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Abstract 
This study presents an optimization approach for the reliability-based design of spatial 
structures subjected to severe earthquakes, while uncertainty involved in structural analysis 
parameters is taken into consideration. Simulated annealing method is utilized to find the 
structure with minimum weight from available sections, while the specified structural 
performances in terms of probability are satisfied. The dynamic performance of a spatial 
structure with uncertainty is evaluated in a probabilistic manner by applying Monte Carlo 
simulation (MCS). To reduce the high computational costs of MCS, Kriging method is 
adopted to generate the approximate response surface.  
 
Keywords: Reliability-based design; Spatial structures; Uncertainty; Kriging method; 
Optimization. 

1. Introduction 
A structure that is built is different from that is designed, because uncertainty, in materials 
for example, is unavoidably involved in practical structures. Therefore, safety of the 
structure, subjected to extreme external loads, might not be accurately evaluated by 
deterministic structural analysis, as in conventional design procedure. For the purpose of 
designing a robust structure with reliable capability to survive severe earthquakes, 
irrespective of the possible uncertainty in the structure, we present in this study a 
reliability-based optimization design procedure. In particular, we are interested in spatial 
structures that can cover a large space.  
In conventional (deterministic) design procedure, uncertainty involved in the structure is 
taken into consideration by introducing an empirical coefficient, called safety factor, to the 
structural analysis parameters to reduce their nominal values to ‘dependable’ values. The 
basic idea behind the procedure is to design a conservative structure, intended to predict the 
worst cases of outputs, such as maximum displacements or drift angles, by the combination 
of the worst cases of inputs—the dependable values of the structural stiffness/strength 
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parameters less than those of the practical structures, and the external loads greater than that 
may possibly occur. However, this idea can be true only for static cases, and would mislead 
designers in dynamic cases. For example, the seismic responses of a structure significantly 
depend on characteristics of the response spectra of the input motion rather than stiffness of 
the structure; moreover, less strength in some structural members may lead to less 
responses of the structure owing to more plastic energy dissipation. Thus, conventional 
design procedure may not lead to conservative design as expected, and could end up with 
overestimating capacity of the structures, which indicates that more sophisticated approach 
to considering uncertainty is necessary. 
To evaluate dynamic characteristics of a structure subjected to severe earthquake, time 
history analysis (THA) is the most reliable approach, though much higher computational 
cost turns out to be necessary, compared to the equivalent static analysis. Moreover, in the 
framework of performance-based engineering, dynamic performance of a structure 
subjected to possible uncertainty involved in structural analysis needs to be evaluated in 
terms of probability. For such purpose, Monte Carlo simulation (MCS) is the most 
straightforward way, however, it is unlikely to be directly applicable to complex systems, 
because this needs to carry out the expensive THA for many possible values of the 
structural parameters, which results in unacceptably expensive computational costs. Other 
than the direct approach, an alternative approach is to carry out MCS based on the 
approximate responses, predicted by a limited number of structural analyses.  
Metamodels are such models that interpolate the results (dynamic responses) obtained in 
preliminary experiments (structural analyses) with smooth nonlinear functions, so as to 
predict the results at which experiments have not been carried out. There have been a 
number of metamodels developed so far to predict the approximate responses: for example, 
response surface approximation, radial basis function, artificial neural networks, Kriging 
method and multivariate adaptive regression splines. Among these methods, Kriging 
method has gained much attention in engineering literatures because of its high accuracy 
and low computational cost [1]. Our previous study also shows that Kriging method is of 
high accuracy in prediction of dynamic responses of spatial structures subjected to severe 
earthquakes [2]. 
As the dynamic performance of a structure is available in terms of probability by MCS, we 
are then in the position to find the optimal structure satisfying specified requirements on 
structural performance. In this study, we consider the problem of finding the structure with 
minimum weight, assembled by the available sections. For this kind of typical 
combinatorial optimization problem, the simulated annealing (SA) method has been proved 
to be an excellent heuristic method for finding the global optimum, and thus, is adopted in 
this study. 
Following this introduction, Section 2 gives a brief introduction to Kriging method and 
presents the basic formulations, and briefly summarizes the simulated annealing method for 
the combinatorial optimization problem in the study; Section 3 uses a two-dimensional 
arch-type long-span structure as a numerical example to demonstrate the availability of the 
proposed approach for reliability-based design of spatial structures; and Section 4 
concludes the study.  
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2. Approximate responses and optimal structure 

This section gives a brief description of Kriging method for prediction of dynamic 
responses, and simulated annealing method for finding the optimal structure with the 
minimum weight while satisfying the dynamic structural performance in probability. 

