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ABSTRACT 

Plant Synthetic Biology aims to apply engineering principles to plant genetic design. One 

strategic requirement of Plant Synthetic Biology is the adoption of common standardized 

technologies that facilitate the construction of increasingly complex multigene structures at the 

DNA level while enabling the exchange of genetic building blocks among plant bioengineers. 

Here we describe GoldenBraid2.0 (GB2.0), a comprehensive technological framework that aims 

to foster the exchange of standard DNA parts for Plant Synthetic Biology. GB2.0 relies on the 

use of TypeIIS restriction enzymes for DNA assembly and proposes a modular cloning schema 

with positional notation that resembles the grammar of natural languages. Apart from providing 

an optimized cloning strategy that generates fully exchangeable genetic elements for multigene 

engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a 

group of functionally-tested, pre-made genetic modules to build frequently-used modules like 

constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein 

interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of web resources 

which include a publicly available database, tutorials and a software package that provides in 

silico simulations and lab protocols for GB2.0 part domestication and multigene engineering. In 

short, GB2.0 provides a framework to exchange both information and physical DNA elements 

among bioengineers to help implement Plant Synthetic Biology projects. 
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INTRODUCTION 

Synthetic Biology is producing a paradigm shift in Biotechnology based on the introduction of 

engineering principles in the design of new organisms by genetic modification (Check, 2005; 

Haseloff and Ajioka, 2009). Whereas Synthetic Biology has rapidly permeated microbial 

biotechnology, the engineering of multi-celled organisms following Synthetic Biology principles 

is now emerging, and is mainly driven by the so-called top-down approaches where newly 

engineered genetic circuits are embedded into naturally-existing organisms used as a “chassis”. 

The plant chassis offers an extraordinarily fertile ground for Synthetic Biology-like engineering. 

However, technology still faces the huge challenge of performing engineering-driven genetic 

designs. One of the main technological challenges of Plant Synthetic Biology requires the 

construction and transfer of multigene structures to the plant genome. This is putting pressure 

on developing a DNA assembly and transformation technologies adapted to plants. One main 

trend is the use of modular cloning, an engineering-inspired strategy consisting in the fabrication 

of new devices by combining prefabricated standard modules. In a modular strategy, pre-

defined categories, the so-called “parts”, are assembled together following a number of rules 

known as the “assembly standard”. Modular DNA building has been enthusiastically adopted by 

microbial Synthetic Biologists because it offers a number of advantages such as speed, 

versatility, lab autonomy, combinatorial potential, and often lower cost (Ellis et al., 2011). 

Modular methods acquire full potential when parts are easily interchangeable, and when one or 

a few assembly standards are shared by many manufacturers.  

A number of features define the value of a modular cloning method. Speed and efficiency are 

important characteristics, as are also its simplicity and the ability to produce scar-less or scar-

benign assemblies. Moreover, any cloning strategy for Synthetic Biology should enable endless 

reusability; that is, it should ensure that new composite parts themselves can take part in new 

assemblies, therefore allowing unlimited growth. Several modular cloning strategies have been 

proposed in the literature, and each presents advantages and shortcomings. For instance, the 

original BioBrick standard widely used in microbial Synthetic Biology scores a maximum for 

simplicity because a single rule governs all the assemblies (a property known as idempotency). 

However, it is not scar-benign and is only relatively efficient (Knight, 2003). LIC (Aslanidis and 

de Jong, 1990), USER’s (Geu-Flores et al., 2007), and specially Gibson Assembly(Gibson et 

al., 2009), are highly efficient DNA assembly methods, although they are neither strictly modular 

nor widely adopted by plant biotechnologists. In sharp contrast, Gateway Cloning (Hartley, 

Temple et al. 2000) is of widespread use in plant laboratories (Karimi et al., 2002; Karimi et al., 

2007; Estornell et al., 2009). Recently, MultiRound Gateway technologies opened Gateway 

capabilities to the sequential delivery of multiple transgenes by multiple rounds of recombination 

reactions (Chen et al., 2006; Vemanna et al., 2013). In general, Gateway-based technologies 

are highly efficient. Unfortunately, they are not always scare-benign as they leave 21 bp scars 

between building blocks. Other technologies involving rare cutters or homing endonucleases-
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based strategies have also been developed and adapted to plant transformation (Lin et al., 

2003; Dafny-Yelin and Tzfira, 2007; Fujisawa et al., 2009), including combinations of homing 

endonucleases and engineered zinc finger nucleases (Zeevi et al., 2012), and iterative in vivo 

assembly rounds of Cre recombinase and phage1 site-specific recombination (Chen et al., 

2010). Many of these techniques can serve as efficient assembly methods for multigene 

engineering. Nonetheless, a pre-requisite to become a standard for Plant Synthetic Biology is 

the development of a set of rules and tools based on those technologies which can be shared 

by as many labs as possible. 

Recently, a very powerful DNA assembly method named Golden Gate was described (Engler et 

al., 2008; Engler et al., 2009). Golden Gate uses Type IIS restriction enzymes to generate four-

nucleotide sticky ends flanking each DNA piece, which can be subsequently joined together 

efficiently by T4 ligase. The assembly reaction is multipartite and is performed in a single tube 

reaction to yield highly efficient scar-less or scar-benign assemblies. This is because Type IIs 

recognition sites are eliminated upon ligation, leaving only four nucleotides seams, which can 

be user-defined. These features make the Golden Gate technology an excellent candidate to 

set up a standardized Modular Cloning system. However, as originally conceived, Golden Gate 

is not a reusable system and cannot, therefore, be used efficiently for multigene engineering.   

Most recently, two strategies were described to enable the reusability of the Golden Gate 

cloning scheme: MoClo (Weber et al., 2011) and GoldenBraid (Sarrion-Perdigones et al., 2011). 

Both methods use the multipartite Golden Gate property to build transcriptional units (TUs) 

starting from basic standard building blocks, and both create specially-designed destination 

vectors to enable Golden Gate-built TUs to be assembled among them. Whereas the 

GoldenBraid minimalist cloning strategy allows multigene growth by enabling binary assemblies 

between TUs, the MoClo destination vectors offer the interesting possibility of performing 

multipartite assemblies at the TU level, be it at the cost of the higher complexity of its vectors 

toolkit.   

The Golden Gate-based strategies MoClo and GoldenBraid are ideal to serve as modular 

assembly systems in Plant Synthetic Biology as they are efficient, reusable and scare-benign. 

To realize their full potential, it is very important to: (i) advance in adopting common standards; 

so building blocks can be shared by as many users as possible; (ii) further optimize the design 

of cloning strategies to improve speed and efficiency; (iii) improve users´ experience by 

generating new hardware (building blocks and modules) and software (databases and assembly 

programs) tools which simplify and facilitate the engineering process. 

To facilitate the implementation of Plant Synthetic Biology approaches, we present GoldenBraid 

2.0 (GB2.0), a new version of the GoldenBraid cloning strategy. In this new version, we defined, 

in concert with MoClo developers, a common assembly standard by establishing arbitrary, yet 

scar-benign, assembly seams within a TU which facilitates part exchangeability. In addition, we 
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optimized the versatility of the GB strategy by enhancing its minimalist design, creating a 

universal part entry vector and simplifying the cloning setup. Finally, we generated a collection 

of pre-made genetic modules and new software tools for the purpose of facilitating the building 

of frequently used genetic structures. In short, we present a new grammar for Plant Synthetic 

Biology and we introduce a comprehensive toolkit to facilitate the use of GB2.0 in composing 

new genetic designs.    
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RESULTS 

The GB2.0 cloning strategy  

To describe the GB2.0 assembly strategy, we follow an analogy with a natural language 

because we believe this comparison closely describes the GB2.0 cloning strategy structure and 

facilitates its understanding. This is because the hierarchical manner in which the different 

building blocks in GB2.0 are combined to form a multigenic structure become analogous to the 

way grammar elements (morphemes, words, phrases and sentences) are combined 

hierarchically to create a composition. Figure 1A provides an equivalence table between the 

elements of English grammar and the elements of the GB2.0 system.  

GBparts: words and phrases. Definition of the GB2.0 grammar 

The first task in upgrading GoldenBraid was to define the minimal standard building blocks in 

GB2.0, the so-called GBparts, which can be considered the “words” of the GB grammar. 

