

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41533-
3_24

http://link.springer.com/chapter/10.1007/978-3-642-41533-3_24

http://hdl.handle.net/10251/65372

Springer

González Huerta, J.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2013). Defining and
validating a multimodel approach for product architecture derivation and improvement. En
Model-Driven Engineering Languages and Systems. Springer. 388-404. doi:10.1007/978-3-
642-41533-3_24.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Defining and Validating a Multimodel Approach for
Product Architecture Derivation and Improvement

Javier González-Huerta, Emilio Insfran, Silvia Abrahão

ISSI Research Group, Universitat Politècnica de València
Camino de Vera, s/n, 46022, Valencia, Spain

{jagonzalez, einsfran, sabrahao}@dsic.upv.es

Abstract. Software architectures are the key to achieving the non-functional
requirements (NFRs) in any software project. In software product line (SPL)
development, it is crucial to identify whether the NFRs for a specific product
can be attained with the built-in architectural variation mechanisms of the
product line architecture, or whether additional architectural transformations are
required. This paper presents a multimodel approach for quality-driven product
architecture derivation and improvement (QuaDAI). A controlled experiment is
also presented with the objective of comparing the effectiveness, efficiency,
perceived ease of use, intention to use and perceived usefulness with regard to
participants using QuaDAI as opposed to the Architecture Tradeoff Analysis
Method (ATAM). The results show that QuaDAI is more efficient and
perceived as easier to use than ATAM, from the perspective of novice software
architecture evaluators. However, the other variables were not found to be
statistically significant. Further replications are needed to obtain more
conclusive results.

Keywords: Software Product Lines; Architectural Patterns; Quality Attributes;
Model Transformations; Controlled Experiment

1 Introduction

The quality attributes of a software system (e.g., performance, modifiability, and
availability) are, to a great extent, permitted or precluded by its architecture [9]. In the
case of Software Product Line (SPL) development, in which a set of software-
intensive systems sharing a common set of features are developed by taking
advantage of the massive reuse of software assets, the product line architecture should
have variation mechanisms that help to achieve a set of explicitly allowed variations
[9]. These variations may include structural, behavioral and of course quality
concerns. The product line architecture should therefore be designed to cover the
whole set of variations within the product line. The product architecture can thus be
derived from the product line architecture by exercising its built-in architectural

variation mechanisms, which support both the functional and non-functional
requirements1 (NFRs) for a specific product.

Once it has been derived, the product architecture should be evaluated in order to
guarantee that it meets the specific requirements of the product under development
[9]. However, in those cases in which levels of quality attributes that fall outside the
original specification of the product line are needed (and cannot be attained by using
product line variation mechanisms), certain architectural transformations may be
applied to the product architecture to ensure that these NFRs are met [5].

Although several methods for architecture derivation and improvement in SPL
development have been proposed over the last few years (e.g., [23], [28], [19], [31],
[6], [8], [29]), there is still a need for approaches that model the impact between
architectural design decisions and quality attributes and use this information to
enhance the quality attribute levels of product architectures. We have addressed this
problem, in previous works [17] [18] [20], by proposing an approach with which to
ensure the desired quality attribute levels for a product by applying architectural
transformations to a product architecture derived from a product line architecture
using a multimodel. This multimodel represents a set of interrelated viewpoints of the
product line and the semantic relationships among elements in each viewpoint. It also
allows the product line architecture, the metrics for its evaluation and the relationships
among architectural transformations and NFRs to be represented.

In this paper, we present the quality-driven product architecture derivation and
improvement (QuaDAI) method, which uses the multimodel to guide the software
architect in the derivation, evaluation and improvement of product architectures in a
model-driven software product line development process. Since in the software
architecture field there is a lack of empirical evidences that support the claimed
benefits and capabilities of methods, techniques and tools [1], we also present the
results of its empirical validation through a controlled experiment. The objective of
this paper is the following: i) to present a method, consisting of a set of activities
carried out by model transformation processes, thus allowing us to derive product
architectures from the product line architecture, to evaluate the product architecture
obtained and, when required, to improve the architectures’ quality attribute levels by
applying pattern-based architectural transformations; and ii) to evaluate the
effectiveness, efficiency, perceived ease of use, usefulness and intention to use of the
method in comparison with the Architecture Trade-Off Analysis Method (ATAM)
[22]. This evaluation was done by conducting a controlled experiment with fifth year
Computer Science students.

The remainder of the paper is structured as follows. Section 2 discusses existing
approaches that deal with the derivation, evaluation and improvement of software
architectures when following a product line approach. Section 3 presents our
multimodel approach for the derivation, evaluation and improvement of product
architectures with the desired quality attributes. Section 4 presents the preliminary

1 Non-Functional Requirements can be defined as the qualities that a product must
have, such as an appearance, or a property of speed or accuracy [30].

results of the validation of the approach through a controlled experiment. Finally, the
conclusions and future work are presented in Section 5.