2.1. Kriging method 
Kriging method is a spatial prediction approach based on minimization of the mean error of 
the weighted sum of responses at the sampling points, at which experiments are conducted. 
The name of ‘Kriging’ refers to a South African geologist D.G. Krige, who developed the 
method to carry out statistical evaluation of mining data. It gained further and much wider 
application in other engineering problems from the end of 1980s, when statisticians were 
involved in its development. In this section, we summarize the basic equations of Kriging 
method as described in [3] for the completeness of the study. 
Suppose that we consider the uncertainty in dn structural parameters, and carry out the 
preliminary analyses at the sn  sampling points dn

i ∈s � ( 1,..., )si n= . The prediction points, 

at which responses are to be predicted, are denoted by dn∈x � .  

Let ( )
sn∈r x �  and s sn n×∈R �  denote the correlation vector and matrix, describing 

correlations of the sampling points and prediction point: the ith entry of ( )r x  is the 
correlation between the prediction point x  and the sampling point 

is , and the (i, j)-entry of 
x  is the correlation between the two sampling points 

is  and 
js . 

The normalized value 
norŷ  of the predicted (approximate) response ŷ , at he prediction 

point x , is determined as follows by minimizing the mean square error (MSE) and using 
the best linear unbiased predictor 
 T 1

nor
ˆˆ ( ) ( ) ( )y β β−= + −x r x R y i% , (1) 
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i R i
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where every entry in sn∈i �  is equal to one. Thus, the predicted response ŷ  is  

 
norˆ ˆyy y yσ= + , (3) 

where  
yσ  and y  are the standard deviation and mean of the true responses (experimental 

results) at the sampling points, respectively. 
The correlation is usually defined as a function of correlation parameters and distances 
between the relevant points: the (i, j)-entry ( , , )i jR θ s s  of R  and the ith entry ( , , )ir θ x s  of r  
is written as 
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where 
kθ , k

ijd  and k
id  are respectively the kth entries of correlation parameter vector θ , 

distances 
ijd  between sampling points and distances 

id  between sampling points and 
prediction point. 
The correlation parameters θ  are unknown and could be determined by considering the 
maximum likelihood estimation, which is equivalent to solving  
    Minimize  2 1/ˆ | |

sn
zσ R  

 Subject to  l u≤ ≤θ θ θ , (5) 
where | |R  is the determinant of R , and lθ  and uθ  are the lower an upper bounds of θ , 
respectively; and  

 
T 1

2 ( ) ( )ˆ z sn
β βσ

−− −= y i R y i% % .   (6) 

As the existing sampling points might not predict the responses with high enough accuracy, 
more sampling points are then needed to improve the prediction accuracy. There are several 
approaches for adding new sampling points summarized in [3], and we adopt the approach 
that adds the point having the maximum mean square error of prediction.  

2.2. Optimal structure 
Using the approximate responses by Kriging method, the dynamic performances of a 
structure, in terms of probability, can then be easily computed by carrying out MCS, with 
the assumptions on probability distribution of the structural analysis parameters with 
uncertainty. The dynamic performances can be the probability of exceeding a specific nodal 
displacement, as considered in the numerical example in Section 3 for example. 
Satisfying certain dynamic performances, as constraints, our next step is to find the optimal 
structure with the minimum weight. To be more practical, the members of a structure are 
selected from a given list of available sections. Thus, this is a typical combinatorial 
optimization problem, and we adopt simulated annealing method as summarized in the next 
subsection to solve it. 