GBparts are fragments of DNA flanked by four nucleotide overhangs. They are stored as inserts 

within a specially designed entry vector (pUPD), from where they are released by cleavage with 

BsaI or BtgZI restriction enzymes to generate the corresponding flanking overhangs. GBparts 

are classified into different classes or categories according to their specific function. Each GB 

class is defined by its flanking four nucleotides which will overhang upon enzyme digestion and 

will determine its position within the TU. We defined eleven standard classes (Figure 2A), which 

correspond to the basic functional categories in a typical TU. The first three categories (01, 02 

and 03) were orderly set in the 5´ non-transcribed region, and correspond to operators and 

promoter regions. Next, we defined seven categories in the transcribed region: one 

corresponded to the 5’ UTR (11); one related to the 3’ UTR (17); four were reserved to the 

coding region (13-14-15-16); an additional class was set as a buffer zone to facilitate, among 

other designs, the construction of non coding TUs intended for gene silencing. Lastly, we set a 

final class (21) for standard 3´ un-transcribed GBparts.  

Besides the basic classes, GB2.0 also employs “superclasses”. For practical purposes, it is 

convenient to group several contiguous basic GBparts which, together, perform a defined 

function (e.g., a complete promoter or a full coding region) in a single DNA element (a GB 

super-part, abbreviated to GBSpart) instead of splitting it into its basic standard parts. This is 

analog to an English phrase, which comprises a group of words that functions as a single unit 

within the hierarchical structure of the sentence syntax (e.g., a subject or a direct complement). 

As with GBparts, GBSparts are ultimately DNA fragments stored within the pUPD vector. Upon 

digestion with BsaI or BtgZI, the whole phrase is released as a solid indivisible unit flanked by 

four nucleotides barcodes. In practice, GBSparts are very convenient as they reduce the 

number of elements that need to be assembled to produce a TU and, therefore, they enhance 

efficiency. Frequently used superclasses are depicted in Figure 2B and C. For example, the 

promoter regions normally employed in traditional cloning correspond to the superclass (01-12). 
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GBparts and GBSparts are components of the GB collection, and their sequence information is 

stored in the GBdatabase.  

GBpart domestication: creating words and phrases 

The process of adapting a DNA building block (GBparts or GBSparts) to the GB grammar is 

referred to as domestication. GB domestication usually involves the PCR amplification of the 

target DNA (word or phrase) using GB-adapted primers (see Figure 3 for details), and the 

subsequent cloning of the resulting PCR fragment into the pUPD vector using a BsmBI 

restriction-ligation reaction. Occasionally, domestication may involve the removal of internal 

BsaI, BsmBI or BtgZI restriction sites. In order to facilitate an eventual automation of the cloning 

process, the GB2.0 system includes a standard procedure for internal site removal. This 

procedure, described in detail in Supplementary Figure 1, involves the amplification of the target 

DNA in separated fragments (named GBpatches) using GB-adapted primers, which incorporate 

single mismatches to disrupt the enzyme target sites. Once amplified, GBpatches are re-

assembled together in a single-tube BsmBI restriction-ligation reaction into pUPD to yield a 

domesticated GBpart or GBSpart.   

The GB2.0 destination plasmids kit 

GoldenBraid destination vectors (pDGBs) are binary vectors that function as recipients of new 

assemblies. Each pDGB contains a GBcassette (the selection lacZ gene flanked by two 

restriction/recognition sites corresponding to two different type IIS enzymes; see Figure 4A). In 

addition, GB2.0 plasmids include a watermark (i.e., a distinctive restriction site flanking the 

GBcassette) to help plasmid identification. Detailed information about the sequence of the 

different GBcassettes is also provided in Figure 4A. The special orientation and arrangement of 

the restriction enzymes defines two levels of pDGBs; the α-level and Ω-level plasmids; which 

are used for the BsaI and BsmBI-GB reactions, respectively. Plasmids also differ in the 

resistance marker that is associated with each level (kanamycin for level α and spectinomycin 

for level Ω, allowing counter-selection). To ensure an endless cloning design, a minimum set of 

four pDGBs is required (pDGBΩ1, pDGBΩ2, pDGBα1 and pDGBα2). Additionally, this set can 

be expanded to eight plasmids to enable assemblies in different orientations (pDGBΩ1R, 

pDGBΩ2R, and pDGB1αR and pDGBα2R). For GB2.0, we constructed two complete sets of 

pDGBs, one based on the pGreen-II backbone and another set based on the pCAMBIA 

backbone. The sequence information of all 16 pDGBs in GB2.0 is uploaded in the GBdatabase. 

The composing strategy: from single words to full compositions 

The GB2.0 cloning strategy comprises two types of assemblies (see the GB2.0 chart in Figure 

1B): multipartite assemblies and binary assemblies. Multipartite assemblies are performed to 

create single TUs. The different GBparts and GBSparts required to produce a well-constructed 

TU are mixed together in a single tube in the presence of a pDGB, the corresponding type IIS 

restriction enzyme/s, and the T4 ligase, and they are incubated in cyclic restriction-ligation 
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reactions. If all the elements are correctly set in the reaction, they orderly assemble within the 

destination vector and generate a so-called expression vector, which harbors the assembled 

composite part. Our pDGBs are binary vectors, therefore the resulting expression clone is ready 

to be used directly for Agrobacterium-mediated plant transformation.  

After building a new TU using a multipartite assembly, the resulting new expression clone can 

be binarily combined with another expression clone to produce increasingly complex multigene 

structures analogously to how sentences are combined to create a written composition. The 

solution provided by GB cloning relies on the special design of GB destination vectors, which 

introduces a double loop (braid) into the cloning strategy. A composite part (a TU or a group of 

TUs) cloned in a given entry vector can be combined only with a second composite part cloned 

in the complementary entry vectors at the same level. This is done in the presence of a 

destination vector of the opposite level and generates a new expression vector at the opposite 

level. A formal notation describing the rules for multipartite and binary assemblies is shown in 

Figure 4B and C.  

By choosing appropriate combinations of expression and destination vectors, it is possible to 

create increasingly complex structures, and the only limits are the capacity of the vector 

backbone or the biological restrictions imposed by bacteria. Moreover, all the new composite 

parts are fully reusable (they can be used directly for part transformation or can be employed in 

new assemblies) and exchangeable (can be combined with the GB modules that are produced 

separately in different labs by following the same assembly rules). 

 

Innovative features in the GB2.0 cloning strategy.  

Besides a proposal for a grammar, GB2.0 introduces a number of new elements that modify the 

original GoldenBraid cloning design to make it simpler and more versatile. Many of the new 

GB2.0 features rely on the design of the plasmid that harbors GBparts and GBSparts, the 

Universal Domesticator (pUPD). The pUPD cassette is designed to serve as a polyvalent entry 

vector for all the different GBparts and GBSparts, regardless of their category. This is because 

the four nucleotide barcodes are incorporated into the GBpart by PCR instead of being 

imprinted in the plasmid itself. Such a universal plasmid enables us to establish a single 

standard protocol for all the domestication parts based solely on its sequence information and 

category specification.  

Another innovative feature of pUPD is the incorporation of both BtgZI and BsaI sites flanking the 

GB cassette. The enzyme target sites are arranged in such way that both BsaI and BtgZI 

digestions release exactly the same piece of DNA which contains the same four nucleotide 

overhangs, regardless of the enzyme used. This opens up the possibility of GBparts being 

assembled into the α and Ω level vectors indistinctly by using either BsaI-reactions or 

BtgZI/BsmBI-reactions, respectively. To enable this option, the GB cassettes in the pDGBs 

have also been redesigned and simplified. In the previous version, the sequences of the 

restriction sites for BsaI (named A, B and C) differed from the restriction sites for BsmBI (named 
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1, 2 and 3). In GB2.0, we made A≡1, B≡2 and C≡3 (see Figure 4A for details). In this way, and 

by making full use of the dual BsaI/BtgZI release from pUPD, any pDGB can be used as a 

recipient of a multipartite assembly which, therefore, makes entry in the GB loop fully 

symmetric. Thus, BsaI reactions are performed to build TUs in α-vectors, and BsmBI/BtgZI 

reactions (BsmBI to open pDGB and BtgZI to release the GBpart) are performed to build TUs in 

Ω-pDGBs. Furthermore by choosing any of the reverse pDGB plasmids as recipients, TU 

orientation can be inverted. This opens up the possibility of creating new binary assemblies in 

all the possible relative orientations. 

