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Abstract	
	
Currently,	electrochemical	Impedance	Spectroscopy	(EIS)	is	a	widely	used	tool	for	the	
study	of	electrochemical	systems,	in	general;	and	fuel	cells,	in	particular.	A	great	effort	
is	 typically	 invested	 in	 the	 analysis	 of	 the	 obtained	 spectra;	 whereas,	 little	 time	 is	
usually	spent	optimizing	the	measurement	parameters	used	to	obtain	these	spectra.	In	
general,	 the	 default	 settings	 provided	 by	 the	 control	 software	 used	 to	 perform	 the	
measurements,	or	 the	parameters	used	 in	 similar	 systems	available	 in	 literature,	are	
selected	 to	 carry	 out	 the	measurements.	 The	 goal	 of	 this	 work	 is	 to	 determine	 the	
optimal	measurement	 parameters	 for	 obtaining	 impedance	 spectra	 of	 a	 commercial	
PEM	fuel	cell.	In	order	to	achieve	this,	a	25	factorial	design	was	considered.	Five	factors	
were	 considered,	 the	 five	 impedance	 spectroscopy	 measurement	 parameters:	
maximum	 integration	 time;	 minimum	 number	 of	 integration	 cycles;	 number	 of	
stabilization	cycles;	maximum	stabilization	time;	and	minimum	cycle	fraction.	For	each	
factor	 combination	 envisaged	 in	 the	 experimental	 design,	 the	 cell	 spectrum	 was	
obtained	 in	 given	 operation	 conditions,	 for	 which	 the	 reference	 spectrum	 of	 the	
system	 was	 known,	 since	 it	 had	 been	 determined	 in	 previous	 works.	 The	
experimentally	 obtained	 spectra	 were	 fitted	 to	 the	 reference	 electric	 equivalent	
circuit.	 The	 mean	 square	 error	 between	 the	 experimental	 data	 fitting	 and	 the	
reference	 spectrum	 fitting	 was	 determined	 in	 each	 case,	 and	 was	 used	 as	 the	
dependant	 variable	 for	 the	experimental	 design	 analysis.	An	analysis	 of	 the	 variance	
was	 performed	 in	 order	 to	 determine	 which	 measurement	 parameters	 have	 a	
significant	 effect	 on	 the	 dependant	 variable;	 and	 a	 model	 relating	 the	 dependant	
variable	and	the	measurement	parameters	was	built.	This	model	was	used	in	order	to	
obtain	the	optimal	value	of	each	one	of	the	measurement	parameters	that	minimized	
the	mean	square	error	of	the	fit	obtained	from	the	experimental	data	with	respect	to	
the	reference	fit.			
	



1.	Introduction	
	
In	 current	days,	 electrochemical	 impedance	 spectroscopy	 (EIS)	 has	 gained	 significant	
relevance	 in	 the	 fuel	 cells	 field,	 since	 this	 electrochemical	 measurement	 technique	
allows	obtaining	information	on	the	fuel	cell	 internal	state	and	on	its	electrochemical	
behaviour	 [1,	2].	This	 technique	provides	detailed	 information	on	the	conductivity	of	
the	membrane,	on	the	electrochemical	electrode	processes	and	on	the	intrinsic	losses	
of	 the	 system	 [3-5].	 All	 these	 data	 are	 crucial	 in	 order	 to	 tackle	 some	 of	 the	 most	
challenging	actual	issues	of	fuel	cells,	such	as	membrane	drying	and	gas	diffusion	layer	
flooding	 [6,	7].	For	 this	 reason,	EIS	has	widely	been	applied	 for	membrane	electrode	
assembly	optimization	[8-13];	operation	conditions	optimization	[14,	15];	degradation	
studies	 [16,	 17];	 control	 [18]	 and	diagnosis	 [19-20].	 The	 technique	has	 been	 applied	
both,	to	fuel	cell	single	cells	[20-24]	and	to	fuel	cell	stacks	[19,	25].	
	