2.3. Simulated annealing method 
As its name implies, simulated annealing (SA) method exploits an analogy between he 
metal annealing process and the search process of the best solution in an optimization 
problem [4]. It is one of the most popular approaches that can find approximate optimal 
solution within a practically acceptable computational cost. Gradients of the objective 
function are not necessary in SA, and its major advantage over other heuristic approaches is 
the ability to find the global optimum. 
There are in total five processes involved in SA, which are (a) initial solution, (b) local 
search, (c) transition of solutions, (d) cooling schedule, and (e) termination condition. The 
typical flowchart for these processes in SA is shown in Figure 1.  
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Among these processes, solution transition is the key for jumping out from a local optimum, 
since it ensures that non-improving solution is also possible to be accepted. To be specific, 
solution transition will occur if a randomly generated number (0,1)P∈  is less than the 
probability of transition calculated using increase of the objective value 

ifΔ  and 
temperature 

it  at the current iteration i:  

 /min{1, }i if tP eΔ= .   (7) 

It is obvious from Eq. (7) that, transition to an improving solution is always accepted, and 
transition to a non-improving solution will be more and more difficult, as the temperature is 
continuously reduced according to cooling procedure. Thus, solution transition is much 
more active when temperature is high, and SA will gradually converge to the ‘optimal’ 
solution while the system is cooled down. 

3. Numerical example 
In this section, we consider a two-dimensional model of a spatial structure to demonstrate 
how the proposed method is used to find the optimal structure with reliable capacity. 

3.1. Model description 
The arch model shown in Figure 2 represents one bay of the typical spatial structure widely 
used for gymnasiums [5]. The model is composed of a cylindrical roof and two support 
columns. Span of the model is 80.0 m, and height of its support columns is 3.5 m. The 
lower nodes of the roof are located on a circle with radius of 80.0 m, and the half-open 
angle of 20 degrees. Both of the height of the roof truss and width of the column trusses are 
1/40 of the span. The distance between two bays of the structure in the longitudinal 
direction is supposed to be 8.0 m. 

  
Figure 1: The flowchart of classical simulated annealing method. 

  
Figure 2: Two-dimensional arch model for typical gymnasiums. 
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The members are classified into eight groups: the two groups of struts and chords in the 
support columns, three groups of struts and three of chords in the roof sorted from middle 
to side. Cross-sectional areas of the 43 available sections for these groups of members are 
listed in Table 1. Our objective is to find the optimal structure, assembled by the available 
sections, that has the minimum weight while satisfying constraint on structural performance.  
The structural performance for this numerical example is evaluated by the probability of 
exceedance of a specific horizontal displacement, 0.3 m or 1.7% of the height, of the central 
upper node of the roof, indicated as a red node in Figure 2.  
The members of the arch are steel pipes and modeled as truss elements in structural 
analysis. The weight of the roof and the external walls are assigned as 0.98 kN/m2 and 1.47 
kN/m2, respectively. The masses are lumped at the external nodes of the columns and the 
upper nodes of the roof. Young’s modulus is 2.05 1110×  N/m2. The steel materials are 
idealized by a bilinear constitutive model, where the hardening coefficient is 1/100.  
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Figure 3: The artificial seismic motion applied to the arch model. 

Table 1. Cross-sectional areas of available members. 
Diameter 

(mm) 
Area 
cm2 

Diameter 
(mm)

Area 
cm2

Diameter 
(mm)

Area 
cm2 

6.272 19.270  70.210 
7.591 20.260  86.290  
8.638 22.720  103.300  
9.412 

165.2 

25.160  

355.6 

120.100  
89.1 

11.200 190.7 30.870  80.420  
9.892 29.940  98.900  
10.790 38.360  118.500  101.6 
12.850 

216.3 
53.610  

406.4 

157.100  
9.808 49.270  90.640  
12.180 54.080  111.500  
15.520 

267.4 
75.410  133.600  

114.3 

20.410 58.910  

457.2 

177.300  
14.990 67.550  
17.070 77.090  
19.130 

318.5 

99.730  
139.8 

21.170 
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The artificial seismic motion as shown in Figure 3 is generated by the standard 
superposition method of sinusoidal waves, corresponding to the life-safe performance level 
during the very rare earthquakes specified in Notification 1461 and 1457 of the Ministry of 
Land Infrastructure and Transport, Japan. The phase difference spectrum of El-Centro 
1940(EW)  has been used. This seismic motion is applied at the supporting nodes of the 
arch model in horizontal direction.  
Time history analysis (THA) of the structure is carried out using the open source solver 
OpenSees [6]. The effect of geometrical nonlinearity is also taken into consideration. 
Rayleigh damping is adopted for THA, with the same damping ratio h=0.02 for both of the 
1st and 3rd modes of the model, which are antisymmetric. The time step for integration by 
the Newmark-β  ( 0.25β = ) is set as 0.01 second. 

