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ABSTRACT 

A computational study to investigate the influence of the orifices inclination and the rounding 

radius at the orifice inlet (consequence of the hydro-erosive grinding process applied after the 

orifices machining) over the internal nozzle flow is performed in this paper. The study starts with 

the analysis of experimental results where the mass flow and momentum flux of two nozzles with 

very different values of these two variables are compared. This analysis shows relatively small 

differences in terms of mass flow and momentum flux, since the higher losses associated to the 

higher deflection of the streamlines with a higher inclination of the orifices are counteracted by the 

higher rounding radius, which favors the flow entrance to the orifice. 

To explain this experimental outcome, an extensive computational study involving nine geometries 

that combine different inclination angles and rounding radius is conducted, in order to quantify the 

influence of both parameters on the flow separately, as well as to assess the potential of their 

combination. These geometries are compared in terms of discharge coefficient, critical cavitation 

conditions and effective injection velocity, among others.  Results show differences up to 15% in 

terms of mass flow rate and 8% for the effective injection velocity among the two extreme cases 

(lowest inclination and highest hydro-erosion level versus the nozzle with the highest inclination 

and lowest hydro-erosion level). Given the importance of these phenomena on the subsequent 

mixing and combustion processes, the results hereby presented are of interest for Diesel engines 

injectors and combustion chambers designers. 
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LIST OF NOTATION 

Aeff  outlet effective area 



Ao  outlet area 

Ca  area coefficient 

Cd  discharge coefficient 

Cv  velocity coefficient 

Cε1  constant for ε transport equation calculation 

𝐶𝜀2
𝑜     variable for ε transport equation calculation 

Cε2  constant for ε transport equation calculation 

Cμ  constant for turbulent viscosity calculation 

c  speed of sound 

Di  diameter at the orifice inlet 

Do  diameter at the orifice outlet 

K    cavitation number 

k turbulent kinetic energy 

L  orifice length 

𝑀�̇�  momentum flux 

𝑚𝑓̇   mass flow 

P  pressure 

Pback  discharge back pressure 



Pinj  injection pressure 

Pvap  vaporisation pressure 

pk  production of turbulent kinetic energy 

r  rounding radius at the inlet orifice 

t  time 

u  velocity  

ū  averaged velocity 

𝑢′     fluctuating velocity 

ueff  effective velocity 

uth  theoretical velocity 

S       mean strain 

Sij strain tensor 

GREEK SYMBOLS: 

ΔP  pressure drop, ΔP=Pin -Pb 

Ψ  fluid compressibility 

Ψl  liquid compressibility 

Ψv  vapour compressibility 

𝛼ε  constant for ε transport equation calculation 



𝛼k  constant for k transport equation calculation 

𝛽     constant for the turbulence model 

γ  vapour mass fraction 

ε turbulence dissipation rate 

µ  fluid viscosity 

µl  liquid viscosity 

µT  turbulent viscosity 

µv  vapour viscosity 

𝜂      expansion parameter 

𝜂0     constant for the turbulence model 

ρ  fluid density 

ρl  liquid density 

ρl,sat  liquid density at saturation 

ρl
o  liquid density at a given temperature condition 

ρv,sat  vapour density at saturation  

ρv  vapour density 

CA nozzle orifice angle 

1. INTRODUCTION 



It is well known that the air-fuel mixing process in diesel engines has a strong influence on the 

combustion efficiency and its emissions. The fuel is injected into the combustion chamber as a spray 

and mixes with the surrounding air for several milliseconds. The efficiency of this mixing process 

depends mainly on the injection pressure and the geometrical characteristics of the injector nozzle 

([1], [2], [3]). The particularities of the diesel combustion lead to the use of nozzles with diameters 

below 200 m and injection pressures up to 2500 bar in order to achieve high velocities of the fuel at 

the nozzle outlet. These three factors (small diameters, high pressure and high velocities) make 

difficult the analysis and the understanding of the internal flow. Its study becomes even more difficult 

when cavitation phenomenon occurs due to the presence of two-phase flow and its strong impact on 

the spray formation ([4][5][6][7][8]). 

There are many experimental studies published in the literature about the internal flow in diesel 

injection nozzles. In the first works, the authors focused on the influence of the nozzle geometry on 

the discharge coefficient ([9]). More recently, advance optical techniques have been used to 

characterize the cavitation development in transparent orifices ([10]) and transparent nozzles 

([11][12]). Another strategy followed by many researchers to get an insight into the internal flow at 

cavitating conditions has been the use of spray momentum flux measurements ([13][14][15]). 

Besides experimental works, the cavitation phenomenon in diesel injector nozzles has been also 

studied with CFD tools thanks to the development of complex models based on different hypothesis 

and assumptions. For example, Alajbegovic et al. [16] developed a two-phase flow approach based 

on the introduction of certain number of bubbles that could grow depending on the pressure. The 

grow of each bubble was calculated with the Rayleigh-Plesset equation. Andriotis et al. [17] 

developed a similar bubble model although the bubbles were divided in small groups instead of been 

calculated individually. A completely different approach was developed by Schmidt et al. [18], who 

modeled the internal flow as a homogeneous mixture of liquid and vapour with intermediate 



properties between the pure liquid and pure vapour phases. The properties of this mixture were 

calculated as a function of the vapour fraction, which was determined by means of a barotropic 

equation of state. This model showed a great stability for high speed flows in comparison with those 

models based on the Rayleigh-Plesset equation and has led to several versions of this model applied 

for the study of cavitating flows in diesel injectors ([8][19][20][21][22][23]). 

Discharge coefficient and cavitation inception depend on nozzle geometry and injection pressure 

conditions, or more generally, the Reynolds number ([6][24]) of the flow. If a nozzle with 

cylindrical orifices, and so, prone to cavitate ([24]), is considered, two of the most influential 

parameters on cavitation inception are the rounding radius at the orifice inlet and the orifice angle, 

or angle formed by the hole axis and the injector axis. Both parameters are shown in Figure 1.  

The rounding radius at the orifice entrance is a consequence of the hydro-erosive grinding process 

to which the nozzles are subjected after their production. This process is carried out using an 

abrasive liquid with the aim of rounding the sharp edges at the orifice inlet, and thus, increasing the 

discharge coefficient [25]. In fact, when the injector is running, the flow between the needle and its 

seat experiences a deflection when it enters to the orifice, which produces an important pressure 

loss. The higher the level of rounding, the smaller the pressure loss and therefore the higher the 

discharge coefficient. Furthermore, the increment of the rounding radius also makes the nozzle less 

prone to cavitate as established in [24].  The hydro-grinding intensity is defined as a percentage that 

indicates the increase in mass flow rate obtained with regard to the initial situation before applying 

the process. Thus, we can find levels of hydro-erosive grinding of 5%, 10%, 15%...[25]. 