2 Related Work

Several approaches for the quality evaluation and analysis of SPL architectures have
been proposed over the last few years (e.g., [23], [28], [19], [31]). Among them, Kim
et al. [23] and Olumofin and Misic [28] propose two extensions of ATAM (i.e.,
EATAM [23] and HoPLAA [28]) with which to assess the quality of both product
line and product architectures. Both methods extend ATAM with the qualitative
analytical treatment of variation points.. Although HoPLAA and EATAM consider
the architectural variation points during the architecture design, they lack a systematic
mechanism that can be used to deal with those cases in which the NFRs of the product
under development are not within the range of values permitted by the architectural
variability. In addition, they do not explicitly represent the relationships between the
architectural improvements and the quality attributes. These relationships could be
reused during the application engineering stage each time a new product architecture
needs to be improved, thus facilitating the evaluator task. Neither EATAM nor
HoPLAA have been empirically validated. HoPLAA had been compared with ATAM
in a running example and the validation of EATAM has not yet taken place.

Guana and Correal [19] proposed an approach that generates an evaluation report
with the possible architectural configuration that meets the required quality attributes
of the product under development. They defined relationships between a variability
feature tree and the functional components, and associated these relationships with a
quality scenario, which is analyzed at evaluation time. Roos-Frantz et al. [31] present
an approach that automates the quality analysis of SPLs. This automation is
performed by associating quality information with the variability view (expressed by
means of orthogonal variability models), and by using constraint programming to
perform the analysis tasks. The problem is partially addressed by the approaches
presented in both [31] and [19]. They explicitly define the relationships amongst
system views and use the information to predict the quality attribute levels of the
product under development. However, they do not provide mechanisms to measure
whether these quality attribute levels are present in the software artifacts. These
approaches can also predict the quality attributes of a configuration, but they cannot
deal with products with quality attribute levels that are not allowed by the product
architecture variation mechanisms. With regard to validation, the approach in [31] has
been theoretically but not empirically validated.

Several other approaches deal with the automatic derivation of product
architectures in SPL development (e.g., [6], [8], [29]). In the approach by Botterweck
et al. [6], the product architectures are produced by means of an ATL model
transformation process, which takes as input a domain architecture model and an
application feature model and generates an application architecture model, by simply
copying the software components. Similarly, Cabello et al. [8] produce application
architectural models by means of a QVT transformation. The transformation takes as

input the variability view expressed in a feature model and the modular view of the
architecture, and generates the PRISMA component and connector architectural view.
Finally, Perovich et al. [29], automate the derivation of product architectures by
taking as input a feature configuration model. The transformation encapsulates the
knowledge of how to build the product architecture when the corresponding feature is
present in the feature configuration model. However, when deriving the product
architecture these approaches do not take into account quality attribute requirements
and they do not consider the application of patterns or architectural transformations to
improve the product architectures obtained. None of the aforementioned approaches
has been empirically validated.

In summary, there is a need for empirically validated approaches that model the
impact between architectural design decisions and quality attributes and use this
information to derive the product architectures and to evaluate and enhance their
quality attribute levels. The use of the multimodel in these tasks allows the knowledge
to be reused in order to facilitate the evaluation tasks, providing mechanisms that
automate the selection of the architectural transformations that best fit the NFRs.

3 QuaDAI: Architecture Derivation and Improvement

QuaDAI is a method for the derivation, evaluation and improvement of product
architecture that defines an artifact (the multimodel) and a process consisting of a set
of activities conducted by model transformations. QuaDAI relies on a multimodel
[17] that allows the explicit representation of different viewpoints of a software
product line and the relationships among them.

3.1 A Multimodel for Specifying SPLs

A multimodel is a set of interrelated models that represents the different viewpoints of
a particular system. A viewpoint is an abstraction that yields the specification of the
whole system restricted to a particular set of concerns and it is created with a specific
purpose in mind. In any given viewpoint it is possible to make a model of the system
that contains only the objects that are visible from that viewpoint [4]. Such a model is
known as a viewpoint model, or a view of the system from that viewpoint. The
multimodel also allows the definition of relationships among model elements in those
viewpoints, which captures the missing information that the separation of concerns
could lead to. The multimodel can be used for the specification of single systems,
families of systems and in this work is used for the representation of an SPL. The
multimodel plays two different roles in SPL development: i) in the domain
engineering phase, in which the core asset base is created, the multimodel explicitly
represents the different viewpoints of the SPL and the relationships among these
views; ii) in the application engineering phase, in which the final product is derived,
the relationships drive the different model transformation processes that constitute the
production plan used to produce the final product. The concepts introduced in this
section are illustrated through the use of a running example: a software product line

from the automotive domain which comprises the safety-critical embedded software
systems responsible for controlling a car.

The multimodel used to specify SPLs is composed of (at least) four interrelated
viewpoints: functional, variability, quality, and transformation:

 The variability viewpoint expresses the commonalities and variability within the
product line. Its main element is the feature, which is a user-visible aspect or
characteristic of a system [9]. The variability view of the multimodel has been
defined using a variant [11] of the cardinality-based feature model [16], defined
specifically for application in a model-driven product line development context
(see Fig. 1 top left).