3.2. Uncertainty and optimal structure 
For simplicity, we consider uncertainty in two structural parameters: yield stresses of the 
struts as well as the chords, because they have significant effect on the elastoplastic 
responses of the structure, though all other possible uncertainty in structural parameters 
should be included to design a structure with reliability. The nominal values of the yield 
stresses are 83.25 10×  N/m2 and 82.35 10×  N/m2, respectively for struts and chords. The 
upper and lower bounds for uncertainty of the ratios of the yield stresses to their nominal 
values are respectively set as 1.1 and 0.9. Furthermore, to carry out MCS, the yield stresses 
are supposed to have the uniform probability distribution. 
To apply Kriging method for response prediction, we start from four initial sampling points, 
which are the combination of the upper and lower bounds of the two parameters. New 
sampling points, with which the maximum MSE is to be reduced, are added to existing 
sampling points in order to refine the response surface for improvement of prediction 
accuracy. MCS is then applied to compute the probability of exceedance of specified 
displacement of the central node. The probability should be less than a specific target value 
so as to ensure a safe structure, which is set as 10% as a constraint condition for searching 
the optimal distribution of sections in the example. 
Moreover, we use the Gaussian spatial correlation function, which is preferable for a 
differentiable response function [7]; and lower and upper bounds of the correlation 
parameters are assigned as 0.1 and 1.0, respectively. The correlation parameters are found 
by solving the optimization problem formulated in Eq. (5), using the optimization tool 
provided in MATLAB [8]. 
The initial temperature for SA is assigned as 3.0, and coefficient for the linear cooling 
procedure is 0.97. The process of finding new solutions will be terminated when the 
temperature is less than 0.01. 
The structure with the initially assigned sections is shown in Figure 4. Performance of SA 
for the two cases, with and without consideration of gravity, is demonstrated in Figure 5. 
Red circles and blue dots in the figures respectively represent the solutions, which are 
satisfactory and non-satisfactory of the specified constraint on displacement of the central 
upper node of the roof in the manner of probability. As can be observed from the figure, the 
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initial solution violates the constraint on dynamic performance, although it has the smallest 
weight compared to its consequent solutions. For the case without gravity, SA converges at 
the final solution with slightly greater weight (higher volume) than the optimal solution 
during the searching process; the distribution of cross-sectional areas for these two 
solutions is illustrated in Figure 6. SA has simpler convergence performance for the case 
with gravity, and the optimal (final) solution is illustrated in Figure 7. 

4. Conclusions 
In this study, we have presented a reliability-based design methodology for spatial 
structures, subjected to possible uncertainty involved in the parameters of structural 
analysis. The optimization design of a two-dimensional arch model has demonstrated the 
availability of the proposed method for robust design of spatial structures. 
Although only two structural parameters with uncertainty have been considered in the 
numerical example, the methodology can be easily extended to include any other 
parameters. Furthermore, any type of probability distribution, other than the uniform 
distribution used in the example, for uncertainty of structural parameters could be 
incorporated into the design procedure. Moreover, more structural performance measures 
and more objective functions could be considered, such that finding the optimal structure 
would be a multi-objective optimization problem.  

 
Figure 4: Initial assignment of sections (line width in proportion to cross-sectional area, 

total volume is 5.91m3). 
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  (a) Without gravity    (b) With gravity 
Figure 5: Performance of SA for the cases with and without gravity. (Red circle: violation 

of constraint; Blue dot: satisfaction of constraint) 
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(a) Optimal solution (total volume is 5.97m3) 

 
(b) Final solution (total volume is 6.16m3) 

Figure 6: Solutions for the case without consideration of gravity. 

 
Figure 7: Optimal and final solution (total volume is 6.37m3) for the case with 

consideration of gravity. 
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