The pUPD design provides yet another interesting new feature to GB2.0 as it enables the use of 

a non standard assembly level operating below the standard GBpart level (referred to as the 

GBpatch level). This feature can be most convenient for a number of applications, including the 

generation of seamless junctures, introducing combinatorial arrangements into protein 

engineering, or for promoter tinkering using non standard positions. The process is similar to the 

above-described domestication procedure. An example of the use of the GBpatch level for 

combinatorial antibody engineering is depicted in Supplementary Figure 2. 

Frequently used structures. 

There is a limited number of structural types for the majority of synthetic transcriptional units and 

genetic modules. For instance, many protein-encoding TUs can be constitutively expressed, 

whereas others are regulated by 5´(or 3´) operators. The resulting proteins can be preceded by 

a signal peptide, or may contain C-terminal and N-terminal fusions. Besides, noncoding TUs 

can be used for silencing purposes. To cope with this functional diversity while simplifying the 

users´ toolbox, we defined a group of “Frequently Used Structures”, for which specific pre-

arranged GBparts and GBSparts were developed (depicted in Figure 2B and C). We now go on 

to describe some of the Frequently Used Structures that are currently included in the GB 

system and their associated tools. 

Basic expression cassettes for multigene engineering. 

Multigene engineering may require the use of different regulatory regions to avoid the silencing 

associated with the repeated use of a DNA sequence in the same construct. To meet this 

requirement, we incorporated several regulatory 5´ and 3’ regions into the GB2.0 collection. 

Most 5´ regulatory regions are (01-12) GBSparts comprising a promoter and 5´-UTR, whereas 

3´ regulatory regions are (17-21) GBSparts comprising 3’-UTR and terminator regions. 

According to this basic set up, full (13-16) ORFs can be easily incorporated into tripartite 

reactions to obtain constitutively expressed TUs. In order to undertake Synthetic Biology 

projects, it is very important to have a range of regulatory regions available, and that the 

expression strength provided by each promoter/terminator combination is properly 

characterized so that the multigene expression can be adjusted accordingly. As a first approach 

toward the characterization of a set of basic expression cassettes, we finely characterized the 
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relative promoter/terminator strength of a number of cassettes using the Renilla/Luciferase 

system in transiently-transformed N. benthamiana leaves. The characterization of (01-12) and 

(17-21) regions as individual entities is a relatively straightforward procedure using GB2.0 

cloning. However as the collection grows, the individual characterization of all the possible 

combinations becomes an intractable task. We therefore decided to investigate to what extend 

the transcriptional strength provided by each “promoter/terminator” (i.e., 01-12_17-21) 

combination can be inferred from the separated contribution of each region. For this purpose, all 

the (01-12) promoter regions in the collection were tested by the Renilla/Luciferase system in 

combination with a common (17-21) terminator region (TNos). In parallel, all the (17-21) 

terminator regions in the collection were tested in combination with a common (01-12) promoter 

region (PNos). The “Experimental Transcriptional Activity” (ETA) of each region was calculated 

as being relative to the Renilla/Luciferase values of a (01-12_17-21) reference combination 

(PNos_TNos), which was arbitrarily set as 1 (see Figure 5A for the construct details). The 

ETA(01-12) values ranged between 0.47 ± 0.01 and 15.03 ± 1.44 relative luminescence units, 

whereas the ETA(17-21) values ranged between 0.77 ± 0.18 and 2.61 ± 0.54 (Figure 5B and 

5C). Using these data, “Theoretical Transcriptional Activity” (TTA) was calculated for each 

cassette combination (Figure 5D) as the product of the individual ETA of the two regulatory 

regions. Finally, the Renilla/Luciferase ratio of a number of cassette combinations (covering 

65% of total possibilities) were also tested experimentally. As we can see in Figure 5E and 

Supplementary Figure 3, there is a good agreement between the theoretical and experimental 

activity values. Of the 34 experimental combinations assayed in the evaluation test, 31 showed 

deviation in relation to the theoretical values below 2-fold (+/- 0.3 in logarithmic values; for 

detailed information, see Supplementary Information 3C).  

Regulated expression cassettes  

The GB grammar contains several standard positions for the insertion of regulatory regions. In 

the 5´ un-transcribed region, we defined three standard GBparts to allow combinatorial 

promoter tinkering and to facilitate the insertion of synthetic operators. As a functionality proof, 

we assembled and tested the pre-made cassettes for heat shock and the dexametasone-

regulated expression; the latter is based on the “operated promoter A” scheme shown in Figure 

2B. The Renilla/Luciferase/p19 reporter cassettes constructed with promoters pHSP70 and 

pHSP18.2 showed clear induction after incubation at 37ºC (Supplementary Figure 4). The 

potential of the GB modular assembly was further demonstrated with the construction of two 

regulated systems based on the fusion of the glucocorticoid receptor (GR) with the DNA binding 

domains (BD) of LacI or Gal4 and the activation domain (AD) of Gal4.  In this transactivation 

example, up to 15 pre-made modules comprising coding and noncoding regulatory regions were 

efficiently assembled de novo to produce two operated luciferase TUs which clearly responded 

to the presence of dexametasone (Supplementary Figure 5). 

Protein-protein interaction tools 
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Reporter fusion partners are powerful analytical tools utilized in the study of protein-protein 

interactions. However, the use of unlinked co-transformation for the delivery of the interaction 

partners often compromises the extraction of reliable qualitative data, based on the poorly 

supported assumption that co-transformation efficiency in each cell is the same for all fusion 

partners. We reasoned that the linked co-transformation of fusion partners can help improve the 

sensitivity and accuracy of the protein-protein interaction analysis. By bearing this use in mind, 

we designed pre-made modules for the Bifluorescent Complementation assays (BiFC). For this 

purpose, BiFC adaptors with a (01-12) structure were constructed contaning the full 35S 

promoter and the corresponding YFP or luciferase fusion partners. Based on this set-up, baits 

and preys with a canonical (13-16) structure can be easily assembled in multipartite reactions to 

form the required fusion proteins. The prearranged BiFC tools were functionally tested using 

transcription factors Akin10/Akinβ2 as positive interaction partners, and an spermidine synthase 

(SPDS) as a negative partner (Belda-Palazon et al., 2012). As observed in Supplementary 

Figure 6, the number of cells showing positive interactions with the GB-assisted linked co-

transformation set up outnumbers those of the unliked co-transformation approach.  

Silencing tools  

The negative regulation of endogenous genes often proves an engineering requirement. For 

this reason, special Frequently Used Structures were defined for three RNA silencing strategies: 

trans-acting small interfering RNAs (tasiRNA); artificial micro RNA (amiRNA); hairpin RNA 

(hpRNA) (Supplementary Figure 7A). Details of all the elements used in the RNAi designs are 

provided in Supplementary Table 1. 

For the generation of tasiRNA constructs, special (01-11) GBSparts containing the mir173 

trigger sequence are required. A CaM35S-based GBSpart for the constitutive tasiRNA 

expression is currently available in the GB collection. A regulated or tissue-specific tasiRNA 

expression can be designed using the GBpatch special feature of GB2.0. For the functional 

characterization of the tasiRNA structure, a 410-bp fragment of A.thaliana phyotoene 

desaturase (PDS) (Felippes et al., 2012) was incorporated as a (12-16) GBSpart and was 

transformed into A. thaliana to yield approximately 0.1% seedlings with the albino phenotype 

(Supplementary Figure 7C). TasiRNA constructs require the co-expression of miR173 for 

effective silencing in plant species other than Arabidopsis (Felippes et al., 2012). To extend the 

species range of the tasiRNA tool, a new TU with a constitutively expressed miR173 was 

constructed and incorporated into the collection. The functionality of the dual construct was 

tested transiently in N. benthamiana using PDS as the silencing target, which resulted in the 

bleaching of the infiltrated area (see Supplementary Figure 7D). 