 The functional viewpoint expresses the structure of a family of systems
represented by the SPL architecture and the core assets (e.g., software components)
that satisfy the requirements of the different features (see Fig. 1 top right). The
functional view has been defined using the Architectural Analysis and Design
Language (AADL) [15]. AADL defines a textual and graphical representation of
the runtime architecture of software systems as a component-based model in terms
of tasks, their interactions and the hardware platform on which the systems are
executed.

 The quality viewpoint expresses the decomposition of quality characteristics for
SPL into sub-characteristics, quality attributes, and metrics as well as the impacts
and constraints among quality attributes. It is represented by a quality model for
software product lines [18]. This model extends the ISO/IEC 25010 (SQuaRE)
standard [21], thus providing the quality assurance and evaluation activities in SPL
development (see Fig. 1 bottom left). The multimodel also allows the specification
of product line NFRs as constraints defined over the quality model, affecting
characteristics, sub-characteristics and quality attributes [17]. The definition of
NFRs as constraints in the quality model provides a mechanism for the automatic
validation of their fulfillment once the software artifacts have been obtained.

 The transformation viewpoint contains the explicit representation of the design
decisions realized by the different model transformation processes that integrate
the production plan for a model-driven SPL (see Fig. 1 bottom right). Alternatives
appear in a model transformation process when a set of constructs in the source
model admits different representations in the target model. The application of each
alternative transformation could generate alternative target models that may have
the same functionality but might differ in their quality attributes. In this work, we
focus on architectural patterns [14], [25]. Architectural patterns specify solutions to
recurrent problems that occur in specific contexts [7]. They also specify how the
system will deal with one aspect of its functionality, impacting directly on the
product quality attributes. Architectural patterns can be represented as architectural
transformations, as a means to ensure the quality attributes attained by the product
architectures.

In addition to the viewpoints, the multimodel also allows the definition of
relationships among elements on each viewpoint with different semantics such as

composition, impact or constraint relationships [17]. The composition relationship
allows a model element A in a viewpoint to be decomposed into elements B, C… in
other viewpoints. The impact relationship allows a model element A in a viewpoint
impact on an element B in other viewpoint (e.g., an entity in a viewpoint impacts
positively or negatively on a quality attribute from the quality viewpoint). These
impact relationships may require additional attributes in which to store their
quantification. Finally, constraint relationships allow more complex relationships at
multimodel level to be expressed using an OCL-like syntax.

Fig. 1. SPL multimodel overview

In particular, the following types of relationships among elements in the different
viewpoints can be defined in the multimodel:

 Composition relationship: A composition relationship can be defined between
elements in the functional and variability viewpoints. A set of elements in the
functional viewpoint can be combined in order to fulfill the requirements of one or
more features (in Fig. 1 the ABS feature in a car is fulfilled by the
antilock_braking_system component).

 Impact relationship: A composition relationship can be defined between elements
in the transformation and quality viewpoints. The selection of a particular
transformation in the transformation viewpoint may affect one or more NFRs
defined over the quality model (in Fig. 1 the application of the Homogenous
Redundancy pattern impacts positively on the product fault tolerance). A domain
expert therefore establishes the relationship among alternative transformation and
quality attributes by determining how a given transformation supports a given
quality attribute, based on empirical evidence or on his/her experience. This
tradeoff analysis is performed by applying the Analytic Hierarchy Process (AHP)
[32]. AHP is a decision-making technique used to resolve conflicts in which it is
necessary to address multi-criteria comparisons. The result of the AHP is a weight
that shows the relative support of an alternative with regard to a given quality
attribute, and it is stored in the quantification attributes of the impact relationship
(e.g., in Fig. 1, the triple modular redundancy pattern supports latency time with a
relative weight of 0.20).

On the one hand, the relationships among the functional, variability, and quality
viewpoints can be used to drive the product configuration, the core asset selection and
the product architecture derivation processes. On the other hand, the relationships
defined between the transformation and quality viewpoints allow the use of the
quality attributes as a decision factor when choosing from alternative pattern-based
architectural transformations.

3.2 QuaDAI Process

The QuaDAI process includes different activities in which the multimodel is used to
drive the model transformation processes for the derivation, evaluation and
improvement of product architectures in SPL development. The activity diagram of
the process supporting the approach is shown in Fig. 2 (a). It consists of the product
architecture derivation from the product line architecture in the Product Architecture
Derivation activity, its evaluation using the Product Architecture Evaluation activity
and, in those cases in which the NFRs cannot be attained, its transformation through
the application of pattern-based architectural transformations in the Product
Architecture Transformation activity. Once this latter activity has been carried out,
the resulting architecture must be evaluated again using the Product Architecture
Evaluation Activity.

Fig. 2. Overview of the QuaDAI process

Product Architecture Derivation. The product architecture is derived from the
product line architecture in the Product Architecture Derivation activity, taking as
input the product line architecture, the variability and functional viewpoints of the
multimodel, and the product configuration, containing both the product specific
features and the product-specific NFRs selected by the application engineer (see Fig.
2(b)). In this activity, the decision as to which functional components should be
deployed in the product architecture is made by considering the following: i) the
composition relationships between features and functional components; ii) the impact

relationships between functional components and NFRs; and iii) the impact
relationships between features and NFRs. The output of this activity is a first version
of the product architecture which must be evaluated in order to analyze the attainment
of non-functional requirements.