The	measurement	of	electrochemical	 impedance	spectra	consists	 in	a	frequency	scan	
[26]:	for	each	selected	frequency	an	impedance	measurement	is	done	by	sampling	the	
current	 and	 voltage	AC	 signals	 [27].	 Usually	 the	measurement	 for	 each	 frequency	 is	
performed	 in	 two	 steps:	 a	 stabilization	 step	 followed	 by	 an	 acquisition	 step	 [28].	
Therefore,	 the	 time	 required	 for	 the	 measurement	 of	 the	 impedance	 for	 a	 given	
frequency	 𝑡" 	is	given	by:	
	
	 𝑡" 𝑓 = 𝑡% 𝑓 + 𝑡' 𝑓 	 (1)	

	
Where	𝑡" 𝑓 	is	 the	 measurement	 time	 for	 frequency	𝑓;	𝑡% 𝑓 	and	𝑡' 𝑓 	denote	 the	
stabilization	time	and		acquisition	time	for	frequency	𝑓,	respectively.	
	
The	 total	 duration	of	 the	measurement	of	 the	whole	 spectrum	 𝑡)*) 	is	 given	by	 the	
sum	 of	 the	 measurement	 times	 for	 all	 frequencies	 for	 which	 the	 impedance	 is	
measured:	
	
	

𝑡)*) = 𝑡" 𝑓+

,-

+	.	/

	 (2)	

	
Where	𝑁1	is	 the	 number	 of	 frequencies	 for	 which	 the	 impedance	 is	 measured:	 the	
number	of	points	of	the	impedance	spectrum.	
	
	
	
	



On	 the	 one	 hand,	 the	 acquisition	 step	 is	 defined	 by	 two	 parameters:	 the	maximum	
integration	 time	 𝜏3 	and	 the	 minimum	 number	 of	 integration	 cycles 	 𝜈3 .	 Both	
parameters	compete	against	each	other;	and	depending	on	the	applied	frequency,	the	
acquisition	 segment	 will	 be	 defined	 by	 one	 of	 these	 two	 parameters:	 for	 high	
frequencies	 (larger	 than	𝜈3 ∙ 𝜏36/)	 the	maximum	 integration	 time	 parameter	 is	 used;	
whereas	 for	 low	 frequencies	 (smaller	 than 	𝜈3 ∙ 𝜏36/ )	 the	 minimum	 number	 of	
integration	 cycles	 parameter	 is	 used	 [29].	 Therefore	 the	 acquisition	 segment	 time	 is	
given	by:	
	
	

𝑡' 𝑓 =
𝜏3								𝑖𝑓	𝜏3 ≥

𝜈3
𝑓

𝜈3
𝑓 						𝑖𝑓	𝜏3 <

𝜈3
𝑓

	

	

(3)	

	
On	the	other	hand,	the	stabilization	step	is	defined	by	three	parameters:	the	number	
of	 stabilization	 cycles	 𝜈:: ,	 the	maximum	 stabilization	 time	 𝜏:: 	and	 the	minimum	
cycle	fraction	 𝜉:: .	These	parameters	are	competing	one	another;	and	depending	on	
the	applied	frequency,	the	stabilization	segment	will	be	defined	by	one	of	these	three	
parameters:	 for	 high	 frequencies	 (larger	 than	𝜈:: ∙ 𝜏::6/)	 the	number	of	 stabilization	
cycles	parameter	 is	used;	for	 low	frequencies	(smaller	than	𝜈:: ∙ 𝜏::6/)	the	maximum	
stabilization	time	is	used;	and	finally,	for	very	low	frequencies	(smaller	than	𝜏::6/)	the	
minimum	cycle	fraction	is	used	[29].	Therefore	the	settling	segment	time	is	given	by:	
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	 (4)	

	
In	short,	the	impedance	spectroscopy	measurement	is	defined	by	five	parameters:	the	
maximum	integration	time,	the	minimum	number	of	integration	cycles,	the	number	of	
stabilization	cycles,	the	maximum	stabilization	time	and	the	minimum	cycle	fraction.	In	
general,	no	preliminary	study	is	done	in	order	to	determine	the	optimal	values	of	these	
parameters	 for	 obtaining	 the	 impedance	 spectrum	 of	 a	 given	 system	 [26].	 Common	
practices	include	using	the	default	settings	provided	by	the	control	software	employed	
to	 perform	 the	 measurement;	 or	 using	 the	 parameters	 used	 in	 similar	 systems	
available	 in	 literature	 [28].	 However,	 these	 practices	 may	 lead	 to	 suboptimal	
measurement	parameters:	a	set	of	measurement	parameters	that	produce	a	spectrum	
that	 is	 not	 the	 best	 spectrum	 that	 could	 be	 obtained	 in	 terms	 of	 the	 error	 of	 the	
spectrum	with	respect	to	the	“real”	spectrum.	



