was increased. The range of the peak values varied from 0.15 

MW/m2 up to 1.6 MW/m2. Comparing these results with other radiation intensity 

studies, in particular Soloiu [39], radiation intensity peaks found in the literature are in 

the same order of magnitude  that the ones presented in the current work (0.76 

MW/m2), taking account the significant differences in the experimental procedure. 

Regarding soot temperature curves, for the same engine speed quite similar evolution 

was attained. In terms of the peak values range for the different operating conditions 

tested, soot temperature varies from 2600 K up to 2400 K. A clear decrease in the 

temperature was attained when the engine load was decreased. Moreover, soot 

temperature values were consistent with other studies in similar conditions [12][38]. KL 

profiles were quite similar there existed and seem to be governed by the diffusion 

combustion. In this sense, the greater the diffusion phase in the RoHR, the higher the 

amount of soot. The range of the peak values varied from 0.25  up to almost 1.75. When 

the injection process ended, a sudden decrease in KL signal was obtained. The 

maximum peak of the optical thickness traces almost coincided with the end of 

injection. After the end of injection, the oxidation process governs soot emissions and 

therefore the soot formation reaches at its maximum value [40]. Thus, when the load 

was increased the soot formation also increased. This behavior was shown even 



considering other cross effects. For instance, in the 1500 rpm cases, the CA 50 and EGR 

were constant for both loads tested (8 and 14 bar BMEP).  By contrast, the injection 

pressure was higher when the load was increased (table 5), and therefore reduced soot 

formation could be expected. Nevertheless, considering in-cylinder measurements, the 

effect of higher equivalence ratio due to higher load seems to govern the total soot 

formation and consequently, higher equivalence ratio provides higher soot formation. 

Considering RoHR traces, it can be stated that the radiation intensity starts with the 

RoHR and the maximum peak intensity of both curves are almost coincident. The end 

of radiation traces go to zero at similar crank angle degree as the RoHR.  

 

Figure 17. Temporal evolution of radiation intensity, soot temperature and KL; a) 1500 rpm 
comparing 8 and 14 bar bmep; b) 2000 rpm comparing 2 and 5 bar BMEP. For each studied 

case, the end of injection, is marked with a vertical line. CA50, Swirl ratio and EGR were 
constant. 

To provide a direct comparison and with the aim of validating previous discussions, 

figure 18 presents the total radiation for different load operating conditions. It should be 

also noted that the total radiation is the radiation intensity integrated during the whole 
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temporal evolution. Thus, an increase in load clearly shows an increase in total 

radiation. 
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Figure 18. Total radiation for different load operating conditions. 

Figure 19 presents the temporal evolution of radiation intensity, soot temperature and 

optical thickness KL for the case of 2000 rpm and 5 bar BMEP. Sub-figure a) shows the 

isolated effects of swirl ratio maintaining constant the CA50 at 13 CAD aTDC and 

without EGR. Sub-figure b) presents the EGR effects maintaining constant the SN at 1.4 

and CA50 at 13 CAD aTDC. And finally, sub-figure c) presents the effects of CA50 

keeping constant SN at 1.4 and without EGR. As previous figures, different curves 

represent the average and standard deviation of 100 cycles.  



Te
m

pe
ra

tu
re

 [K
]

K
L 

[-]

 

Figure 19. Temporal evolution of radiation intensity, soot temperature and KL; a) Swirl ratio 
effect; b) EGR effect and c) CA50 effect. For each studied case, the end of injection, is marked 

with a vertical line. 

Considering the effect of swirl ratio, it is possible to state that an increase of swirl 

number implies an overall enhancement of fuel air mixing after the end of injection. 

Consequently there was an acceleration of the flame progression with a higher peak of 

RoHR and a faster decay after the end of injection. [42]. This behavior found in the 

RoHR was also attained in the radiation intensity. When the swirl ratio was increased, a 

higher peak of radiation was attained as well as a faster decay after the end of injection. 

Before EoI, an increase in SN resulted in higher soot formation, maybe due to spray 

interaction. By contrast, after the EoI, a lower KL was obtained due to an improvement 

in mixing process. Regarding soot temperature, quite similar values were attained. A 

slight increase was obtained when higher swirl ratio was proposed.  

Regarding EGR effect, taking into account free spray considerations [43], it can be 

stated that when EGR was increased, similar equivalence ratios at lift-off length were 

attained. This fact implies that similar soot formation is expected. Thus, similar soot 
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formation together with lower combustion temperature due to higher EGR should 

provide lower radiation. By contrast, considering real engine conditions as presented in 

the current research, it is possible to demonstrate that higher EGR implies higher peak 

of radiation intensity with larger radiation time and therefore higher global radiation. 

This behavior can be explained considering KL curves. Thus, when higher EGR rates 

were used, higher peaks of KL were obtained. Moreover, more time is available to form 

soot . Consequently higher soot formation is obtained. This fact seems to have higher 

impact on radiation than the reduction in soot temperature. Concerning soot 

temperature, an expected decrease due to the reduction in oxygen concentration was 

observed.  