Fig. 3. Excerpt of the Product Line Architecture

Fig. 4 shows the product architecture generated by the product architecture derived
from the product line architecture (shown in Fig. 3) for the automotive example when
the application engineer selects only the ABS feature and introduces the product
specific NFRs, which come from the system’s requirements, demanding a fault
tolerance of the ABS greater than 99.5% and restricting the ABS latency time to 5ms.

Fig. 4. Portion of the Product Architecture showing the ABS system

Product Architecture Evaluation. In the second model transformation process, the
Product Architecture Evaluation applies the software measures contained in the
quality viewpoint of the multimodel to a product architecture in order to evaluate
whether or not it satisfies the desired NFRs. This transformation takes as input the
product architecture derived, the product specific NFRs and the quality viewpoint of
the multimodel (quality model) containing the metrics to be applied in order to
measure the NFRs, generating as output an evaluation report (see Fig. 2(b)). The
evaluation for the example architecture shown in Fig. 4 may conclude that the
architecture meets the latency NFR but that the fault tolerance NFR is not achieved,
and architectural transformations may thus be required.

Product Architecture Transformation. Finally, in those cases in which the non-
functional requirements cannot be achieved by exercising the architectural variability
mechanisms, in the third activity, the Product Architecture Transformation applies
pattern-based architectural transformations to the product architecture. The inputs for
this activity are the product architecture, the relative importance of the different NFRs

and the transformation viewpoint of the multimodel, containing the representation of
the transformations to be applied. It generates a product architecture as output in an
attempt to cover the NFRs prioritized by the architect (see Fig. 2(b)). The architect
introduces the relative importance of each NFR that the product must fulfill as
normalized weights ranging from 0 to 1 as external parameters when executing the
transformation. The transformation process uses the relative importance of each NFR
and the impact relationships among transformations and quality attributes to select the
architectural transformation to be applied. In the automotive example, if the architect
selects both the latency and the fault tolerance as being of equal importance (i.e., with
a weight of 0.5 for each one) the transformation process will select the Homogenous
Redundancy Pattern (HR). The architecture resulting from the application of the HR
pattern is shown in Fig. 5. This activity can be performed until all the desired quality
attributes for the product are fulfilled.

Fig. 5. Product architecture after applying the HR pattern

4 Validation

A controlled experiment was conducted to empirically validate QuaDAI comparing
the efficiency, effectiveness and perceived satisfaction of participants using this
method against ATAM, a well-known and widely-used software architecture
evaluation method [26]. We focus on two activities from the QuaDAI process that
occur after deriving the product architecture: Product Architecture Evaluation and
Product Transformation. These activities deal with the evaluation and improvement
of product architectures, which are aligned with the main purpose of ATAM.

4.1 Experiment Planning

The controlled experiment was designed by considering the guidelines proposed by
Wohlin et al. [34]. According to the Goal-Question Metric (GQM) paradigm [3], the

goal of the experiment is to analyze the Quality-Driven Architectural Improvement
method (QuaDAI) and ATAM for the purpose of comparing them with respect to
their effectiveness, efficiency, ease of use, usefulness and intention of use in order to
obtain software architectures that meet a given set of quality requirements from the
viewpoint of novice software architecture evaluators.

The context of the experiment is the quality evaluation of two software
architectures carried out by novice evaluators. This context is determined by the
software architectures to be evaluated, the architecture evaluation methods to be
applied and the subject selection.

The software architectures to be evaluated are the software architecture of an
Antilock Braking System (ABS System) from an automotive control system and the
software architecture of the Savi application (http://goo.gl/1Q49O), a mobile
application for emergency notifications. The architecture of the ABS System,
represented through its component and connector view, was selected as experimental
object O1, and the Savi architecture, represented through the deployment view, was
selected as experimental object O2. We also selected a set of four architectural
patterns that can be applied to improve the quality attribute levels of interest in each
of the product architectures. The experimental tasks include the evaluation of these
quality attributes by means of two software metrics in each experimental object
before and after applying the architecture evaluation methods. Thirty-one subjects
were selected from a group of fifth-year Computer Science students at the Universitat
Politècnica de València who were enrolled on an Advanced Software Engineering
course from September 2012 to January 2013, where they acquire knowledge and
skills on software architecture evaluation. In particular, they received a training of
eight hours on this topic before the experiment took place. The evaluation methods
being compared are, on the one hand our proposal described in Section 3 (QuADAI)
and on the other, the Architecture Trade-Off Analysis Method (ATAM). ATAM is
used to assess the consequences of architectural design decisions in the light of
quality attributes [22]. The main goals of ATAM are to elicit and refine the
architecture’s quality goals; to elicit and refine the architectural design decisions and
to evaluate the architectural design decisions in order to determine whether they
address the quality attribute requirements satisfactorily. ATAM has been selected for
comparison with QuaDAI since i) it is a widely used software architecture evaluation
method ii) it is able to deal with multi-attribute analysis [1] and iii) it can be used to
evaluate both product line and product architectures at various stages of SPL
development (conceptual, before code, during development, or after deployment) [9].