An amiRNA silencing tool was also enabled with the creation of two special GBSparts, namely 

5’FS and 3’FS, respectively. These GBSparts require noncanonical barcodes to allow the 

seamless assembly of 5’FS and 3’FS in the amiRNA precursor. The special categories are 

denoted as (12-13B) and (16B), respectively, where B indicates the four noncanonical flanking 

nucleotides (GTGA and TCTC, respectively). The standard (01-11) promoters without ATG and 
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the (17-21) terminators were used in the amiRNA design. The central region (14B-15B), 

containing a fragment of the gene target sequence, was constructed using gene-specific 

oligonucleotides, as described in Supplementary Figure 7B. In order to validate the proposed 

structure, A. thaliana PDS silencing was assayed using a gene target fragment which was 

formerly described by Yan et al. (2011) (Supplementary Figure 7E). The resulting amiRNA 

construct was transformed into A.thaliana yielding seedlings with the albino phenotype. 

Finally in the hairpin RNA (hpRNA) structure, the regulatory regions lacking ATG are inserted as 

(01-11) parts. An intron from S.lycopersicum (SGN-U324070) was incorporated into the 

collection to serve as an (14-15) Intron GBpart. The inverted fragments of the target gene-of-

interest can be cloned at positions (12-13) and at position (16).  

GW-GB adapter tool. 

A GW-GB adapter tool was incorporated into the GB2.0 collection in order to facilitate the 

transition between the Gateway (GW) and GB2.0 assembly methods (Supplementary Figure 8). 

GW-GB adapters are GBparts or GBSparts (e.g., a (12-16) GBSpart to adapt coding regions) 

made of a GW cassette flanked by attR1-attR2 sites and embedded inside the pUPD plasmid. 

As such, adapter vectors can be used directly as destination plasmids for GW entry clones 

flanked by attL1-attL2 sites. In this way, GW entry clones can be transferred individually or in 

bulk to the pUPD plasmid, and become ready-to-use GBSparts. Alternatively, the GW-GB 

adapter can be employed as an ordinary GBSpart to create a new multigene construct in a 

binary vector. Consequently, the resulting multigene construct becomes a GW destination 

vector containing an attR1-attR2 GW cassette, where GW entry clones can be inserted 

individually or in bulk. It should be noted that direct GW to GB2.0 adaptation does not remove 

internal enzyme target sites, therefore the efficiency of subsequent assembly reactions can 

lower. 

 

GB collection and software tools 

When this manuscript was being written, our in-house GB collection contained more than 400 

entries. As the collection grows, engineering is becoming increasingly easy and fast because, 

on occasion, the required GBparts, GBSparts and TUs are already domesticated and/or 

constructed. To efficiently handle this collection, we developed a web framework which hosts a 

GBdatabase and offers software tools to facilitate the assembly process. The GB2.0 website 

was implemented using Django, a Python web framework that supports rapid design and the 

development of web-based applications (Django, 2013). Object-relational database 

management system PostgreSQL was chosen to host our schema, which allowed the 

incorporation of the sequences of all the elements included in the collection. Additional relevant 

information on part identity, functionality and indexing is also provided. 

Given the simplicity of the GB assembly rules, it was relatively straightforward to develop 

software tools that assist in GB2.0 assembly. We therefore developed a software package 
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comprising three programs, each program corresponding to one of the three basic processes in 

GB2.0 assembly. The first program, named GBDomesticator, assists the part adaptation 

process to the GB standard. It takes an input DNA sequence provided by the user, and it offers 

the best PCR strategy to remove internal enzyme target sites and to add flanking nucleotides to 

it according to the specified category. A second program, known as the TUassembler, takes 

GBparts and GBSparts from the database and simulates a multipartite assembly in silico. The 

TUassembler includes shortcuts to Frequently Used Structures assembly, as well as a free-

hand option. Finally, a third program, namely BinaryAssembler, performs in silico binary 

assemblies between the composite parts stored in the GB database. BinaryAssembler offers 

the possibility of choosing the relative orientation of each member of the assembly. All three 

programs generate a detailed lab protocol to perform the domestication/assembly and to return 

a genbank formatted file containing the final domesticated/assembled sequence. The GB 

database and software tools are available at http:/www.gbcloning.org  
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DISCUSSION 

The aim of this work is to provide a standard framework for DNA assembly in Plant Synthetic 

Biology. We, and others, realized that the modularity of the multipartite assembly based on type 

IIS enzymes offers a great opportunity for standardization by following a positional information 

scheme that resembles the grammar of a sentence in many natural languages. Indeed it is 

illustrative to conceive the transcriptional unit as a similar structure to a sentence, which is made 

up of hierarchically assembled elements like morphemes, words and phrases. It is also 

interesting to envision the whole engineering process as a way to imprint instructions using 

DNA strings. Therefore we, in concert with MoClo developers, propose a common grammar 

where the four nucleotide overhangs are pre-defined for each position within the transcriptional 

unit. Overhangs assignation is mainly arbitrary, but some decisions are made to make them 

scar-benign. For instance, the 12-13 boundary defining the beginning of CDS was designed to 

include the start codon, whereas the 13-14 boundary was made compatible with signal-peptide 

cleavage sites.  

In our view, this new GB2.0 cloning scheme has a number of features which makes it a good 

candidate for a plant assembly standard. Many of those features are consubstantial to the 

Golden Gate system: very high efficiency, modularity and the ability to produce scare-benign 

assemblies. GB2.0 also incorporates the reusability and modularity of the GoldenBraid and 

MoClo systems and goes beyond them in that it provides a standardized framework, goes deep 

into the versatility and the minimalist design of the GoldenBraid loop, and incorporates new 

tools to assist cloning.   

A major drawback of defining a standard is loss in versatility since no standard can cope with 

all custom design requirements. To deal with this problem, we incorporated an underlying non 

standard assembly level which makes full use of the newly designed pUPD vector. At this level, 

non standard GBpatches can be custom-designed for, e.g., scar-less assembly, by choosing 

the appropriate four nucleotide overhangs. GBpatches are assembled together into standard 

GBparts or GBSparts. We made full use of the GBpatch level for BiFC, amiRNA and antibody 

engineering. Other possible uses include promoter tinkering or non standard combinatorial 

assemblies within the CDS, as exemplified in the construction of customized TAL effectors 

(Weber et al., 2011; Li et al., 2012). Additionally, the GBpatch level is used for GBpart 

domestication; that is, for the removal of internal enzyme recognition sites. This feature is also 

enabled by the special design of the new entry vector pUPD, which introduces inversely 

oriented BsmBI sites into the GB cassette. This new design turns pUPD plasmid into a universal 

entry vector as the four nucleotides conferring part identity are not located in the entry vector as 

they are in previous designs (Weber et al., 2011). Instead in the present setup, the four-

nucleotide “barcode” is incorporated into the primers used during initial part/patch isolation. As a 

toll, this strategy involves the requirement of longer PCR primers during initial part isolation. 
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This minor drawback is by far compensated by the simplicity introduced by the universal 

domesticator: in the absence of this solution, a minimum of eleven different entry vectors would 

be required to harbor the different categories in the GB grammar, along with an unaffordable 

amount of additional vectors to allow the formation of all the possible “phrasal” combinations.  

The underlying GoldenBraid cloning pipeline has been substantially simplified in the GB2.0 

version to reduce redundancy and to achieve a minimalist design. Figure 6 depicts the 

comparison of GB2.0 made with the previous GoldenBraid structure. Once again, most of the 

improvement achieved stems from the specific design of the new entry vector pUPD. First, the 

asymmetry of the cloning loop is corrected in GB2.0 with the introduction of a BtgZI site into the 

entry vector. BtgZI is a special enzyme that cuts 10 nucleotides away from its recognition site. 

This feature enables a dual release option for each GBpart: BsaI release allows cloning in α 

destination vectors, whereas BtgZI release allows cloning in Ω destination vectors. We noted 

that BtgZI/BsmBI assemblies are less efficient than BsaI ones. Despite this drawback, the ability 

to create new TUs in both destination vectors can save one cloning step, which therefore 

speeds up the construction of new multigene assemblies and opens up new possibilities for 

automation. 