The	main	purpose	of	this	work	is	to	determine	the	optimal	measurement	parameters	
for	obtaining	impedance	spectra	of	a	commercial	PEM	fuel	cell.	Furthermore,	this	work	
presents	a	framework	for	the	optimization	of	impedance	measurement	parameters	for	
other	systems.	In	order	to	fulfil	this	goal,	the	impedance	spectrum	of	an	individual	cell	
of	a	commercial	PEM	fuel	cell	stack	was	measured	in	given	operation	conditions,	using	
different	 impedance	measurement	parameters.	From	previous	works,	the	 impedance	
spectrum	 of	 the	 studied	 cell	 is	 known	 with	 significant	 accuracy	 for	 the	 operation	
conditions	used	in	this	work.	This	spectrum	was	used	as	the	reference	spectrum.	The	
experimental	 spectra	 obtained	 for	 different	 impedance	 measurement	 parameters	
were	 compared	 with	 the	 reference	 spectrum,	 using	 a	 comparison	 parameter	 that	
quantifies	 the	 deviation	 of	 the	 experimental	 spectra	 from	 the	 reference	 spectrum.	
Then,	 an	 analysis	 of	 variance	 (ANOVA)	 statistical	 study	 was	 performed	 on	 the	
comparison	parameter;	and	a	regression	method	was	used	in	order	to	obtain	a	black	
box	model	relating	the	comparison	parameter	value	to	the	measurement	parameters.	
This	 black	 box	 model	 was	 used	 to	 obtain	 the	 optimum	 measurement	 parameter	
values.		
	
	 	



2.	Experimental	design	
	
A	 full	 25	 factorial	 design	 with	 centerpoint	 was	 used	 in	 this	 work.	 This	 kind	 of	
experimental	design	consists	in	an	experimental	design	where	5	factors	are	studied	at	
only	two	levels:	a	high	level	and	a	low	level	[30].	Full	factorial	designs	involve	running	
all	the	25	combinations	of	the	two	levels	of	the	five	factors.	A	centerpoint	consists	in	an	
experimental	 point	 defined	 at	 the	 central	 value	between	 the	high	 and	 the	 low	 level	
values	for	each	one	of	the	considered	factors.	Adding	centerpoints	to	the	experimental	
design	 is	 useful	 for	 detecting	 possible	 curvatures	 in	 the	 output	 variables	 [31].	 This	
experimental	 design	 strategy	 is	 much	more	 efficient	 than	 the	 traditional	 “one	 after	
one”	 experimental	 strategy	 since	 it	 requires	 fewer	 experiments	 to	 analyse	 the	 same	
number	 of	 input	 factors	 and	 allows	 studying	 the	 interaction	 between	 these	 factors	
[32].	
	
In	this	study,	5	factors	were	studied	at	two	levels:	a	high	level	(+1)	and	a	low	level	(-1);	
and	 at	 a	 centerpoint	 (level	 0).	 The	 five	 selected	 factors	 were	 the	 five	 impedance	
spectroscopy	 measurement	 parameters:	 maximum	 integration	 time;	 minimum	
number	 of	 integration	 cycles;	 number	 of	 stabilization	 cycles;	 maximum	 stabilization	
time;	and	minimum	cycle	 fraction.	Each	of	 the	 three	 levels	of	each	 factor	 is	 given	 in	
table	1.	The	factor	levels	were	selected	according	to	typical	default	values	for	each	one	
of	the	measurement	parameters,	given	as	well	in	table	1.	These	default	values	are	the	
values	 used	 by	 most	 of	 the	 impedance	 measurement	 softwares,	 such	 as	 NOVA®, 
Zplot® or	GPES/FRA®.	
	