As far as the orifice angle is concerned, it seems obvious that its increment entails an increase in the 

tendency of cavitation due to the higher deflection that the flow suffers as the angle becomes bigger 

[24].  



Nevertheless, the influence of both parameters on flow properties in terms of cavitation or discharge 

coefficient should not be studied independently but interrelated. In fact, in general terms, higher 

orifice angles are related to higher rounding radius because of the higher capacity of the abrasive 

fluid for eroding the orifice inlet. On the other hand, after the hydro-erosive grinding process, the 

value of the rounding radius is not known even for manufacturers. Nevertheless, non-intrusive 

techniques such as silicone molding [6] and X-Rays [26] can be used in order to precisely determine 

the internal geometry of the nozzles. 

As far as the inclination angle is concerned, its value depends on the engine configuration and the 

optimal value pursues the maximum heterogeneity of fuel in the combustion chamber.  A clear 

distinction should be made between a four-valve cylinder engine configuration and a two-valve 

cylinder engine configuration. On the former, the injector is located in the cylinder axis totally 

vertical and centred. In this case, the inclination angle of all the orifices is the same and its value 

depends on the combustion chamber geometry. On the latter, the injector is assembled with a 

certain inclination angle in relation to the cylinder axis, and as a consequence, all the orifices have a 

different inclination.  

There are some studies in the literature about the influence of orifice inclination or rounding radius 

on flow features ([22], [25], [27]), but these geometrical characteristics are not dealt with jointly in 

these publications.  

In addition, in some of them, such as in La Forgia, et al. [27], due to their antiquity and limitations of 

the code employed, the cavitation phenomenon and its consequences are not analysed correctly. In 

others, like de la Morena et al. [22], although an appropriate code is used for the study of cavitation, 

only the orifice inclination is considered without taking into account the linkage that it may have with 

the rounding radius of the nozzle orifices. 



In the present study, the influence of both parameters is analysed jointly, in such a way that it will be 

possible to quantify the influence on the flow of each of them separately, as well as determining 

which of their combinations leads to the most favourable flow conditions (higher discharge 

coefficient and injection velocity) and which lead to less favourable flow conditions (lower discharge 

coefficient and injection velocity). In the end, the idea is to also quantify the differences in terms of 

mass flow and effective injection velocity among real nozzles depending on their different 

inclinations or rounding radius at the inlet. 

The objective of the present research work focuses on the influence of the orifice inclination and the 

inlet rounding radius on the characteristics of the internal flow in diesel injection nozzles. The 

performance of each nozzle configuration has been evaluated by analysing its permeability in terms 

of maximum mass flow rate across the hole, and the maximum momentum flux available at the nozzle 

outlet, which are the most representative hydraulic characterization parameters in the frame of diesel 

injection systems [13]. 

The study consists of two different parts: the experimental one and the computational one. In the first 

part, two nozzles of six orifices with the same diameter and different inclination angles and inlet 

rounding radius are characterised. These nozzles are tested in terms of mass flow and momentum 

flux. In order to try to give an explanation to the results, the authors have performed an extensive 

computational study in which, besides reproducing the results of the previous nozzles (which also 

served as the code validation), seven additional nozzles have been simulated in order to explore and 

analyse in more detail the influence of both geometrical parameters on the flow. Results show that 

the nozzle orifices with a higher inclination with respect to the injector axis and lower rounding radius 

exhibit a worse behaviour than those with a lower inclination and higher rounding radius. Moreover, 

the first ones are more prone to cavitate, whereas the second ones are less susceptible to do so, also 

showing a change in the cavitation pattern with respect to the first ones. In addition, a remarkable 



result is the fact that the differences in terms of mass flow rate may even reach 15% when comparing 

the extreme cases. For these same cases, the differences in terms of effective injection velocity are 

up to an 8%. Given the importance of these phenomena on the subsequent mixing and combustion 

processes, these results are of interest for Diesel engines injectors and combustion chambers designers. 

In the study, experimental facilities such as a mass flow rate meter and a momentum test rig able to 

measure the momentum flux at the orifice outlet are used to characterise 2 of the 9 nozzles considered 

in the computational part. For the numerical study, a Homogeneous Equilibrium Model able to model 

the cavitation phenomenon was used. The code is implemented in the version 1.5 of OpenFOAM  

[28]. Although the code has been previously validated in an extensive way with several nozzles and 

calibrated orifices ([8][13][20][21]), it is also validated in the present work against the experimental 

results of two of the nozzles considered in this study. The validation has been made in terms of mass 

flow measurements, momentum flux measurements and injection velocity at the nozzle outlet. 

As far as the structure of the paper is concerned, it has been divided into 6 sections.  

First of all, in section 2, a description of the experimental facilities used for the characterization of 

the two nozzles is given. This characterization is useful for extracting the first conclusions about the 

influence of inclination and the inlet radius, as well as for validation purposes of the CFD approach 

used for the computational part of the study. In section 3, the CFD approach description is made, 

where the equations governing the model and how they are solved are explained in detail. Following, 

the geometry characteristics of the nozzles involved in the study and the calculation set-up used for 

the simulations are described in section 4. In section 5 the results of mass flow and momentum flux 

of the two nozzles available for experimental characterization are presented. These results are 

compared to the computational ones in order to quantify the error committed in predicting the results 

that are displayed and analysed in section 6, where seven additional nozzles are simulated and 



compared with the aim of shedding light on the influence of these geometrical parameters on the flow 

pattern and characteristics. Finally, the main conclusions of the investigation are drawn in section 7. 

 

2. EXPERIMENTAL FACILITIES USED FOR NOZZLES CHARACTERIZATION. 

2.1 Injection Rate Meter 

All the nozzles analyzed in the present paper have been characterized with an Injection Rate Meter. 

This equipment is based on the Bosch method [29], and its operating mode consists of the fuel 

injection in a long tube previously filled with diesel fuel. The fuel discharge through the injector leads 

to a pressure rise in the tube which is proportional to the injected mass flow [30]. Thus, it is possible 

to get the injection rate from the pressure evolution over time with an uncertainty below 1.5 % .   

2.2 Spray Momentum test Rig 

Figure 2 shows the equipment used to measure the momentum flux of a diesel spray whose 

uncertainty is around 1.8 %. The most important parts of this test rig are the steel chamber, the 

pressure sensor, the optical access and the inlet/outlet valves. 

The main body of the test rig consists of a cylindrical steel chamber which can be pressurized up to 

10 MPa. This feature, together with the possibility of adjusting the injection pressure and the injection 

length allow the study of the spray behavior in similar conditions to those existing in a real diesel 

engine. The gas used to fill the chamber is usually Nitrogen, since it has similar properties to the air 

and prevents undesirable combustions. However, the chamber can be also filled with Helium or Sulfur 

hexafluoride (SF6) if higher density values are desired for the same pressure levels. 