The independent variable of interest in the study is the use of each method
(ATAM or QuaDAI). There are two objective dependent variables: effectiveness of
the method, which is calculated as a function of the Euclidean Distances between the
NFR values attained by the architecture being evaluated by the subject and the
optimal NFR values that can be attained; and efficiency, which is calculated as the
ratio between the effectiveness and the total time spent on applying the evaluation
method. There are also three subjective dependent variables: perceived ease of use,
which refers to the degree to which evaluators believe that learning and using a
particular method will be effort-free, perceived usefulness, which refers to the degree

to which evaluators believe that using a specific method will increase their job
performance within an organizational context and intention to use, the extent to which
a evaluator intends to use a particular method. This last variable represents a
perceptual judgment of the method’s efficacy – that is, whether it is cost-effective and
is commonly used to predict the likelihood of acceptance of a method in practice.
These three subjective variables were measured by using a Likert scale questionnaire
with a set of specific closed questions related to each variable. The aggregated value
of each subjective variable was calculated as the mean of the answers to the variable-
related questions.

Effectiveness is calculated by applying the formula (1) to normalized euclidean
distances. The normalization is calculated by applying the formula (2) to the
euclidean distances calculated by applying the formula (3) and returns a value
ranging from 0 to 1. The normalization is required for avoiding the effects of the
scales of the metrics that measure each NFR. The optimal function in formulas (1)
and (2) returns the optimal values of the NFRs that can be achieved for a given
experimental object. The Max function returns the maximal distance D observed for a
given experimental object.

ሻ݌ሺݏݏ݁݊݁ݒ݅ݐ݂݂ܿ݁ܧ ൌ 1 െ ,݌ሺܦ൫݉ݎ݋ܰ ሻ൯ (1)ݐሺܱܾ݆݈݁ܿܽ݉݅ݐ݌݋

,݌ሺܦ൫݉ݎ݋ܰ ሻ൯ݐሺܱܾ݆݈݁ܿܽ݉݅ݐ݌ܱ ൌ
,݌ሺܦ ሻሻݐሺܱܾ݆݈݁ܿܽ݉݅ݐ݌ܱ

ሻݐሺܱܾ݆݁ܿݔܽܯ
 (2)

,݌ሺܦ ሻݍ ൌ ඩ෍ሺ݌௜ െ ௜ሻଶݍ
௡

௜ୀଵ

 (3)

The hypotheses of this experiment are:

─ H10: There is no significant difference between the effectiveness of QuaDAI
and ATAM / H1a: QuaDAI is significantly more effective than ATAM.

─ H20: There is no significant difference between the efficiency of QuaDAI and
ATAM / H2a: QuaDAI is significantly more efficient than ATAM.

─ H30: There is no significant difference between the perceived ease of use of
evaluators applying QuaDAI and ATAM / H3a: QuaDAI is perceived as easier
to use than ATAM.

─ H40: There is no significant difference between the perceived usefulness of
QuaDAI and ATAM / H4a: QuaDAI is perceived as more useful than ATAM.

─ H50: There is no significant difference between the intention to use of QuaDAI
and ATAM / H5a: QuaDAI is perceived as more likely to be used than ATAM.

4.2 Experiment Operation and Execution

The experiment was planned as a balanced within-subject design with a confounding
effect, signifying that the same subjects executed both methods with both
experimental objects in different order. We established four groups (each group
applying one method with one object) and the subjects were randomly assigned to

each group. Table 1 shows the schedule of the experiment in more detail.
Several documents were designed as instrumentation for the experiment: slides for

training session, an explanation of the methods, forms for gathering data, the patterns
description, the metrics documentation, and two questionnaires. Excel spread sheets
were also designed in order to automate the metrics calculation and the QuaDAI’s
trade-off among architectural transformations. The instrumentation of this experiment
is available at http://www.dsic.upv.es/~jagonzalez/MODELS2013/instrumentation.

A pilot experiment was conducted beforehand to assess the experimental material
and to estimate the time required to accomplish the tasks. This took place with four
Computer Science PhD students from the Universitat Politecnica de Valencia. The
students completed the experimental tasks in less than an hour. This pilot experiment
also allowed us to collect information on how to improve the instrumentation.

The experiment was planned to be conducted in three sessions, Table 1 shows the
details for each day. On the first day, the subjects were given the complete training on
the methods to be applied and also on the tasks to be performed in the execution of
the experiment. On the second and third days the subjects were given an overview of
the complete training before applying one evaluation method on an experimental
object (O1 or O2). We established a slot of 60 minutes without a time limit for each
of the methods to be applied.

The experiment took place in a single room, and no interaction between subjects
was allowed. The questions that arose during the session were clarified by the same
conductors during the experiment.

With regard to the data validation, we verified that one of the subjects had not
completed the 2nd session and that it was therefore necessary to eliminate his first
exercise. Since we had 30 subjects distributed in four groups, it was necessary to
discard two subjects (which were selected randomly) in order to maintain the
balanced design, consisting of a total of 28 subjects, seven in each group.