In	summary,	the	experimental	design	used	in	this	work	consists	in	33	treatments.	Each	
treatment	 corresponds	 to	one	of	 the	 combinations	of	 factors	 that	 are	 considered	 in	
the	experimental	design.	
	
	 	



3.	Methodology		
	
For	 each	 one	 of	 the	 experimental	 design	 treatments	 defined	 in	 section	 2,	 the	
impedance	 spectrum	 of	 the	 commercial	 PEM	 fuel	 cell	 was	 obtained	 using	 the	
experimental	setup	described	in	section	4.	The	operation	conditions	were	the	same	for	
all	 the	 treatments.	 Therefore,	 the	only	parameters	 that	 changed	 from	one	 spectrum	
measurement	 to	 another	 were	 the	 measurement	 parameter	 values,	 introduced	 in	
section	1.	The	cell’s	spectrum	for	the	selected	operation	conditions	(stated	in	section	
4)	 had	 been	 determined	 in	 previous	 works	 with	 significant	 accuracy.	 This	 known	
spectrum	was	used	as	reference	spectrum:	the	experimental	spectra	were	compared,	
as	it	will	be	described	further	in	this	section,	with	the	reference	spectrum.		
	
Figure	1	shows	the	reference	spectrum	and	the	equivalent	circuit	of	the	PEM	fuel	cell	
in	 the	 selected	 operation	 conditions.	 This	 reference	 spectrum	 was	 determined	 in	 a	
preliminary	 work,	 by	 measuring	 150	 times	 the	 spectrum	 in	 the	 selected	 operation	
conditions	 with	 NOVA®’s	 default	 measurement	 parameters,	 and	 using	 statistical	
inference	tools	in	order	to	obtain	the	“real”	spectrum	with	a	high	level	of	accuracy.	The	
power	 of	 the	 statistical	 inference	 tools	 used	 in	 this	 work	 is	 that	 they	 are	 able	 to	
identify	 and	 take	 away	 the	 noise	 by	 repeating	 the	measurement	 a	 large	 number	 of	
times	 (150	 times):	 this	 allows	obtaining	 the	 “real”	 spectrum	 from	a	 large	number	of	
measurements.	
	
The	 experimental	 spectra	were	 compared	 to	 the	 reference	 spectrum:	 The	 goal	 is	 to	
select	 the	measurement	parameter	values	 that	 lead	 to	an	experimental	 spectrum	as	
close	 as	 possible	 to	 the	 reference	 spectrum.	 A	 comparison	 parameter	 had	 to	 be	
selected	 in	 order	 to	 quantify	 the	 deviation	 of	 the	 experimental	 spectrum	 from	 the	
reference	 one.	 	 In	 general,	 the	 analysis	 of	 the	 impedance	 spectra	 is	 done	 through	
equivalent	circuit	fitting	[28];	hence,	more	than	comparing	the	spectra	themselves,	it	is	
preferable	 to	 compare	 the	 fitting	 of	 the	 experimental	 spectra	 to	 the	 reference	
spectrum.	 Consequently,	 in	 this	 work,	 the	 experimental	 spectra	 were	 fitted	 to	 the	
same	equivalent	 circuit	 that	was	 used	 for	 the	 reference	 spectrum,	 given	 in	 figure	 1.	
The	 mean	 square	 error	 of	 the	 fitted	 experimental	 spectrum	 with	 respect	 of	 the	
reference	 spectrum,	𝑀𝑆𝐸1+),	 was	 used	 as	 comparison	 parameter.	 This	 parameter	 is	
defined	by	the	following	expression:	
	
	
	

𝑀𝑆𝐸1+) =
1
𝑁1

∙ 𝑍′1+) 𝜔+ − 𝑍′DE1 𝜔+
F
+

,-

+	.	/

𝑍′′1+) 𝜔+ − 𝑍′′DE1 𝜔+
F	 (5)	

	
Where	𝜔+	stands	 for	 the	 i-th	measured	 angular	 frequency;	𝑍′1+)	and	𝑍′′1+)	are	 the	 real	
and	imaginary	parts	of	the	experimental	spectrum	fitting	for	each	angular	frequency;	



and	finally,	𝑍′DE1	and	𝑍′′DE1	are	the	real	and	imaginary	parts	of	the	reference	spectrum	
for	 each	 angular	 frequency.	 This	 parameter	 measures	 the	 distance	 of	 the	 fitted	
experimental	 spectrum	 with	 respect	 to	 the	 reference	 spectrum.	 This	 was	 the	
dependant	variable	used	in	the	experimental	design	of	this	work.	
	