The chamber pressure is controlled by two valves: an intake valve connected to the gas bottle for 

filling the chamber and a second valve which adjusts the pressure and extracts the gas if necessary. 

The measuring principle of the momentum test rig is based on the measurement of the impact force 

of the spray on a piezo-electric pressure sensor and is only valid if the sensor area is bigger than the 

impact area of the spray. Under this assumption, the impact force is equivalent to the momentum flux 

at the orifice outlet considering that the pressure in the chamber is uniform, the gravity effects are 

negligible and the direction of the fuel deflected is perpendicular to the sensor ([31][32]).  

The right position of the injector with respect to the sensor can be checked through the window 

located on the side. This optical access is also useful for detecting any possible anomaly in the 

injection process, such as an orifice partially blocked. 

 

3. DESCRIPTION OF THE CFD APPROACH. 

3.1 Cavitation modelling. 

There are three main approaches for modelling cavitating flows [13]: one-fluid models, two-phase 

flow models and interface tracking-capturing models.  One-fluid models (also known as continuum 

flow models or even homogeneous mixture models) consider the cavitating flow as a homogeneous 

mixture of liquid and vapour, avoiding the resolution of the Navier Stokes equations for each phase. 

Besides the Navier Stokes equations, this approach needs and additional equation (equation of state) 

which usually relates the pressure with the density of the mixture. The second approach previously 

mentioned, the two-phase models, is based on the resolution of the Navier Stokes equations for the 

liquid and the vapour phase separately. The connection between both equations or both phases in this 

approach is done through momentum and mass transfer terms. The last group, the interface tracking-



capturing models, assume the flow as two different immiscible fluids or phases with different and 

constant densities. The continuity, momentum and energy equations are solved for each phase and its 

interface is calculated independently. 

The code used in the present work belongs to the first group, one-fluid models, and therefore consider 

the flow as a homogeneous mixture of liquid fuel and vapour fuel. It is implemented in OpenFOAM 

® [28] under the names of cavitatingFoam, rasCavitatingFoam and lesCavitatingFoam according to 

the method used to model the turbulence (laminar, RANS and LES respectively). All these versions 

have been validated by Salvador et al. in calibrated orifices, one hole nozzles and multi-holes nozzles 

[8][13][20] [21] [33], showing a good agreement with experimental data in a wide range of pressure 

conditions and geometries. 

The code assumes that the temperature of the fluid is constant and calculates the growth of the vapour 

phase due to cavitation with a barotropic equation of state (Eq. (1)). This equation relates the density 

and the pressure of the fluid through the compressibility, defined as the inverse of the speed of sound 

squared (Eq. (2)): 

(
𝜕𝜌(𝑡, 𝑃(�⃗�, 𝑡))

𝜕𝑃
)

𝑡

= 𝛹 
(1) 

𝛹 =
1

𝑐2
 

(2) 

The amount of vapour phase in each cell of the domain is represented by the variable γ, which can be 

calculated as a function of the mixture density, the liquid density at saturation and the vapour density 

at saturation (Eq. (3)).  



𝛾 = 𝑚𝑎𝑥 (𝑚𝑖𝑛 (
𝜌 − 𝜌𝑙,𝑠𝑎𝑡

𝜌𝑣,𝑠𝑎𝑡 − 𝜌𝑙,𝑠𝑎𝑡
, 1) , 0) 

(3) 

 

As can be seen from Eq. (3), γ will be 0 if all the flow of the cell is in liquid phase and 1 if the cell is 

completely full of vapour. 

With regard to the calculation of the compressibility of the fluid, a linear model is used (Eq. (4)) due 

to its good convergence and stability instead of more accurate models available in OpenFOAM 

(Chung [34] and Stewart [35]). 

𝛹 = 𝛾𝛹𝑣 + (1 − 𝛾)𝛹𝑙 (4) 

Considering that there is only liquid or vapour and the speed of sound is constant, Eq. (1) can be 

written as follows: 

𝜌𝑣 = 𝛹𝑣𝑃 (5) 

𝜌𝑙 = 𝜌𝑙
0 + 𝛹𝑙𝑃 (6) 

Finally, similar linear models are used as well for the calculation of the density and viscosity of the 

fluid: 

𝜌 = (1 − 𝛾)𝜌𝑙
0 + 𝛹𝑃 (7) 

µ = 𝛾µ𝑣 + (1 − 𝛾)µ𝑙 (8) 

The methodology followed by the code begins with the resolution of the continuity equation (Eq. (9)) 

in order to obtain a density value from the initial velocity conditions. 



𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗�) = 0 

 (9) 

Each term of the equation has been individually discretized, choosing the most suitable scheme in 

terms of accuracy and stability according to the particularities of the application. For the simulation 

of diesel injector nozzles, the authors determined in previous studies [13] that the divergence term 

𝛻 ∙ (𝜌�⃗⃗�)  must be discretized in the space with a Gauss upwind scheme.  The authors also concluded 

that an implicit discretisation in time must be used for the density in the divergence term whereas an 

Euler scheme was the most appropriate option for the partial derivative over time. 

From the provisional density value obtained from Eq.(1), preliminary values of void fraction (γ) and 

compressibility (Ψ) are computed using Eqs. (3) and (4). These values are introduced in the 

momentum conservation equation (Eq. (10)) in order to obtain the velocity from the initial pressure 

conditions. For this equation, a Gauss upwind scheme was used for the divergence terms and an Euler 

scheme was chosen for the partial derivatives over time. 

𝜕(𝜌�⃗⃗�)

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗� ∙ �⃗⃗�) = −𝛻𝑃 + 𝛻 ∙ (𝜇(𝛻�⃗⃗� + 𝛻�⃗⃗�𝑇)) 

(10) 

Then, the pressure is calculated with an iterative PISO algorithm and the velocity is corrected through 

the continuity equation (Eq. (9)) turn into the next pressure equation through the barotropic equation 

of state (Eq. (7)): 

𝜕(𝛹𝑃)

𝜕𝑡
− (𝜌𝑙

0 + (𝛹𝑙 − 𝛹𝑣)𝑃𝑣𝑎𝑝)
𝜕

𝜕𝑡
− 𝑃𝑣𝑎𝑝

𝜕𝛹

𝜕𝑡
+ 𝛻 ∙ (𝜌�⃗⃗�) = 0 

(11) 

Once reached the continuity condition, the density, void fraction and compressibility are updated with 

Eqs. (7), (4) and (3), and introduced again in the momentum equation until convergence. 

 



3.2 Turbulence modelling 

As it was mentioned in the previous section, the code can be run in three different versions, depending 

on the method used to model the turbulence. The first and simplest version of the code is the laminar 

version, where the turbulence effects are not considered. This option is not suitable for the simulations 

run in the present study, since the Reynolds numbers reach up to 24,000 at high injection pressure. 