Table 1. Schedule of the controlled experiment

1st session (120 min) Training on Software Architecture Evaluation using ATAM and QuaDAI
2nd session

(60 + 60 minutes)
Software Architecture Evaluation using ATAM and QuaDAI (short training)

QuaDAI in O1 QuaDAI in O2 ATAM in O1 ATAM in O2
QuaDAI Questionnaire ATAM Questionnaire

2nd session
(60 + 60 minutes)

Software Architecture Evaluation using ATAM and QuaDAI (short training)

ATAM in O2 ATAM in O1 QuaDAI in O2 QuaDAI in O1
ATAM Questionnaire QuaDAI Questionnaire

4.3 Data Analysis

The quantitative analysis was performed by using the SPSS v16 statistical tool using
an α=0.05. A summary of the results of the evaluation is shown in Table 2. Mean and
standard deviations have also been used as descriptive statistics for the qualitative
subjective variables Perceived Ease of Use (PEOU), Perceived Usefulness (PU) and
Intention to Use (ITU). The five-point Likert scale ranging from 1 to 5 adopted for the
measurement of the subjective variables has also been considered as an interval scale
[9]. The cells highlighted in bold type in Table 2 show the best values for each of the

statistics.
was with

QuaDAI
ATAM

QuaDAI
ATAM

The sa
test to ch
were nee
test. The
method a

The bo
subject p
it was per
subjects t

In orde
Withney
distribute
Mann-Wh
PU and 0
0.015. Th
PEOU is
and H30
the Effect
QuaDAI,

 These result
QuaDAI in al

Effectiv
Mean
0.68
0.63

Perceived Ea
(PEO

Mean
3.98
3.50

ample size (<
heck whether
eded to test th

variables tha
are shown in b

QuaDAI
ATAM

oxplots in Fig
er method sho
rceived as bei
than ATAM.

Fig

er to check th
non-parametr

ed, and H5 an
hitney test re

0.767 for ITU.
hese results le
s statistically
and accept th
tiveness, PU
 we found tha

ts can be used
lmost all the v

Table

eness
Std. Dev.

0.39
0.36

ase of Use
OU)

Std. Dev.
0.88
0.82

<50) indicated
the data was

he five hypoth
at are normall
bold type.

Table 3. Shap

Effect. Ef
0.000 0.3
0.000 0.3

g. 6 containin
ow that QuaD
ing easier to u

g. 6. Boxplots fo

he statistical si
ric test so as t
nd the 1-tailed
sults were 0.9
 The p-value

ed us to concl
significant, th

heir respective
and ITU, alth

at the differenc

d to interpret
variables.

e 2. Descriptive

Efficiency
Mean Std
0.029 0
0.020 0

Perceived
Usefulness (P

Mean Std
3.80 0
3.72 0

d that it was n
s normally di
heses. Table 3
ly distributed

piro-Wilk norma

ffic. PEO
362 0.0
379 0.02

ng the distribu
DAI was more
use, more usef

for the various d

ignificance of
to verify H1,
d t-test for ind
906 for Effect
obtained from
lude that the d
hus allowing u
e alternative h
hough the subj
ces were not s

that the subj

results

d. Dev. Me
.018 25.
.013 31

PU) I
d. Dev. Me
0.83 3.6
0.73 3.5

necessary to a
stributed so a
3 shows the r

d for a given

ality test results

OU PU
14 0.027
27 0.04

ution of each
 effective and
ful and more

dependent varia

f these tests w
H3, H4, since
dependent sam
tiveness, 0.03

m the 1-tailed t
difference in t
us to reject th
hypotheses. H
jects achieved
statistically sig

ects’ best per

Duration (mi
ean Std
.36 7
.11 9

Intention to Use
ean Std
65 0
55 0

apply the Sha
as to select w
results of the
architecture e

s

ITU
0.024
0.894

dependent va
d efficient, and
likely to be us

ables

we performed t
e they are not
mples to verif
0 for PEOU,
t-test for Effic
terms of Effic
he null hypoth

However, with
d their best re
gnificant (> 0.

rformance

in)
d. Dev.
7.26
9.15

(ITU)
d. Dev.
0.84
0.70

apiro-Wilk
which tests

normality
evaluation

ariable per
d also that
sed by the

the Mann-
t normally
fy H2.The
0.941 for

ciency was
ciency and
theses H10
h regard to
esults with
.05).

4.4 Threats to the Validity

The main threats to the internal validity are: learning effect, subjects’ experience,
information exchange among participants, author’s bias, author influence, the order of
methods in the training and understandability of the documents. Two experimental
objects were used to deal with the learning effect, such as ensuring that each subject
applied each method in a different system and considering all the possible
combinations of both the method order and the experimental objects. There were no
differences on the subjects’ experience since none of them had experience in
architecture evaluations. The subjects were introduced to the tasks and the problems
they would have to solve via their participation in training sessions on both methods.
Information exchange was alleviated by using different experimental objects at the
same time, and monitoring the subjects while they performed the tasks. Since the
experiment was designed to take place in two sessions, the subjects might have been
able to exchange information during the time between the sessions, but this was
alleviated by asking the participants to return the material at the end of each session.
The author’s bias in this experiment may have influenced the results since the training
sessions were conducted by an author of the method. The author influence was
alleviated by not disclosing to the subjects the authorship of the QuaDAI method. The
order of methods during the training and experimental sessions could have also
influenced the results since it was the same in each session. This issue will be
investigated in future replications of this experiment. The understandability of the
material was alleviated by clearing up all the misunderstandings that appeared in the
pilot experiment and experimental sessions.