Each	one	of	 the	experimental	 spectra	was	 fitted	 to	 the	 reference	electric	equivalent	
circuit.	 The	 mean	 square	 error	 between	 the	 experimental	 data	 fitting	 and	 the	
reference	 spectrum	 was	 determined	 in	 each	 case.	 Thus,	 for	 each	 combination	 of	
measurement	 parameter	 values	 the	 mean	 square	 error	 between	 the	 experimental	
spectrum,	 obtained	 for	 that	 combination	 of	 measurement	 parameters,	 and	 the	
reference	spectrum	was	determined.	
	
A	 statistical	 analysis	was	performed	 taking	 the	mean	 square	error	 as	 the	dependant	
variable.	 Firstly,	 an	 analysis	 of	 the	 variance	 (ANOVA)	 was	 carried	 out	 in	 order	 to	
determine	which	measurement	parameters	have	a	significant	effect	on	the	deviation	
of	the	experimental	spectrum	from	the	reference	spectrum;	and	the	sign	of	this	effect.	
Secondly,	a	regression	model	was	built	using	the	response	surface	methodology	(RSM).	
This	 black	 box	 model	 relates	 the	 dependant	 variable	 and	 the	 measurement	
parameters.	Both,	ANOVA	and	RSM,	are	well	established	statistical	methods	[32].	
	
Finally,	 the	 built	 regression	model	was	 used	 in	 order	 to	 obtain	 the	 optimal	 value	 of	
each	one	of	 the	measurement	parameters	 that	minimized	 the	mean	 square	error	of	
the	 fit	 obtained	 from	 the	 experimental	 data	 with	 respect	 to	 the	 reference	 fit:	 the	
measurement	parameter	values	that	lead	to	an	experimental	spectrum	which	fitting	is	
the	closest	to	the	reference	spectrum.	Figure	2	summarises	the	methodology	used	in	
this	work.	
	
	 	



4.	Experimental	
	
The	 experimental	 setup	 is	 represented	 in	 figure	 3.	 Its	 main	 element	 is	 a	 300W	
commercial	FC	stack,	provided	by	HeliocentriS®,	composed	by	20	individual	cells	with	
an	 effective	 area	 of	 58	 cm2.	 The	 air	 supply	 is	 provided	 by	 a	 compressor	 and	 the	
hydrogen	comes	from	a	200	bar	high-pressure	storage	tank.	The	humidification	of	the	
gas	 inlets	 is	 assured	 by	 a	 humidification	 system	 and	 the	 fuel	 stack	 operating	
temperature	 is	 controlled	 by	 a	 refrigeration	 system.	 On	 the	 one	 hand,	 the	
humidification	 system	 consists	 in	 two	 independent	 bubbling	 humidification	 systems,	
with	humidification	temperature	control.	On	the	other	hand,	the	refrigeration	system	
consists	 in	 a	 heat	 exchanger	 equipped	 with	 a	 continuous	 pump	 and	 a	 temperature	
controller.	 The	 reactant	 gases	 flow	 rates	 are	 controlled	 using	mass	 flow	 controllers.	
The	reactant	inlet	pressures	are	monitored	by	pressure	gauges	and	are	regulated	using	
manual	valves.	All	the	relevant	system	temperatures	are	monitored	by	thermocouples.	
The	overall	control	was	done	using	a	control	computer	with	a	Labview®	based	control	
program.	All	the	experiments	were	carried	out	in	open	end	anode	mode,	with	constant	
inlet	reactant	flow	rates:	2.1	𝑁𝐿 ∙ 𝑚𝑖𝑛6/	for	the	hydrogen	stream	and		15	𝑁𝐿 ∙ 𝑚𝑖𝑛6/	
for	the	air	stream.	The	individual	cell	galvanostatic	impedance	spectra	were	obtained	
using	an	Autolab®	302N	potentiostat/galvanostat	with	FRA	module,	 controlled	using	
NOVA®	software.		
	