The second and third versions of the code compute the turbulence using RANS (Reynolds-averaged 

Navier-Stokes) and LES (Large Eddy Simulation) methods respectively.  

For the simulations shown in the present paper, the turbulence has been modelled using a RANS 

method, which splits the solution into an averaged component and a fluctuating component. The 

submodel chosen was the RNG k-ε model [36] with the Boussinesq assumption for modelling the 

turbulent viscosity (t): 

−𝑢′𝑖𝑢′𝑗 = 𝜇𝑡 (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗) −

2

3
𝑘𝜌𝛿𝑖𝑗 

(12) 

  

𝜇𝑡 = 𝜌𝐶𝜇

𝑘2

𝜀
 

(13) 

The RNG k-ε model adds two new transport equations to the model: one for the turbulent kinetic 

energy (k) and another one for the turbulent energy dissipation (ε). 

𝜕𝜌𝑘

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑘�⃗⃗�) = 𝛻 ∙ [(𝜇 + 𝜇𝑡𝛼𝑘)𝛻𝑘] + 𝑝𝑘 − 𝜌𝜀      (14) 

𝜕𝜌𝜀

𝜕𝑡
+ 𝛻 ∙ (𝜌𝜀�⃗⃗�) = 𝛻 ∙ [(𝜇 + 𝜇𝑡𝛼𝜀)𝛻𝜀] + 𝐶𝜀1

𝜀

𝑘
𝑝𝑘 − 𝐶𝜀2

𝑜 𝜌
𝜀2

𝑘
    (15)  

with: 

𝐶𝜀2
𝑜 = 𝐶𝜀2 +

𝐶𝜇𝜂3(1−
𝜂

𝜂0
)

1+𝛽𝜂3          (16) 



The variables 𝑝𝑘, 𝜂, 𝑆 represent the production of turbulent kinetic energy, expansion parameter and 

the mean strain modulus respectively, and can be calculated as: 

𝑝𝑘 = 𝜇𝑡𝑆2           (17) 

𝜂 =
𝑆𝑘

𝜀
             (18) 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗            (19) 

The 𝐶𝜀1, 𝐶𝜀2,  𝛼𝑘,  𝛼𝜀, 𝐶𝜇, 𝜂0 and 𝛽  parameters are constants, whose values are:  

𝐶𝜀1 = 1.42 

𝐶𝜀2 = 1.68 

𝛼𝑘 = 1.39 

𝛼𝜀 = 1.39 

𝐶𝜇 = 0.0845 

𝜂0 = 4.38 

𝛽 = 0.012 

 

4. NOZZLES GEOMETRY AND CALCULATION SET-UP. 

4.1 Nozzles geometry 

The geometrical features of the nozzles considered in this study are shown in Table 1. They are 

nozzles with six orifices. Two of them correspond to the geometries of the real nozzles that have been 

experimentally tested in the present work (CA60-r5 and CA155-r30). These nozzles have also been 

simulated and the numerical results have been contrasted against the experimental ones for code 

validation purposes. Moreover, an important set of additional nozzles comprises the basis for a 

computational study that has made it possible to analyse in an extensive manner the importance of 



the inclination and rounding axis on the internal flow in injection nozzles. 

As it can be seen in the table, three values of orifice inclination angle and three values of rounding 

radius at their inlet have been considered. The combination of all possibilities leads to a total of nine 

nozzles. As described by the table, all the nozzle orifices are cylindrical, with a diameter of 170 

micrometers. Considering that the nozzles with cylindrical orifices are prone to cavitate ([6]), this 

will make it possible to compare the geometries not only in terms of mass flow rate or momentum 

flux (directly related to the injection velocity) but also in terms of the critical conditions under which 

cavitation appears and its development. Given that the nozzles are symmetrical, only one sector 

including a single orifice is examined in the simulations. Figure 1 shows the geometry used for the 

simulations, where the geometrical parameters that have been evaluated can be observed: orifice 

inclination angle and rounding radius at the orifice inlet. 

4.2 Calculation setup. 

As it was previously mentioned, the calculations have been done for only one of the six orifices of 

each nozzle since they are completely symmetrical. This simplification can be applied as long as a 

symmetry boundary condition is set on both sides of the simulated geometry and represents an 

important saving of time due to the great number of simulations run in the present study: 189 cases 

resulting from the nine nozzles simulated at full needle lift, keeping the injection pressure at 1600 bar 

and varying the backpressure from 30 up to 500 bar in 21 different values.  

All these simulations have been run using both the resources of the Spanish National Grid [37] (which 

is part of the European Grid Initiative [38]) and the supercomputer Tirant at the University of Valencia 

(Spain) [39].  In particular, 42,000 CPU hours were used from the Spanish National Grid Initiative 

15,000 CPU hours from Tirant supercomputer (corresponding to those cases simulated at high 

backpressures).  



The meshing process has been performed following the conclusions obtained from previous 

sensitivity studies in similar nozzles ([13],[24]). These studies established that the cell size in the 

orifice must grow from 1.15 µm in the vicinity of the wall up to 7 µm in the centre of the orifice. For 

the rest of the domain (upstream of the orifice) a cell size of 22.5 µm is enough to ensure the coherence 

and accuracy of all the flow variables calculated (velocity, pressure, density, turbulent kinetic energy, 

energy dissipation, etc.). Following these recommendations, the resulting meshes have around 

240,000 hexahedral cells. 

Regarding the boundary conditions applied to these meshes, the flow has been simulated setting two 

different kinds of pressure boundary conditions at the inlet section of the nozzle and at the exit of the 

nozzle orifice (see Figure 1). The injection pressure has been set as a fixed and uniform value whereas 

the backpressure has been set with a mean value boundary condition. This special boundary condition 

available in OpenFOAM, keeps the mean value of the desired pressure but allows at the same time 

the presence of flow at the nozzle outlet with higher or lower pressure values due to the presence of 

cavitating flow. 

A representative injection pressure of real engine running conditions has been considered: 160 MPa. 

In order to characterize and compare all nozzles in different Reynolds regimes and in both cavitating 

and non-cavitating conditions, 21 different backpressure values have been simulated. All the pressure 

conditions simulated can be seen in Table 2. The backpressures used in the experimental facilities for 

the characterization of two of the nine nozzles are also provided in the table. In this case, the 

maximum value is limited due to mechanical constraints. The wide range of pressure conditions 

simulated have allowed the characterization of the nozzles in a broad range of Reynolds numbers and 

turbulence levels and the detection of the critical cavitations conditions.   

Once described the geometry, the meshing process and the boundary conditions applied to the 



simulations only the specification of the fluid properties is missing to complete the description of the 

case setup. In this sense, the code requires the introduction of the density, viscosity and 

compressibility of the liquid and vapour phases of the fuel. The density and viscosity of the liquid 

phase have been taken from a commercial fuel (Repsol CEC RF-06-99) at 25ºC, whereas the 

compressibility value has been obtained from experimental tests where the speed of sound was 

measured [40]. As far as the vapour properties are concerned, they were obtained from Kärrholm et 

al. [41]. 