We also developed a number of tools to assist users in their engineering projects. First, we 

anticipated genetic designers´ needs by pre-arranging a number of FUS. Then, we populated 

our in-house collection with all the elements (GBparts, GBSparts and software tools) required to 

enable the Frequently Used Structures use. Finally, we assayed the functionality of newly 

developed elements using in planta assays. In certain cases, this implied an initial step toward 

part characterization. One of the hallmarks of Synthetic Biology is its ability to predict the 

behavior of a system based on the characteristics of its constitutive parts. We show herein that 

it is possible to infer the activity provided by a “promoter + terminator” pair from the activities 

that each individual element displays when separately assayed. The differences observed 

between the theoretical and experimental activity values fall within a narrow range which comes 

close to 0, with very few combinations showing deviations that are slightly above 2-fold (+/- 0.3 

in log values). This finding is important for engineering attempts which, as in complex metabolic 

engineering, require the combination of many different non coding parts to create large 

metabolic pathways, while avoiding the introduction of unstable repetitive regions into the 

genetic design. The promoter parts assayed herein reveal a wider range of activities than 

terminators. Nevertheless, we confirm that the use of strong terminators like TAtHSP18.2 can 

promote the promoter’s transcriptional activity, as previously described (Nagaya et al., 2009). It 

is interesting to note that most of the observed positive deviations result from the combinations 

involving CaMV35S-derived parts, suggesting a nonlinear behavior of the CaMV35S regulatory 

elements. We employed N. benthamiana transient expression and Luciferase/Renilla reporter 

system (Grentzmann et al., 1998) as a first step towards characterization of regulatory 

elements. This transient methodology is simple and accurate and therefore facilitates the 
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analysis. A more detailed characterization may need to include the developmental and tissue-

specificity information obtained through stable plant transformation.  

Both GB2.0 and the GB collections come into being with to an open-source vocation. We 

reinforced this point by developing a new set of GB-destination vectors based on open-source 

pCAMBIA binary vectors (Roberts et al., 1997; Chi-Ham et al., 2012). As we see it, the 

intellectual commons IP model is that which best suits the requirements for the free exchange of 

parts and modules in Plant Synthetic Biology (Oye and Wellhausen, 2010). Nevertheless, a 

number of issues, such as the IP of individual parts and the ability to freely distribute them, need 

to be addressed in a concerted manner. Undoubtedly, community effort made to create publicly 

available collections of synthetic parts will have an impact on the progress of this discipline.  

Plant Synthetic Biology has the potential of bringing about a significant impact on crop 

production. Engineering enhanced abiotic stress tolerance for growth in marginal lands, turning 

C3 plants into C4 (Caemmerer et al., 2012), constructing whole-organism biosensors or 

sentinels (Antunes et al., 2011), engineering highly challenging metabolic routes (Farre et al., 

2012), and combinations of these, are just some examples of high-impact goals with 

biotechnologists’ reach.  Also, it has not escaped our notice that the proposed grammar can be 

easily adopted by other non-plant systems as well. We believe that technologies like GB2.0, 

which enable the standardization and facilitate the characterization and exchange of genetic 

parts and modules, are important contributions for the achievement of the challenging 

biotechnology goals ahead. 
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MATERIAL AND METHODS 

Strains and growth conditions 

Escherichia coli DH5α was used for cloning. Agrobacterium tumefaciens strain GV3101 was 

used for transient expression and transformation experiments. Both strains were grown in LB 

medium under agitation (200 rpm) at 37°C and 28°C, respectively. Ampicillin (50 µg ml-1), 

kanamycin (50 µg ml-1) and spectinomycin (100 µg ml-1) were used for E. coli selection. 

Rifampicin, tetracycline and gentamicin were also used for A.tumefaciens selection at 50, 12.5 

and 30 µg ml−1, respectively. XGal (0.5 mM) and IPTG (40 μg ml-1) were used in LB agar plates 

for the white/blue selection of clones. 

Restriction-Ligation assembly reactions 

Restriction-Ligation reactions were set up as described elsewhere (Sarrion-Perdigones et al., 

2011) using BsaI, BsmBI, BtgZI or BbsI as restriction enzymes (New England Biolabs, Ipswich, 

MA, USA) and T4 Ligase (Promega, Madison, WI, USA). Reactions were set up in 25 or 50 

cycles digestion/ligation reactions (2’ at 37º C, 5’ at 16º C), depending on assembly complexity. 

One μl of the reaction was transformed into E. coli DH5α electrocompetent cells and positive 

clones were selected in solid media. Plasmid DNA was extracted using the E.Z.N.A. Plasmid 

Mini Kit I (Omega Bio-Tek, Norcross, GA, USA). Assemblies were confirmed by restriction 

analysis and sequencing.  

GBpart Domestication 

GBparts and GBpatches were obtained by PCR amplification using suitable templates. The 

Phusion® High-Fidelity DNA Polymerase (ThermoScientific, Waltham, MA, USA) was used for 

amplification following the manufacturer’s protocols. Primers smaller than 60 mers were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). 60-mer or longer oligonucleotides were 

synthesized by IDTDNA (Coralville, IO, USA) by the UltramerTM technology. Amplified bands 

were purified using the QIAquick PCR Purification Kit (Qiagen, Hilden, Germany) and were 

quantified in a Nano Drop Spectrophotometer 2000. Then 40 ng of each amplicon and 75 ng of 

the domestication vector (pUPD) were mixed and incubated in a BsmBI restriction-ligation 

reaction. The pUPD sequence is deposited in the GBdatabase. Positive clones were selected in 

the ampicillin-, XGal- and IPTG -containing plates, and the correct assembly was confirmed by 

restriction analyses and sequencing. A description of the GBparts and GBSparts employed in 

this work is provided in Supplementary Table 1. The nucleotide sequence of all the GB parts in 

the collection is deposited in the GB database. 

pDGB Construction 
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Two pDGB series, pDGB1 and pDGB2, were constructed. pDGB1 is based on the pGreenII 

backbone (Hellens et al., 2000) and pDGB2 is based on pCAMBIA (Roberts et al., 1997). For 

pDGB construction, the backbone of each binary vector was divided into fragments (vector 

modules). The pDGB1 backbone comprised two fragments, whereas the pDGB2 backbone was 

divided into four modules given the presence of internal sites. To build vector modules, each 

fragment was amplified by PCR in a similar procedure to that described for GBparts and was 

cloned into a vector domestication plasmid (pVD) using a BsaI digestion-ligation reaction. The 

pVD vector was derived from pUPD; its sequence is deposited in GBdatabase. In addition to the 

backbone modules, a number of common modules were built:  eight GB-cassettes (α1, α1R, α2, 

α2R, Ω1, Ω1R, Ω2 and Ω2R) and two fragments encoding spectinomycin and kanamycin 

resistance. To assemble each pDGB, a BbsI restriction-ligation reaction was performed by 

combining the modules of the vector backbone, the desired GB-cassette and appropriate 

antibiotic resistance. 

Nicotiana benthamiana transient transformation 

For the transient expression experiments, plasmids were transferred to Agrobacterium 

tumefaciens strain GV3101 by electroporation. Agroinfiltration was performed, as previously 

described (Wieland et al., 2006). Overnight-grown bacterial cultures were pelleted and 

resuspended in agroinfiltration medium (10 mM MES pH 5.6, 10 mM MgCl2, 200 µM 

acetosyringone) to an optical density at 600 nm =0.5. Infiltrations were carried out using a 

needle-free syringe in leaves 2, 3 and 4 of 4–5 weeks old Nicotiana benthamiana plants 

(growing conditions: 24°C day/20°C night in a 16 h light/8 h dark cycle). Depending on the 

purpose of the experiments, leaves were harvested 3-5 days post-infiltration (d.p.i.) and 

examined for transgene expression. 

Arabidopsis thaliana stable transformation. 

Arabidopsis thaliana Col-0 accession plants were transformed by the floral-dip method (Clough 

and Bent, 1998). Seeds were sterilized-plated in plates of MS medium with 0.8% (w/v) agar and 

1% (w/v) sucrose (growing conditions: 24ºC day/20ºC night in a 16h light/8h dark cycle). 

Transgenic lines were selected without antibiotic resistance as PDS silencing transformed lines 

showed the albino phenotype.  

Renilla/Luciferase expression assays 

In order to measure the activity of Renilla/Luciferase reporters (Grentzmann et al., 1998), 3 or 4 

Nicotiana benthamiana leaves were agroinfiltrated following the above-described procedure. 