The main threat to external validity is the representativeness of the results. The
representativeness of the results might be affected by the evaluation design and the
participant context selected. The evaluation design might have had an impact on the
results owing to the kind of architectural models and quality attributes to be
evaluated. We selected two different architectures, from two different domains, two
different NFRs and four different patterns for each experimental object. The
experiment was conducted with students with no experience in architectural
evaluations, and who received only limited training on the evaluation methods.
However, since they were final year students they can be considered as novice users
of architectural evaluation methods, and the next generation of practitioners [24]. The
results could thus be considered as representative of novice evaluators.

The main threats to the construct validity are the measures used to quantify the
dependent variables. Effectiveness was measured using the Euclidean distance which
has commonly been used to measure the goodness of a solution with regard to a set of
opposed NFRs with different purposes [12] [33]. The subjective variables are based
on the Technology Acceptance Method (TAM) [13], a well-known and empirically
validated model for the evaluation of information technologies. The reliability of the
questionnaire was tested by applying the Cronbach test. Questions related to PEOU,
PU and ITU obtained a Cronbach’s alpha of 0.824, 0.870 and 0.831, which is higher
than the acceptable minimum (0.70) [27]. The main threat to the conclusion validity
is the validity of the statistical tests applied. This threat was alleviated by applying a

set of commonly accepted tests employed in the empirical SE community [27].
However, more replications are needed in order to confirm these results.

5 Conclusions and Future Work

In this paper, we have presented QuaDAI, a method for the derivation, evaluation and
improvement of product architectures. This method relies on a multimodel that
represents the different viewpoints of the SPL (functional, quality, variability, and
transformation), allowing the representation of the product line architecture, the
metrics for its evaluation, and the relationships among architectural transformations
and NFRs. The approach has three major benefits: i) it is aimed to automate the
derivation and improvement of product architectures; ii) it provides a systematic
mechanism for dealing with the cases in which the NFRs of the product under
development are not within the range of values permitted by the architectural
variability; iii) and finally, it takes advantage of the reuse of the architectural
knowledge stored in the multimodel for helping designers to decide which
architectural patterns should be applied each time a product architecture needs to be
improved. We believe that QuaDAI is useful to guide novice architects in performing
evaluations as the multimodel explicitly represents the domain expert's knowledge.

We have also validated our method by means of a controlled experiment in which
QuaDAI were compared with a widely-used architecture evaluation method (ATAM).
The results show that QuaDAI is more efficient and is perceived to be easier to use
than ATAM. However, with regard to the effectiveness, PU and ITU, although
QuaDAI achieved better results, we found that the differences were not statistically
significant. This may be because the lack of experience of the subjects in architecture
evaluation. This issue will be examined in future replications of this study.

As future work, we plan to characterize those cases in which the variability
mechanisms are not sufficient to achieve the NFRs for a given product. We also plan
to study other mechanisms for introducing the relative importance (weights) for the
NFRs. Currently, we are using only numbers but we are aware that they may not
capture the full range of real-world impact relationships. We will explore the
definition of functions that could express conditions on such numbers. In addition, we
are aware that not only architectural patterns can be applied to improve a quality
attribute. Our approach may also allow managing other complementary architectural
transformations that may be needed.

We also plan to conduct replications of this experiment by considering a larger
number of subjects with different subject profiles (e.g., practitioners or students with a
higher level of knowledge and skills on architecture evaluation) and different
experimental objects in order to improve the representativeness of our results.

Acknowledgements: This research is supported by the MULTIPLE project (MICINN
TIN2009-13838) and the ValI+D fellowship program (ACIF/2011/235).

References

1. Ali-Babar, M., Lago, P., Van Deursen, A.: Empirical research in software architecture:
opportunities, challenges, and approaches. Empirical Software Engineering. October 2011,
Volume 16, Issue 5, pp. 539-543 (2011)

2. Ali-Babar, M., Zhu, L., Jeffery, R.: A Framework for Classifying and Comparing Software
Architecture Evaluation Methods. In: 15th Australian Software Engineering Conference,
Melbourne, Australia, pp. 309-318 (2004)

3. Basili, V.R., Rombach, H.D.: The TAME project: towards improvement-oriented software
environments. IEEE Transactions on Software Engineering 14 (6), pp. 758–773 (1988)

4. Barkmeyer, E.J., Feeney, A.B., Denno, P., Flater, D.W., Libes, D.E., Steves, M.P,
Wallace, E.K.: Concepts for Automating Systems Integration NISTIR 6928, National
Institute of Standards and Technology, U.S. Dept. of Commerce (2003)

5. Bosch, J.: Design and Use of Software Architectures. Adopting and Evolving Product-Line
Approach. Addison-Wesley, Harlow (2000)

6. Botterweck, G., O'Brien, L., Thiel, S.: Model-driven derivation of product architectures.
In: 22th Int. Conf. on Automated Software Engineering, New York, USA, pp 469-472
(2007)

7. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
software architecture, Volume 1: A System of Patterns. Wiley (1996).