 

5. EXPERIMENTAL RESULTS OF MASS FLOW AND MOMENTUM FLUX: MODEL 

VALIDATION. 

5.1 Experimental results over nozzles CA155_r30 and CA60_r5. 

Figure 3 shows the results of mass flow rate and momentum flux for the two available nozzles, 

together with the effective injection velocity. This last parameter is obtained through the combination 

of the mass flow rate and momentum flux measurements, as shown in Eq. (20): 

𝑢𝑒𝑓𝑓 =
𝑀𝑓˙

𝑚𝑓˙
            (20) 

As shown in Table 2, the results correspond to an injection pressure of 160 MPa and eight different 

values of discharge pressure ranging between 3 and 17.5 MPa. This last value is close to the 

mechanical limits of the injection rate meter and the momentum flux test rig (Fig. 2), thus being the 

reason why the nozzles have not been characterized at higher backpressures. Each point represented 

corresponds to a discharge pressure, and the values of mass flow, momentum flux and velocity are 

obtained as mean values at maximum needle lift in stationary conditions. In order to obtain these 

parameters, the injector has been energized for 3 ms, which is enough to ensure that those stationary 



conditions are attained ([20]). The momentum flux, measured as the impingement force of the jet on 

a pressure sensor calibrated to measure force, is one of the most important parameters on which the 

spray behaviour depends ([42][43]). In addition, this measurement combined with the mass flow 

results provides the effective injection velocity, as established by Eq. (20). In the same Figure, the 

computational results for these geometries are also represented and will be commented in the next 

section, which deals with the model validation. 

As far as the experimental results shown in the Figure are concerned, the following observations can 

be made: 

 Mass flow rate: The experimental points show a mass flow rate collapse, or non-dependence 

of the mass flow on the square root of the pressure drop for both nozzles. This phenomenon 

is well-known and is distinctive of cavitating nozzles, indicating that cavitation is taking place 

inside the nozzles holes ([13][20][44][45]) for all the backpressures tested. In comparative 

terms, the nozzle with the highest inclination (CA155_r30) shows a lower mass flow rate than 

the nozzle with the lowest inclination (CA60_r5). A priori, the lower deflection suffered by 

the streamlines at the orifice inlet (lower losses) in the latter, as will be investigated in another 

Section, could help to justify this behaviour. However, the differences in mass flow seen in 

this region strongly depend on the different critical conditions of cavitation inception 

(backpressure for which the cavitation appears inside the orifice) for both nozzles and their 

behaviour in non-cavitating conditions. In order to determine the critical conditions of 

cavitation inception, as well as to compare the behaviour of both nozzles in those conditions, 

we will rely on the results of the simulations, for which there is no limitation in the discharge 

pressure. Thus, the discharge pressure can be increased as far as needed in order to seek for 

the change in regime: from cavitating to non-cavitating. This result will be commented in the 

next section about code validation. For now, the focus is given to the purely experimental 



results represented in the Figure, both for mass flow, momentum flux and effective injection 

velocity. 

 Momentum flux: Despite having found that the flow inside the nozzle orifices is cavitating 

through the previously commented mass flow measurements, the momentum flux 

measurements do not show collapse, i.e. increases linearly with the square root of the pressure 

drop. This result had already been noted widely both experimentally and numerically 

([7][8][13][20][21]). Comparatively, the nozzle with the lowest inclination angle (CA60_r5) 

exhibits a higher momentum flux at the orifice outlet than the nozzle with the highest 

inclination angle (CA155_r30). In this case, although the differences are small, the better 

predisposition of the nozzle CA60_r5 for the flow entrance would justify again the observed 

behaviour. It must be noted that, even though the lower inclination angle facilitates the fuel 

entrance to the orifice, the higher rounding radius of the nozzle with a higher inclination would 

act in the sense of reducing the differences, since a higher rounding radius helps to minimize 

the flow detachment at the entrance. As a consequence, the differences are reduced, but a 

higher influence of the inclination as compared to the radius is noticed, since the nozzle 

CA60_r5 shows values slightly higher than those of the nozzle CA155_r30. 

 Effective injection velocity: It is a parameter derived from the previous measurements as 

stated by Eq. (20). In both cases, the fact that the mass flow remains collapsed as a 

consequence of cavitation, and that the momentum flux increases with the square root of the 

pressure drop, results in an increase of the effective injection velocity. This increase is higher 

than the one that could be expected by the mere fact of increasing the pressure drop, and is a 

direct consequence of the existence of cavitation inside the orifice, which directly results in a 

viscosity reduction near the wall region (where the vapour is located) and a turbulent velocity 

profile flattening that originates an increase in the effective injection velocity ([13]). For the 



aforementioned reasons, the differences are small, favoring the nozzle CA155_r30 in this case. 

Indeed, the increase in effective injection velocity with cavitation gets more important the 

higher the cavitation intensity inside the orifice is. In a following Section, when the results of 

the simulations are analysed and the critical cavitation conditions are determined, it will be 

seen that the nozzle CA155_r30 starts cavitating for higher backpressure values, which means 

that is more prone to cavitate. As a consequence, for the experimentally tested backpressures 

the cavitation intensity is higher for this nozzle, and thus their impact on the effective injection 

velocity (resulting in its increase) is higher than for the CA60_r5. 

 

 

5.2 Code validation. 

In Figure 3, together with the experimental data previously analysed, the results from the numerical 

simulations performed by using geometries that reproduce the tested nozzles are shown. In this case, 

as stated previously, since there is no limitation in the backpressure values, the comparison may be 

extended to low values of the square root of the pressure drop, i.e. low values of Reynolds number. 

This fact also makes it possible to determine the cavitation critical conditions, namely the value of 

backpressure that produces the cavitation inception for the injection pressure considered (invariant 

and equal to 160 MPa), from which its reduction results in the mass flow collapse previously 

commented. 

From the comparison among the experimental and computational results, it can be seen that the 

calculation code is able to predict the experimental results with a reliability of about 4% or 5%. The 

same level of accuracy had been found in other validations of the code reported in previous studies 

([20][33]). It is also interesting to note that these differences remain for the results of both nozzles, 



which provides the results presented in the following Section a higher reliability, such that when the 

differences among nozzles are qualitatively assessed, those differences are representative of the ones 

existing in reality. 