Leaves were harvested 3 d.p.i.  Firefly Luciferase and Renilla Luciferase were assayed from 

100-mg leaf extracts following the Dual-Glo Luciferase Assay System (Promega, Madison, WI, 

USA) standard protocol and were quantified with a GloMax 96 Microplate Luminometer 

(Promega, Madison, USA). The “ETA” of each region (ETA) was calculated in relation to the 
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Renilla/Luciferase values of a (01-12_17-21) reference combination (PNos_TNos), which was 

arbitrarily set as 1, according to the formulae:  

ETA(01-12)i = FLuc/RLuc [(01-12)i_(17-21)TNos] / FLuc/RLuc [(01-12)PNos_(17-21)TNos] ETA(17-

21)j = FLuc/RLuc [(01-12)PNos_(17-21)j] / FLuc/RLuc [(01-12)PNos_(17-21)TNos], 

where FLuc/RLuc [(01-12)i_(17-21)j] refers to the ratio between the Firefly luciferase activity 

(FLuc) of a (01-12)i:Luciferase:(17-21)j construct and the Renilla luciferase activity (RLuc) of a 

35S:Renilla:TNos internal standard construct. TTA was calculated for each cassette 

combination as the product of the individual ETA of the two regulatory regions, as follows:  

TTAij= ETA(01-12)i x ETA(17-21)j  

Finally, the FLuc/RLuc of a number of cassette combinations was tested experimentally, and the 

ETA of each combination (ETAij) was calculated with the formula:   

ETAij= FLuc/RLuc [(01-12)i_(17-21)j] / FLuc/RLuc [(01-12)PNos_(17-21)TNos]. 

 

Glucocorticoid Receptor induction and Heat shock treatments 

One-cm2 disks from agroinfiltrated leaves were harvested at 3 d.p.i., placed in a 350 μl solution 

containing 5 to 20 μM Dexamethasone (Sigma Aldrich St. Louis, MO, USA) in 0.02% Tween-80 

and incubated overnight in a growth chamber. Firefly Luciferase and Renilla Luciferase activities 

were measured after 24-hour treatment. For the heat shock treatments, 1 cm2 of 3 d.p.i. leaves 

were placed in 350 μl water at 37ºC for 2h. Samples were collected at 3 h and 14 h after 

treatment. 
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FIGURE LEGENDS 

Figure 1. Analogies between GB2.0 and English grammar (A) GB2.0 elements can be 

compared with those of a natural language. In English grammar (left), morphemes are joined 

together to make words; words are combined together to make phrases and sentences, which 

are further joined to make a composition. In GB2.0 (right), the simplest units are GBpatches, 

used to build any of the 11 standard GBparts. GBpatches can be also combined in GBSparts to 

facilitate cloning (e.g., a whole promoter). GBparts and GBSparts are combined in a multipartite 

reaction to build TUs, which can be used for plant transformation, or can be reused and 

combined with other TUs to build multigene modules. (B) The flow chart of the GB assembly 

steps. It starts with the GB domestication of GBpatches into GBparts or GBSparts; GBparts are 

multipartitely combined to build up TUs; finally, TUs are binarily assembled to build modules 

and multigene constructs.  

Figure 2.  The complete GB2.0 grammar and its most Frequently Used Structures. (A) A 

schematic overview of a TU structure where the 11 standard GB classes are depicted: 01, 02 

and 03 GBparts form the 5’ non transcribed region (5’NT); position 11 is the 5’ untranslated 

region of mRNA (5’ UTR); 12 is a linker region; 13, 14, 15 and 16 (TL1 to TL4) are four divisions 

of the translated region; 17 is the 3’ untranslated region of mRNA (3’ UTR) and 21 is the 3’ non 

transcribed region of the TU (3’NT). (B) Frequently-used structures (FUS) for the protein-coding 

TUs. The elements forming each Frequently Used Structure and the class that they belong to 

are depicted. (C) Frequently Used Structure for RNA silencing, including artificial micro RNA 

(amiRNA), hairpin RNA (hpRNA) and trans-acting small interfering RNAs (tasiRNA). 5’NT and 

3’NT indicate the 5’ and 3’ non transcribed regions of the TU; 5’UTR and 3’UTR are the 5’ and 

3’ untranslated regions of mRNA; LINK represents a region between the 5’UTR and the coding 

sequence where tags or fused proteins can be placed; PROM is a promoter; CDS is the coding 

DNA sequence; TER represents the terminator; SP is signal peptide; NT and CT are N- or C-

Terminal tags or fusion proteins; OP is a promoter operator; minPROM is a minimal promoter. 

5’FS and 3’FS indicate the flanking sequences of the amiRNA precursor sequences; TARGET 

represents the region of the amiRNA structure comprising the loop and the complementary 

target sequences; GOI and IOG are the fragments of the gene of interest in an inverted 

orientation; INT is the intron for hpRNA processing; mir173 represents the mir173 target site for 

tasiRNA processing; fGOI indicates the fragment gene of interest to be silenced. 

Figure 3. Standardized domestication of GBparts. GBparts are domesticated by amplifying 

the desired sequence with standard GBprimers (GB.F and GB.R). GBprimers include 

approximately 20 nucleotides of the GSP (Gene-Specific Primer) and a tail region that includes 

a BsmBI recognition site, the cleavage site for cloning into pUPD and the four nucleotide 

barcode (1234 and 5678 in the figure). The amplified DNA part is cloned into pUPD in a 

restriction-ligation reaction, with BsmBI as the restriction enzyme. The resulting GBpart is 
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cleavable by BsaI and BtgZI to produce 1234 and 5678 flanking overhangs. BsmBI recognition 

sequences are depicted in orange in the DNA sequence; BsaI and BtgZI are labeled in red and 

blue, respectively. Enzyme cleavage sites are boxed. 

Figure 4. GB2.0 cassettes and assembly rules. (A) GB2.0 cassettes and their comparison 

with previous GoldenBraid version. GBcassettes comprise a LacZ selection cassette flanked by 

four Type IIs restriction sites (BsaI, BsmBI) positioned in inversed orientations. Previous 

GoldenBraid plasmid kit comprised four destination plasmids, two in each assembly level. 

GB2.0 incorporates four additional plasmids that permit the assembly of transcriptional units in 

reverse orientation using the same GBparts. Additionally, the six 4 nt barcodes of GoldenBraid 

(A, B, C, 1, 2 and 3) collapsed in only three GB2.0 barcodes, where A≡1, B≡2, C≡3. This  

special design feature permits GBparts to be directly assembled in both level plasmids. Finally, 

GB2.0 plasmids incorporate distinctive restriction sites flanking the GBcassete  as watermarks 

for plasmid identification. BsaI cleavage sequences are boxed in red, BsmBI cleavage 

sequences are boxed in orange and sites where both enzymes can digest are boxed in green. 

The watermark restriction sites are underlined. (B) Rules for Multipartite assemblies. The pUPD 

elements represent each GBparts and GBSparts that conforms a grammatically correct TU, 

pDGBΩi is any level Ω destination vector, pDGBαi is any level α destination vector, and pEGBΩi 

(X) and pEGBαi (X) are the resulting expression plasmids harboring a well-constructed 

transcriptional unit X. (C) Rules for binary assemblies. (Xi) and (Xj) are composite parts 

assembled using the multipartite assembly option; (Xi+Xj) is a composite part of (Xi) and (Xj) that 

follows the same assembly rules than (Xi) and (Xj); pEGBα1(X), pEGBα2(X), pEGBΩ1(X) and 

pEGBΩ2(X) are expression plasmids hosting a composite part X; and pDGBΩ1, pDGBΩ2, 

pDGBα1 and pDGBα2 are destination plasmids hosting a LacZ cassette.  

Figure 5. Characterization of regulatory regions for basic expression cassettes. (A) 

Constructs for ETA quantification. The promoter (01-12)i_(17-21)TNos constructs comprise a first 

TU with the (01-12) promoter of interest, the firefly luciferase and the Nopaline syntase 

terminator, followed by the Renilla reference module (upper row). For the (01-12) TNos _(17-21)j 

terminator constructs, the first TU comprises the (17-21) terminator of interest, the firefly 

luciferase and the Nopaline syntase promoter (central row). For activity normalization, the 

PNos:Luciferase:TNos construct combined with the Renilla reference module was used (lower 

row). (B) The ETA of the promoter regions in (01-12)i_(17-21)TNos constructs was determined as 

the Firefly (FLuc)/ Renilla (RLuc) Luciferase activity ratios of each construct normalized with the 

equivalent ratio of the PNos:Luciferase:TNos construct. Error bars represent the SD of at least 

three replicates. (C) The ETA of terminator regions in the (01-12)PNos_(17-21)j constructs was 

estimated as described in B. (D) Scheme of the combinatorial promoter_terminator constructs 

comprising a first TU with a (01-12) promoter, the firefly luciferase and a (17-21) terminator, and 

combined with the Renilla reference module. (E) Correspondence between the experimental 

(ETA) and theoretical (TTA) activity data in the combinatorial constructs. The logarithm of the 

ratios between the ETA and TTA values for 34 experimental promoter/terminator combinations 
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is plotted. Bars represent average values +/- SD. PNos, nopaline syntase promoter; TNos, 

nopaline syntase terminator; P35s, CaMV35s promoter; p19, TBSV silencing suppressor.  