Concerning combustion phasing effect (CA50), when the injection timing is delayed 

with the aim of delaying CA50, greater part of the combustion process takes place 

during expansion stroke and therefore lower in-cylinder pressure and temperature are 

expected. Concerning radiation intensity, it is possible to state that when CA50 is 

delayed, lower radiation is attained. In particular, lower peak and slower decay is shown 

during the temporal evolution. Lower in-cylinder temperatures imply more time to 

attain more premixed combustion process with less rich equivalence ratios and therefore 

lower soot formation. 

To compare directly the effects of swirl ratio, EGR and CA50 figure 20 presents the 

total radiation for the different operating conditions tested.  

 

Figure 20. Total radiation considering swirl ratio, EGR and combustion phasing effects 

According to figure 20, the total radiation was increased when the swirl ratio was 

diminished and/or EGR was increased and/or CA50 was advanced.  



5. CONCLUSIONS 

 A single cylinder optical accessible engine and a multi-cylinder engine were used to 

characterize in-cylinder radiation. In particular, two color method was applied using 

high-speed imaging and a dedicated optoelectronic pyrometer. Soot temperature and 

optical thickness were used to estimate the total radiation and the radiant fraction. 

• Considering results obtained at optical accessible engine it can be said that 

optoelectronic pyrometer provides similar soot temperature and optical thickness 

(KL) compared with a conventional high speed imaging pyrometer. Thus, the 

axial evolution of the spectral intensity was characterized showing an increase 

when the injection pressure was decreased and/or the ambient temperature and 

in-cylinder gas density were increased. Coupled with this behavior, the flame lift 

of length was also characterized. Thus, larger values were obtained when the 

injection pressure was increased and/or in-cylinder gas density and temperature 

were decreased. The larger the lift off, lower the soot volume fraction and 

therefore the spectral intensity. Consequently, an increase in the radiation 

fraction was obtained when the injection pressure was decreased and/or the 

ambient temperature and in-cylinder gas density were increased. In general, the 

results obtained show low radiation values that range from 0.1% up to 0.75% 

depending on the different operating conditions tested.  

• The main conclusion from the multi-cylinder production engine study can be 

split depending on the engine parameter sweep. Thus considering load effects it 

can be said that maintaining constant engine speed, the radiation intensity peak 

was higher when the load was increased. In addition, total radiation was defined 

as the radiation intensity integrated during the whole temporal evolution and as 

expected, it showed a clear increase when the load was increased. A clear 

decrease in soot temperature was attained when the engine load was decreased. 

KL profiles depend directly on the diffusion phase of combustion, the higher the 

duration of this phase, the higher the amount of soot obtained. In particular, the 

end of injection determined the evolution of the KL profile in terms of 

maximum values as well as decay. Considering swirl ratio effects it can be 

stated that an increase of swirl number implied an enhancement of combustion 

process which seems to be more prominent after the end of injection. Therefore 



a higher peak of radiation intensity with a faster decay after the end of injection 

was attained. Nevertheless, when total radiation was considered, an increase in 

swirl ratio resulted in lower total radiation. Considering KL temporal evolution 

results, it seems that end of injection determines an inflection point. Thus, an 

increase in SN resulted in higher soot formation before the EoI and lower KL 

after the EoI. Regarding soot temperature, quite similar values were attained 

independent of the swirl ratio.  Taking into account EGR effects is can be 

demonstrated that higher EGR implies higher peak of radiation intensity with 

increased radiation time and therefore higher total radiation. Higher EGR rates 

lead to higher peaks of KL and more time available for soot formation, while 

soot temperature is decreased. The higher soot formation effect seems to have 

higher impact on radiation than the reduction in soot temperature and therefore 

higher total radiation was attained when higher EGR was used. Finally, 

considering the injection timing (combustion phasing) effects it can be stated 

that when CA50 was delayed, lower peak of radiation intensity was attained. 

This behavior was due to lower soot temperatures when the CA50 was delayed 

and lower soot formation since more time to achieve premixed combustion was 

available.  
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ABBREVIATIONS 

BMEP: Brake Mean Effective Pressure 

CA: Crank Angle 

CMOS: Complementary Metal Oxide Semiconductor 

CO2: Carbon Dioxide 

DI: Direct Injection 

ECN: Engine Combustion Network 

EGR: Exhaust Gases Recirculation 

EVC: Exhaust Valve Close 

FWHM: Full Width at Half Maximum 

GHG: Green House Gas 

HSIP: High Speed Imaging Pyrometer 

HT: Heat Transfer 

Ib,λ: Spectral Intensity of Black Body 

ICE: Internal Combustion Engines 

Isoot: Spectral Intensity 

IVC: Inlet Valve Close 

KL: Optical Thickness 

Ks: Conical Shape 

mf: Mass of Fuel Injected 

OP: Optoelectronic Pyrometer 

Pinj: Injection Pressure 

LHV: Lower Heating Value 

RoHR: Heat Release Rate 

SoI: Start of Injection 

SoE: Start of Energizing 

TDC: Top Dead Center 



VGT: Variable Geometry Turbocharger 

XO2: Oxygen Fraction 

α: Absorptivity Coefficient 

ελ: Spectral Emissivity 

λ: Wavelenght 

ρ: Density 

Ω: Solid Angle 