The results for the backpressure conditions experimentally tested have already been discussed. As far 

as the results in the non-cavitating zone (where the mass flow recovers the linear dependence with 

the square root of the pressure drop) are concerned, it can be highlighted that the differences found 

in terms of mass flow, momentum flux and effective velocity are very small and, in general terms, in 

favour of the CA60_r5 nozzle. As it has been commented previously, the combination of the 

inclination and rounding radius values between nozzles makes the differences amongst them 

significantly reduced instead of being enhanced. Where there is indeed an important difference among 

nozzles is in the critical cavitation conditions. These conditions can be characterized either through 

the backpressure level for which the flow starts being collapsed, or through the critical cavitation 

number. There are several definitions for the cavitation number ([6] [9][46] [47]). One of them is the 

parameter K, defined as a function of injection pressure (Pinj), the backpressure (Pback), and the 

vaporization pressure (Pvap) as Eq. (21) states. Given that the fuel vaporization pressure is much lower 

than the injection pressure, it is usual to disregard the term (Pvap) in the numerator: 

𝐾 =
𝑃𝑖𝑛𝑗−𝑃𝑣𝑎𝑝

𝑃𝑖𝑛𝑗−𝑃𝑏𝑎𝑐𝑘
                   (21) 

The way this parameter is defined, as the backpressure is reduced for a given injection pressure, the 

denominator grows larger and the numerator remains constant. This means that, the greater the 

pressure difference the nozzle is submitted to, the lower the value of K. The value of K related to the 

critical cavitation conditions is named as the critical cavitation number, Kcrit. 

The critical cavitation conditions, both in terms of discharge pressure and Kcrit values for both nozzles, 

are 28.57 MPa and Kcrit = 1.218 for the nozzle CA60_r5 and 36.12 MPa and Kcrit = 1.29 for the nozzle 



CA155_r30. These values highlight the higher proneness of the CA155-r30 nozzle to cavitate. 

The geometrical configuration of the previously studied nozzles does not make it possible to isolate 

the influence of each of the considered geometrical parameters (namely inclination and rounding 

radius) on the flow. In order to somehow quantify the relative importance of each of them, thus 

establishing the maximum differences that can be found in practice among nozzles due to different 

inclination values or hydro-erosion levels, a purely computational study is performed next. In this 

study, as it was reflected in Table 1, three levels of inclination (including the two values 

experimentally examined) and three values of rounding radius (including the two ones tested) are 

combined. 

6. COMPUTATIONAL RESULTS AND ANALYSIS. 

In order to analyze the results of the comparison among different nozzles, and in order to make them 

independent from the nozzle diameter, some parameters that make it possible to characterize the flow 

behaviour are defined in this section. 

6.1 Definition of dimensionless parameters characterizing the inner nozzle flow.  

Non-dimensional flow coefficients are useful to analyze the behaviour of the flow in terms of mass 

flow (pressure losses), effective velocity and effective injection section of the orifice.  

The most important dimensionless parameter is the discharge coefficient, Cd, which is defined as the 

mass flow divided by the maximum theoretical mass flow related to the maximum velocity of the 

flow given by the Bernoulli’s equation: 

𝐶𝑑 =
𝑚𝑓˙

𝜌𝑙𝐴𝑜𝑢𝑡ℎ
=

𝑚𝑓˙

𝐴𝑜√2𝜌𝑙∆𝑃
          (22) 

where 𝑚𝑓˙  is the mass flow, ∆P is the difference between the injection pressure (𝑃𝑖𝑛𝑗 ) and the 



backpressure (𝑃𝑏𝑎𝑐𝑘), ∆𝑃 = 𝑃𝑖𝑛𝑗 − 𝑃𝑏𝑎𝑐𝑘,𝐴𝑜is the geometrical area of the outlet of the orifice and 𝜌𝑙 

is the liquid fuel density. 

The second non-dimensional flow parameter is the velocity coefficient, 𝐶𝑣, which relates the effective 

velocity to the maximum theoretical Bernoulli velocity, 𝑢𝑡ℎ: 

𝑢𝑡ℎ = √
2(𝑃𝑖𝑛𝑗−𝑃𝑏𝑎𝑐𝑘)

𝜌
           (23) 

𝐶𝑣 =
𝑢𝑒𝑓𝑓

𝑢𝑡ℎ
            (24) 

The effective velocity can be calculated by dividing the momentum flux by the mass flow as was 

established by equation (20) 

The third flow coefficient, 𝐶𝑎, is used to evaluate the reduction of the effective area with regard to 

the geometric one due to the presence of vapour bubbles into the flow that reach the orifice outlet 

𝐶𝑎 =
𝐴𝑒𝑓𝑓

𝐴𝑜
            (25) 

Flow parameters are related to each other by means of equation (26): 

𝐶𝑑 = 𝐶𝑣𝐶𝑎            (26) 

6.2 Analysis of results.  

6.2.1 Comparison in terms of mass flow, momentum flux, effective velocity and non dimensional 

parameters. 

Fig. 4 shows the results of the CA155 nozzle for the three different values of rounding radius where, 

for the CA155_r30 nozzle, the results coincide with those presented previously. The results are shown 

in terms of mass flow, momentum flux, effective velocity and the three non-dimensional coefficients 



obtained according to the definitions made in Section 6.1. The mass flow, momentum flux and 

effective velocity results show the same behaviour as the one described in Sections 5.1 and 5.2. 

When the three cases are compared, the strong influence of the rounding radius at the orifice inlet is 

highly noticed: the lower the radius, the lower the values obtained for the three variables, drawing 

differences among them up to a 10% in terms of mass, momentum flux and effective velocity. This 

is explained due to the higher pressure losses the flow suffers the lower the rounding radius gets, 

since this situation leads to a more important flow detachment. These higher losses are translated into 

a lower discharge coefficient, as the lower part of the figure shows. On the other hand, the discharge 

coefficient shows a peculiar behaviour due to the mass flow collapse. From the highest value reached 

in the non-cavitating zone, there is an abrupt fall when the cavitation inception conditions are reached. 

These critical conditions are shown in Table 3 in terms of discharge pressure and Kcrit where, in 

addition to the three CA155 nozzle cases, the other simulated nozzles whose results are commented 

along this section also appear. From these results it can be derived that the proneness of a nozzle to 

cavitate is enhanced the lower its rounding radius. The reason has to do with what was previously 

commented: the more important detachment of the flow when the radius is reduced induces a higher 

flow recirculation and a more drastic reduction of the pressure in the critical zone. 

With regard to the area coefficient, it shows values around the unity in non-cavitating conditions for 

the three cases, whereas it experiences a strong diminution once the cavitation appears. The opposite 

is true for the velocity coefficient, which experiences an important increase from the critical 

conditions that grows larger as the cavitation is intensified. 