Figure 6. Goldenbraid versus GB2.0. The previous GoldenBraid version had an asymmetric 

assembly flow (left). GBparts incorporated either the BsaI or the BsmBI releasable overhangs. 

BsaI-released GBparts were incorporated into the GoldenBraid cloning loop through level-α 

vectors, whereas the BsmBI GBparts were used to build composite parts through the level-Ω 

entry point. In the new GB2.0 symmetric design, the same GBparts can be incorporated into 

level-α plasmids by a BsaI restriction/ligation reaction or into level-Ω vectors by a mixed 

BsmBI/BtgZI reaction. Other differences between the previous GoldenBraid version and GB2.0 

are also listed in the figure.   

 



26 

 

 

REFERENCES 

Antunes MS, Morey KJ, Smith JJ, Albrecht KD, Bowen TA, Zdunek JK, Troupe JF, Cuneo 

MJ, Webb CT, Hellinga HW, Medford JI (2011) Programmable ligand detection 

system in plants through a synthetic signal transduction pathway. PLoS One 6: e16292 

Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). 

Nucleic Acids Res 18: 6069-6074 

Belda-Palazon B, Ruiz L, Marti E, Tarraga S, Tiburcio AF, Culianez F, Farras R, Carrasco 

P, Ferrando A (2012) Aminopropyltransferases involved in polyamine biosynthesis 

localize preferentially in the nucleus of plant cells. PLoS One 7: e46907 

Caemmerer Sv, Quick W, Furbank R (2012) The Development of C4 Rice: Current Progress 

and Future Challenges. Science 336: 2 

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated 

transformation of Arabidopsis thaliana. Plant J 16: 735-743 

Check E (2005) Synthetic biology: Designs on life. Nature 438: 417 - 418 

Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC (2010) MISSA is a highly efficient in vivo 

DNA assembly method for plant multiple-gene transformation. Plant Physiol 153: 41-51 

Chen QJ, Zhou HM, Chen J, Wang XC (2006) A Gateway-based platform for multigene plant 

transformation. Plant Mol Biol 62: 927 - 936 

Chi-Ham CL, Boettiger S, Figueroa-Balderas R, Bird S, Geoola JN, Zamora P, Alandete-

Saez M, Bennett AB (2012) An intellectual property sharing initiative in agricultural 

biotechnology: development of broadly accessible technologies for plant transformation. 

Plant Biotechnol J 10: 501-510 

Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol 145: 

1118-1128 

Django (2013) Django (Version 1.5) Retrieved from http://djangoproject.com In. Django 

Software Foundation 

Ellis T, Adie T, Baldwin GS (2011) DNA assembly for synthetic biology: from parts to pathways 

and beyond. Integr Biol 3: 109-118 

Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot 

DNA shuffling method based on type IIs restriction enzymes. PLoS One 4: e5553 

Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with 

high throughput capability. PLoS One 3: e3647 

Estornell LH, Orzaez D, Lopez-Pena L, Pineda B, Anton MT, Moreno V, Granell A (2009) A 

multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing 

in tomato fruits. Plant Biotechnol J 7: 298-309 

Farre G, Naqvi S, Sanahuja G, Bai C, Zorrilla-Lopez U, Rivera SM, Canela R, Sandman G, 

Twyman RM, Capell T, Zhu C, Christou P (2012) Combinatorial genetic 

transformation of cereals and the creation of metabolic libraries for the carotenoid 

pathway. Methods Mol Biol 847: 419-435 



27 

 

Felippes FF, Wang JW, Weigel D (2012) MIGS: miRNA-induced gene silencing. Plant J 70: 

541-547 

Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K, Shibata D, Misawa N 

(2009) Pathway engineering of Brassica napus seeds using multiple key enzyme genes 

involved in ketocarotenoid formation. J Exp Bot 60: 1319-1332 

Geu-Flores F, Nour-Eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and 

efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic 

Acids Res 35: e55 

Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic 

assembly of DNA molecules up to several hundred kilobases. Nat Meth 6: 343-345 

Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF (1998) A dual-luciferase 

reporter system for studying recoding signals. RNA 4: 479-486 

Haseloff J, Ajioka J (2009) Synthetic biology: history, challenges and prospects. J R Soc 

Interface 6 Suppl 4: S389-391 

Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile 

and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol 

Biol 42: 819-832 

Karimi M, Bleys A, Vanderhaeghen R, Hilson P (2007) Building blocks for plant gene 

assembly. Plant Physiology 145: 1183-1191 

Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant 

transformation. Trends Plant Sci 7: 193-195. 

Knight TF (2003) Idempotent Vector Design for Standard Assembly of BioBricks. Tech. rep., 

MIT Synthetic Biology Working Group Technical Reports  

Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JS, Zhu JK, Mahfouz MM (2012) 

Rapid and highly efficient construction of TALE-based transcriptional regulators and 

nucleases for genome modification. Plant Mol Biol 78: 407-416 

Lin L, Liu Y-G, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene 

assembly and transformation vector system. Proc Natl Acad Sci 100: 5962-5967 

Nagaya S, Kawamura K, Shinmyo A, Kato K (2009) The HSP terminator of Arabidopsis 

thaliana increases gene expression in plant cells. Plant Cell Physiol 51: 328-332 

Oye KA, Wellhausen R (2010) The Intellectual Commons and Property in Synthetic Biology. In 

M Schmidt, ed, Synthetic Biology: The technoscience and its societal consequences. 

Springer Netherlands, pp 121-140 

Roberts C, Rajagopal,S., Smith,L.M., Nguyen,T.A., Yang,W.,, Nugrohu S, Ravi,K.S., 

Vijayachandra,K., Harcourt,R.L.,, Dransfield L, Desamero,N., Slamet,I., 

Hadjukiewicz,P., Svab,Z.,, Maliga P, Mayer,J.E., Keese,P.K., Kilian,A. and 

Jefferson,R.A. (1997) A comprehensive set of modular vectors for advanced 

manipulations 

            and efficient transformation of plants. pCAMBIA Vector Release Manual  



28 

 

Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juarez P, Fernandez-del-Carmen A, 

Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized 

assembly of reusable genetic modules. PLoS One 6: e21622 

Vemanna RS, Chandrashekar BK, Hanumantha Rao HM, Sathyanarayanagupta SK, 

Sarangi KS, Nataraja KN, Udayakumar M (2013) A modified MultiSite gateway 

cloning strategy for consolidation of genes in plants. Mol Biotechnol 53: 129-138 

Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system 

for standardized assembly of multigene constructs. PLoS One 6: e16765 

Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL 

effectors by Golden Gate cloning. PLoS One 6: e19722 

Wieland WH, Lammers A, Schots A, Orzaez DV (2006) Plant expression of chicken secretory 

antibodies derived from combinatorial libraries. J Biotechnol 122: 382-391 

Yan H, Deng X, Cao Y, Huang J, Ma L, Zhao B (2011) A novel approach for the construction 

of plant amiRNA expression vectors. J Biotechnol 151: 9-14 

Zeevi V, Liang Z, Arieli U, Tzfira T (2012) Zinc finger nuclease and homing endonuclease-

mediated assembly of multigene plant transformation vectors. Plant Physiol 158: 132-

144 

 

 

 



Figure 1. Analogies between GB2.0 and English grammar (A) GB2.0 elements can be compared 

with those of a natural language. In English grammar (left), morphemes are joined together to make 

words; words are combined together to make phrases and sentences, which are further joined to make 

a composition. In GB2.0 (right), the simplest units are GBpatches, used to build any of the 11 standard 

GBparts. GBpatches can be also combined in GBSparts to facilitate cloning (e.g., a whole promoter). 