8. Cabello, M.E., Ramos, I., Gómez, A., Limón, R.: Baseline-Oriented Modeling: An MDA
Approach Based on Software Product Lines for the Expert Systems Development. In: 1st
Asia Conference on Intelligent Information and Database Systems, Vietnam (2009)

9. Carifio, J., Perla, R.J.: Ten Common Misunderstandings, Misconceptions, Persistent Myths
and Urban Legends about Likert Scales and Likert Response Formats and their Antidotes.
Journal of Social Sciences, Volume 3, Issue 3, pp. 106-116 (2007)

10. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, Addison-
Wesley, Boston (2007)

11. Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress
report. In: Int. Workshop on Software Factories, San Diego-CA (2005)

12. Datorro, J.: Convex Optimization & Euclidean Distance Geometry. Meboo Publishing
(2005)

13. Davis, F.D.: Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS Quarterly 13 (3), pp. 319–340 (1989)

14. Douglass, B.P.: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. Addison-Wesley, Boston (2002)

15. Feiler, P.H., Gluch, D.P., Hudak, J.: The Architecture Analysis & Design Language
(AADL): An Introduction. Tech. Report CMU/SEI-2006-TN-011. SEI, Carnegie Mellon
University (2006)

16. Gómez, A., Ramos, I.: Cardinality-based feature modeling and model-driven engineering:
Fitting them together. In: 4th Int. Workshop on Variability Modeling of Software intensive
Systems, Linz, Austria (2010)

17. Gonzalez-Huerta, J., Insfran, E., Abrahao, S.: A Multimodel for Integrating Quality
Assessment in Model-Driven Engineering. In: 8th International Conference on the Quality
of Information and Communications Technology (QUATIC 2012), September 3-6, 2012,
Lisbon, Portugal (2012)

18. Gonzalez-Huerta, J., Insfran, E., Abrahao, S., McGregor, J.D.: Non-Functional
Requirements in Model-Driven Software Product Line Engineering. In: 4th Int. Workshop
on Non-functional System Properties in Domain Specific Modeling Languages, Insbruck,
Austria (2012)

19. Guana, V., Correal, V.: Variability quality evaluation on component-based software
product lines. In: 15th Int. Software Product Line Conference, Volume 2, Munich,
Germany, pp. 19.1-19.8 (2011)

20. Insfrán, E., Abrahão, S., González-Huerta, J., McGregor, J.D., Ramos, I.: A
Multimodeling Approach for Quality-Driven Architecture Derivation. In: 21st Int. Conf.
on Information Systems Development (ISD2012), Prato, Italy (2012)

21. ISO/IEC 25000:2005, Software Engineering. Software product Quality Requirements and
Evaluation SQuaRE (2005)

22. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation
(CMU/SEI-2000-TR-004, ADA382629). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, http://www.sei.cmu.edu/publications/documents
/00.reports/00tr004.html (2000)

23. Kim, T., Ko, I., Kang, S., Lee, D.: Extending ATAM to assess product line architecture.
In: 8th IEEE Int. Conference on Computer and Information Technology. Sydney,
Australia, pp. 790-797 (2008)

24. Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenber, J.: Preliminary Guidelines for
Empirical Research in Software Engineering. IEEE Transactions on Software Engineering,
Volume 28, Number 8 (2002)

25. Kruchten, P.B.: The Rational Unified Process: An Introduction. Addison-Wesley (1999)
26. Martensson, F.: Software Architecture Quality Evaluation. Approaches in an Industrial

Context. Ph. D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden (2006)
27. Maxwell, K.: Applied Statistics for Software Managers. Software Quality Institute Series,

Prentice Hall (2002)
28. Olumofin, F.G., Mišic, V.B.: A holistic architecture assessment method for software

product lines. Information and Software Technology, 49 (April 2007), pp. 309-323 (2007)
29. Perovich, D., Rossel, P.O., Bastarrica, M.C.: Feature model to product architectures:

Applying MDE to Software Product Lines. In: IEEE/IFIP & European Conference on
Software Architecture, Helsinki, Findland, pp 201-210 (2009)

30. Robertson, S., Robertson, J.: Mastering the requirements process. New York: ACM Press,
New York (1999)

31. Roos-Frantz, F, Benavides, D., Ruiz-Cortés, A., Heuer, A., Lauenroth, K.: Quality-aware
analysis in product line engineering with the orthogonal variability model. Software
Quality Journal. DOI: 10.1007/s11219-011-9156-5 (2011)

32. Saaty, T.L.: The Analytical Hierarchical Process. McGraw- Hill, New York. (1990)
33. Taher, L., Khatib, H.E., Basha., R.: A framework and QoS matchmaking algorithm for

dynamic web services selection. In: 2nd Int. Conference on Innovations in Information
Technology, Dubai, UAE (2005)

34. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Weslen, A.:
Experimentation in Software Engineering - An Introduction, Kluwer (2000)