The same kind of information is represented for the nozzles CA145_r5, CA145_r13 and CA145_r30 

(Fig. 5) and CA60_r5, CA60_r13 and CA60_r30 (Fig. 6). In qualitative terms, the behaviour observed 

when comparing the three hydro-erosion levels for a certain inclination angle is the same that was 



previously described for the CA155 series: the lower the rounding radius, the higher the losses and 

the more prone to cavitate the nozzle is (Table 3). In quantitative terms, if the parameters evaluated 

for the three inclination levels are compared, it can be appreciated that in general terms the CA60 

series show the higher values of mass flow, momentum flux and effective velocity (and their 

corresponding non-dimensional parameters), followed by the CA145 series and finally the CA155 

series. However, depending on the value of the rounding radius, the differences among nozzles are 

reduced. A clear example of this fact is the experimental comparison performed in Section 5.1 among 

the CA155_r30 and CA60_r5 nozzles, where it had already been noted that the differences are 

reduced due to the opposed effects of the inclination and the rounding radius. This can be clearly 

appreciated in Figures 7 to 10, where the mass flow, discharge coefficient, momentum flux and 

effective injection velocity are respectively represented for all the nozzles. As it has already been 

mentioned, the highest values are registered for the nozzles of the CA60 series, followed by the 

CA145 and the CA155. If the extreme cases are compared (CA60_r30, more favourable from the 

point of view of the flow; and CA155_r5, less favourable from that same point of view) and the 

differences are computed for a backpressure value of 9 MPa (√∆𝑃 = 12.2 𝑀𝑃𝑎0.5), which could be 

a characteristic engine operating point, differences of 16% in terms of discharge capacity (mass flow) 

and up to an 8% in terms of effective velocity are observed. However, out of these extreme values, at 

intermediate levels, situations can be found in which a nozzle with higher inclination but a larger 

radius show better performance than a nozzle with lower angle and small radius. That is the case of 

the CA155_r30 and CA145_r5 nozzles, for instance. 

Fig. 11, in its upper side, shows a map of discharge coefficient as a function of the orifice angle and 

the rounding radius for the reference case previously considered (Pinj = 160 MPa, Pback = 9 MPa). The 

discharge coefficient has been chosen since it includes all kinds of losses. It is clearly noticed that the 

highest value of this coefficient is obtained for the lower inclinations and higher values of radius. The 



lowest value would then be obtained for the higher inclinations and lower entrance radius. 

As it has been said, the critical cavitation conditions are strongly dependent on both geometrical 

parameters. In order to condense the information provided in Table 3 about the critical cavitation 

number, the variation of Kcrit as a function of the inclination and the rounding radius has been 

represented in the lower part of Fig. 11. The map clearly shows how the less cavitating configurations 

(lower Kcrit) would be found for the nozzles with lower inclinations and higher entrance radius. 

6.2.2 Cavitation morphology 

In Figs. 12 and 13 the vapour field in a mid-section of the orifice is represented, associated to the 

mass flow results previously analysed for nozzles CA155_r13 and CA60_r13, respectively. An 

interesting result that had already been noted in the past ([13]) is the fact that the first appearance of 

vapour (incipient cavitation) takes place before the mass flow collapse. It can be said that the entity 

of the generated vapour is not enough to produce that collapse. From that value of backpressure, as 

the cavitation intensity grows as the backpressure is reduced, extending the vapour from the upper 

corner of the entrance, where it is originated, towards the orifice outlet. The most important difference 

between the two nozzles is the region in which cavitation appears. In the case of the CA155 nozzle, 

it is originated in the upper radius of the orifice inlet, whereas in the case of the CA60 nozzles the 

opposite takes place and cavitation appears in the lower radius at the orifice inlet. This difference also 

generates a variance in the way the vapour is extended as the backpressure is reduced. In the case of 

the CA155 nozzle, the vapour extends along the wall and stuck to it, whereas in the CA60 nozzle 

there is a tendency of the generated vapour to extend towards the centre of the orifice. The reason 

why the point of origin of cavitation is different in both nozzles can be explained from the fluid 

streamlines representation shown in Fig. 14 for both cases. As it can be clearly seen, in the case of 

the CA155 nozzle the orifice inclination favors a detachment of the flow that mainly comes from the 



upper part of the nozzle, channeled between the needle wall and the nozzle seat. That detachment 

takes place in the upper corner of the inlet. It is in this zone where there appear some local vortices 

with flow acceleration that imply a pressure reduction down to values below the vapour pressure. In 

the case of the CA60 nozzle, the configuration makes the detachment take place in the lower corner 

of the inlet and with less importance on the upper part, or at least not enough to originate cavitation 

in that region. 

 

7. CONCLUSIONS 

The results obtained along the present study make it possible to establish the following conclusions: 

 From the experimental study: 

o The mass flow results show a collapse for all the studied conditions (several 

backpressures for an injection pressure of 160 MPa), indicating cavitation. The nozzle 

with a low inclination angle (CA60_r5) exhibits a higher mass flow than the one with 

the high inclination angle (CA155_r30), justified by the lower deflection suffered by 

the streamlines in the former. 

o With regard to the momentum flux, where there is no collapse, CA60_r5 nozzle also 

shows higher values than the CA155_r30 for all the tested conditions, although the 

differences are small. This is due to the opposed effects of the inclination and the 

rounding radius: whereas a lower inclination favours the flow entrance, a higher radius 

minimises the flow detachment at the inlet. A higher influence of the inclination than 

that of the rounding radius is thus noted. 

o As far as the effective injection velocity is concerned, the cavitation phenomenon 



tends to increase its values. Therefore, the CA155_r30 nozzle, which exhibited a 

higher cavitation intensity as confirmed by the computational results, shows higher 

velocities than the CA60_r5 nozzle. In any case, the differences are small since this 

parameter is derived from the former two. 

 From the code validation: 

o The comparison against the experimental results shows a reliability level of around 4 

or 5%, consistent among nozzles, which makes it possible to quantitatively assess the 

differences among nozzles along the whole study. 

o The simulations have been extended to the non-cavitating conditions, making it 

possible to determine the cavitation critical conditions. The differences in terms of 

mass flow, momentum flux and effective velocity among nozzles in this region are 

small. However, important differences are noticed with regard to the critical cavitation 

conditions, highlighting the higher proneness of the CA155_r30 nozzle to cavitate. 

 From the computational results: 

o Simulations have been performed combining three levels of inclination angle and three 

levels of rounding radius, leading to 9 different nozzles that have been evaluated. 