GBparts and GBSparts are combined in a multipartite reaction to build TUs, which can be used for plant 

transformation, or can be reused and combined with other TUs to build multigene modules. (B) The flow 

chart of the GB assembly steps. It starts with the GB domestication of GBpatches into GBparts or 

GBSparts; GBparts are multipartitely combined to build up TUs; finally, TUs are binarily assembled to 

build modules and multigene constructs.  
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Figure 2.  The complete GB2.0 grammar and its most Frequently Used Structures. (A) A 

schematic overview of a TU structure where the 11 standard GB classes are depicted: 01, 02 and 

03 GBparts form the 5’ non transcribed region (5’NT); position 11 is the 5’ untranslated region of 

mRNA (5’ UTR); 12 is a linker region; 13, 14, 15 and 16 (TL1 to TL4) are four divisions of the 

translated region; 17 is the 3’ untranslated region of mRNA (3’ UTR) and 21 is the 3’ non 

transcribed region of the TU (3’NT). (B) Frequently-used structures (FUS) for the protein-coding 

TUs. The elements forming each FUS and the class that they belong to are depicted. (C) FUS for 

RNA silencing, including artificial micro RNA (amiRNA), hairpin RNA (hpRNA) and trans-acting 

small interfering RNAs (tasiRNA). 5’NT and 3’NT indicate the 5’ and 3’ non transcribed regions of 

the TU; 5’UTR and 3’UTR are the 5’ and 3’ untranslated regions of mRNA; LINK represents a 

region between the 5’UTR and the coding sequence where tags or fused proteins can be placed; 

PROM is a promoter; CDS is the coding DNA sequence; TER represents the terminator; SP is 

signal peptide; NT and CT are N- or C-Terminal tags or fusion proteins; OP is a promoter operator; 

minPROM is a minimal promoter. 5’FS and 3’FS indicate the flanking sequences of the amiRNA 

precursor sequences; TARGET represents the region of the amiRNA structure comprising the loop 

and the complementary target sequences; GOI and IOG are the fragments of the gene of interest in 

an inverted orientation; INT is the intron for hpRNA processing; mir173 represents the mir173 target 

site for tasiRNA processing; fGOI indicates the fragment gene of interest to be silenced. 
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Figure 3. Standardized domestication of GBparts. GBparts are domesticated by amplifying the 

desired sequence with standard GBprimers (GB.F and GB.R). GBprimers include approximately 20 

nucleotides of the GSP (Gene-Specific Primer) and a tail region that includes a BsmBI recognition 

site, the cleavage site for cloning into pUPD and the four nucleotide barcode (1234 and 5678 in the 

figure). The amplified DNA part is cloned into pUPD in a restriction-ligation reaction, with BsmBI as 

the restriction enzyme. The resulting GBpart is cleavable by BsaI and BtgZI to produce 1234 and 

5678 flanking overhangs. BsmBI recognition sequences are depicted in orange in the DNA 

sequence; BsaI and BtgZI are labeled in red and blue, respectively. Enzyme cleavage sites are 

boxed. 
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Figure 4. GB2.0 cassettes and assembly rules. (A) GB2.0 cassettes and their comparison with previous 

GoldenBraid version. GBcassettes comprise a LacZ selection cassette flanked by four Type IIs restriction 

sites (BsaI, BsmBI) positioned in inversed orientations. Previous GoldenBraid plasmid kit comprised four 

destination plasmids, two in each assembly level. GB2.0 incorporates four additional plasmids that permit 

the assembly of transcriptional units in reverse orientation using the same GBparts. Additionally, the six 4 nt 

barcodes of GoldenBraid (A, B, C, 1, 2 and 3) collapsed in only three GB2.0 barcodes, where A≡1, B≡2, 

C≡3. This  special design feature permits GBparts to be directly assembled in both level plasmids. Finally, 

GB2.0 plasmids incorporate distinctive restriction sites flanking the GBcassete  as watermarks for plasmid 

identification. BsaI cleavage sequences are boxed in red, BsmBI cleavage sequences are boxed in orange 

and sites where both enzymes can digest are boxed in green. The watermark restriction sites are 

underlined. (B) Rules for Multipartite assemblies. The pUPD elements represent each GBparts and 

GBSparts that conforms a grammatically correct TU, pDGBΩi is any level Ω destination vector, pDGBαi is 

any level α destination vector, and pEGBΩi (X) and pEGBαi (X) are the resulting expression plasmids 

harboring a well-constructed transcriptional unit X. (C) Rules for binary assemblies. (Xi) and (Xj) are 

composite parts assembled using the multipartite assembly option; (Xi+Xj) is a composite part of (Xi) and (Xj) 

that follows the same assembly rules than (Xi) and (Xj); pEGBα1(X), pEGBα2(X), pEGBΩ1(X) and 

pEGBΩ2(X) are expression plasmids hosting a composite part X; and pDGBΩ1, pDGBΩ2, pDGBα1 and 

pDGBα2 are destination plasmids hosting a LacZ cassette. 
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RULES FOR MULTIPARTITE ASSEMBLY  
 
pUPD(01-a)… + pUPD(c-d)… + pUPD(f-21) + pDGBαi + BsaI + ligase = pEGBαi (X) 
pUPD (01-a)…+ pUPD (c-d)…+ pUPD (f-21) + pDGBΩi + BsmBI + BtgZI + ligase = pEGBΩi (X) 
 
RULES FOR BINARY ASSEMBLY 
 
pEα1(Xi) + pEα2(Xj) + pDGBΩ1 + BsmBI + ligase = pEGBΩ1(Xi+Xj) 
pEα1(Xi) + pEα2(Xj) + pDGBΩ2 + BsmBI + ligase = pEGBΩ2(Xi+Xj) 
pEΩ1 (Xi) + pEΩ2(Xj) + pDGBα1 + BsaI + ligase = pEGBα1(Xi+Xj) 
pEΩ1 (Xi) + pEΩ2(Xj) + pDGBα2 + BsaI + ligase =pEGBα2(Xi+Xj) 
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Figure 5. Characterization of regulatory regions for basic expression cassettes. (A) Constructs for ETA 

quantification. The promoter (01-12)i_(17-21)TNos constructs comprise a first TU with the (01-12) promoter of 

interest, the firefly luciferase and the Nopaline syntase terminator, followed by the Renilla reference module 

(upper row). For the (01-12) TNos _(17-21)j terminator constructs, the first TU comprises the (17-21) 

terminator of interest, the firefly luciferase and the Nopaline syntase promoter (central row). For activity 

normalization, the PNos:Luciferase:TNos construct combined with the Renilla reference module was used 

(lower row). (B) The ETA of the promoter regions in (01-12)i_(17-21)TNos constructs was determined as the 

Firefly (FLuc)/ Renilla (RLuc) Luciferase activity ratios of each construct normalized with the equivalent ratio 

of the PNos:Luciferase:TNos construct. Error bars represent the SD of at least three replicates. (C) The ETA 

of terminator regions in the (01-12)PNos_(17-21)j constructs was estimated as described in B. (D) Scheme of 

the combinatorial promoter_terminator constructs comprising a first TU with a (01-12) promoter, the firefly 

luciferase and a (17-21) terminator, and combined with the Renilla reference module. (E) Correspondence 

between the experimental (ETA) and theoretical (TTA) activity data in the combinatorial constructs. The 

logarithm of the ratios between the ETA and TTA values for 34 experimental promoter/terminator 

combinations is plotted. Bars represent average values +/- SD. PNos, nopaline syntase promoter; TNos, 

nopaline syntase terminator; P35s, CaMV35s promoter; p19, TBSV silencing suppressor.  
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Figure 6. Goldenbraid versus GB2.0. The previous GoldenBraid version had an asymmetric assembly flow 

(left). GBparts incorporated either the BsaI or the BsmBI releasable overhangs. BsaI-released GBparts were 

incorporated into the GoldenBraid cloning loop through level-α vectors, whereas the BsmBI GBparts were 

used to build composite parts through the level-Ω entry point. In the new GB2.0 symmetric design, the same 

GBparts can be incorporated into level-α plasmids by a BsaI restriction/ligation reaction or into level-Ω vectors 

by a mixed BsmBI/BtgZI reaction. Other differences between the previous GoldenBraid version and GB2.0 are 

also listed in the figure.   
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