Comparisons have been made not only in terms of mass flow, momentum flux and 

effective velocity, but also in terms of the non-dimensional parameters that 

characterize the flow and its losses, namely discharge coefficient, area coefficient and 

velocity coefficient. 

o The general behaviour of the variables observed from the experimental tests and the 

code validation are confirmed by the simulations. 



o A strong influence of the rounding radius has been noted, leading to differences up to 

10% in terms of mass flow, momentum flux and effective velocity among the extreme 

cases. This can be justified by the flow detachment, enhanced by low values of the 

radius. The analysis of the critical cavitation conditions also make it possible to state 

that a nozzle is more prone to cavitate the lower its rounding radius. 

o With regard to the influence of the inclination angle, the CA60 series show higher 

values of mass flow, momentum flux and effective velocity than the CA145 and the 

CA155 series in general, confirming the trend that had already been observed 

experimentally. 

o When assessing the combined influence of the inclination angle and the rounding 

radius, that lead to opposed effects on the flow, if the extreme cases (CA60_r30 nozzle 

versus CA155_r5) are compared, differences up to a 16% in terms of mass flow and 

8% in terms of momentum flux are observed. However, due to the opposed effects of 

these variables, the differences among series are reduced for intermediate cases, even 

leading to situations in which a nozzle with a higher inclination but a large radius 

exhibit a better performance than a nozzle with a lower angle and small radius. 

o As it was expected, the cases with lower inclination angles and higher rounding radius 

lead to the higher discharge coefficient values and the less cavitating configurations. 

o As far as the cavitation morphology is concerned, it is important to note that in the 

case of a high inclination angle, cavitation is originated at the upper corner of the 

orifice entrance, and its evolution takes place along the wall when the cavitation 

intensity is enhanced. However, in the case of a low inclination angle, cavitation starts 

at the lower corner of the orifice entrance, and it tends to displace towards the orifice 



centre when the cavitation intensity grows larger. 
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Figure 1: Sketch of the nozzle configuration including the geometrical definition of the parameters 

investigated. 

Figure 2: Momentum test rig. 

Figure 3: Comparison between experimental and numerical results for the nozzles CA60_r5 and 
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Figure 4: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 

and non-dimensional flux parameters in the lower part for the Nozzles CA155 at 160 MPa of 

injection pressure and different backpressures. 

Figure 5: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 

and non-dimensional flux parameters in the lower part for the Nozzles CA145 at 160 MPa of 
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Figure 6: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 

and non-dimensional flux parameters in the lower part for the Nozzles CA60 at 160 MPa of 
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Figure 11: Discharge coefficient as a function of orifice inclination and rounding radius for the 

injection condition Pinj=160 MPa and Pback= 9MPa (upper part) and Kcrit as a function of the half of 

the orifice angle (CA/2) and the rounding radius. 

Figure 12: Vapour field and mass flow for the nozzle CA155 for the injection pressure of 160 MPa 

and different backpressures. 

Figure 13: Vapour field and mass flow for the nozzle CA60 for the injection pressure of 160 MPa 
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Figure 14: Differences in streamlines between nozzles CA145_r13 and CA60_r13 

 

 

  



 
N

o
m

en
cl

a
tu

re
 o

f 

N
o

zz
le

 

N
o

zz
le

 D
ia

m
et

er
 

μ
m

] 

N
o

zz
le

 o
ri

fi
ce

 A
n

g
le

  
  

  
  

  
  

  
  

( 
C

A
)[

d
eg

re
e]

 

R
o

u
n

d
in

g
 r

a
d

iu
s 

  
  
  

  
 

(r
 )

 [
μ

m
] 

O
ri

fi
ce

 l
en

g
th

 (
L

) 

[m
m

] 

T
es

te
d

 

ex
p

er
im

en
ta

ll
y
 (

E
) 

o
r 

si
m

u
la

te
d

  
(S

) 

CA60_r5 170 60º 5 1 E and S 

CA60_r13 170 60º 13 1 S 

CA60_r30 170 60º 30 1 S 

CA145_r5 170 145º 5 1 S 

CA145_r13 170 145º 13 1 S 

CA145_r30 170 145º 30 1 S 

CA155_r5 170 155º 5 1 S 

CA155_r13 170 155º 13 1 S 

CA155_r30 170 155º 30 1 E and S 

 

Table 1: Nozzle's geometrical characteristics. 

 

 

Injection Pressure [MPa] Backpressure [MPa] 

160 

Experiments 3, 5, 7, 9, 10, 12.5, 15 and 17.5 

Simulations 
3,  5, 7, 9, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 

32.5, 35,  37.5, 40, 42.5, 45, 47.5 and 50 

 

 

Table 2: Injection pressure and backpressures used in experiments and in simulations.  

 

 

 

 

 



N
o

m
en

cl
a

tu
re

 o
f 

N
o

zz
le

 

B
a

ck
p

re
ss

u
re

 t
o

 

re
a

ch
 c

a
v

it
a

ti
o

n
 

in
ce

p
ti

o
n

 [
b

a
r]

 

K
 c

ri
ti

ca
l 

[-
] 

CA60_r5 285.80 1.218 

CA60_r13 284.94 1.217 

CA60_r30 260.76 1.195 

CA145_r5 352.89 1.283 

CA145_r13 337.33 1.267 

CA145_r30 319.50 1.250 

CA155_r5 374.89 1.306 

CA155_r13 373.70 1.305 

CA155_r30 361.23 1.292 

 

Table 3: Critical cavitation conditions in terms of backpressures needed for the inception of 

cavitation at maximum needle lift (250µm) and critical cavitation number (Kcrit) 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1: Sketch of the nozzle configuration including the geometrical definition of the parameters 

investigated. 

 

 

Figure 2: Momentum test rig. 

 



 

Figure 3: Model validation for inclination angle 60º and 155º at 160 MPa. 

 

 

 



 

 

Figure 4: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 

and non-dimensional flux parameters in the lower part for the Nozzles CA155 at 160 MPa of 

injection pressure and different backpressures. 

 

 

 

 

Figure 5: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 



and non-dimensional flux parameters in the lower part for the Nozzles CA145 at 160 MPa of 

injection pressure and different backpressures. 

 

 

 

 

Figure 6: Mass flow rate, momentum flux and effective velocity for the nozzle in the upper part, 

and non-dimensional flux parameters in the lower part for the Nozzles CA60 at 160 MPa of 

injection pressure and different backpressures. 

 

 



 

Figure 7: Comparison in terms of mass flow rate for all the nozzles. 

 

 



 

Figure 8: Comparison in terms of discharge coefficient for all the nozzles. 

 

 



 

Figure 9: Comparison in terms of momentum flux for all the nozzles. 

 

 



 

Figure 10: Comparison in terms of effective velocity for all the nozzles. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 11: Discharge coefficient as a function of orifice angle (CA/2) and rounding radius for the 

injection condition Pinj=160 MPa and Pback= 9MPa (upper part).  Kcrit as a function of the half of the 

orifice angle (CA/2) and the rounding radius (lower part). 



 

 

 

Figure 12: Vapour field and mass flow for the nozzle CA155 for the injection pressure of 160 MPa 

and different backpressures. 

 

 

 

 



 

Figure 13: Vapour field and mass flow for the nozzle CA60 for the injection pressure of 160 MPa 

and different backpressures. 

 

 

 

 



 

 

Figure 14: Differences in streamlines between nozzles CA145-r13 and CA60-r13 

 

 