As	 stated	 in	 section	 3,	 all	 the	 spectra	 were	 obtained	 in	 the	 same	 cell	 operation	
conditions:	The	operation	temperature	and	the	humidification	temperatures	were	set	
to	70ºC,	 and	 the	DC	current	was	 set	 to	1	A.	 The	 selected	 frequency	 range	extended	
from	5	kHz	to	250	mHz,	with	50	frequencies	logarithmically	selected.	The	perturbation	
amplitude	was	set	to	5%	of	the	DC	current	[10].		
	
The	 preconditioning	 of	 the	 PEMFC	 system	 can	 heavily	 influence	 the	 experimental	
results,	since	the	preconditioning	operating	point	establishes	the	water	content	of	the	
membrane,	and	thus	determines	the	membrane	resistance	[33].	Because	of	this,	a	15	
min	preconditioning	before	each	measurement	was	done	 in	order	 to	assure	that	 the	
system	remained	 in	 the	 same	working	point	 through	all	 the	performed	experiments.	
The	preconditioning	 conditions	were	 the	 same	operation	 conditions	used	during	 the	
experiment	itself,	stated	previously.	
	
	 	



5.	Results	and	discussion	
	

5.1.	Experimental	spectra	
	
Figures	4	and	5	 show	examples	of	 the	obtained	experimental	 spectra.	 Figure	4	gives	
the	obtained	spectrum	for	treatment	(−;−;−;−;−):	Integration	time:	0.1	s;	Number	
of	 integration	 cycles:	 1	 cycle;	 Number	 of	 stabilization	 cycles:	 5	 cycles;	 Stabilization	
time:	 1	 s;	Minimum	 cycle	 fraction:	 0.	 And	 figure	 5	 gives	 the	 obtained	 spectrum	 for	
treatment	(+;+;−;−;+):	 Integration	 time:	 1	 s;	 Number	 of	 integration	 cycles:	 5	
cycles;	Number	of	stabilization	cycles:	5	cycles;	Stabilization	time:	1	s;	Minimum	cycle	
fraction:	 0.5.	 	 The	points	 represent	 the	obtained	experimental	 data;	 the	dashed	 line	
represents	the	fitting	of	the	experimental	data	to	the	reference	equivalent	circuit;	and	
finally,	the	solid	line	is	the	reference	spectrum.	The	mean	square	error	value	for	each	
one	of	the	spectra	is	displayed	on	the	figure	itself.	These	values	were	calculated	from	
the	fit	of	the	experimental	data	(dashed	line)	and	the	reference	data	(solid	line),	using	
equation	(5).	
	
The	 experimental	 spectra	 are	 composed	 of	 a	 capacitive	 loop	 and	 a	 high-frequency	
inductive	zone.	It	is	well	known	that	the	high-frequency	inductive	zone	is	related	to	the	
cable	impedance	[20].	Since	the	aim	of	this	work	is	to	study	the	PEM	fuel	cell	itself	and	
not	 the	 cable	 connexions,	 only	 the	 capacitive	 loop	 was	 considered	 in	 this	 work.	
Therefore,	 the	 high-frequency	 inductive	 zones	were	 removed	before	 performing	 the	
fittings.				
	
It	can	be	observed	that	the	measurement	parameters	have	a	significant	effect	on	the	
obtained	 experimental	 spectrum,	 and	 therefore	 on	 the	 fitting	 of	 the	 experimental	
spectrum.	This	highlights	the	need	to	properly	select	 the	values	of	 the	measurement	
parameters;	and	hence	justifies	this	work.	
	

5.2.	ANOVA	analysis	
	
As	stated	 in	section	3,	after	determining	the	value	of	 the	 fit	mean	square	parameter	
for	each	one	of	the	experiments,	an	ANOVA	analysis	was	performed.	The	comparison	
parameter	 	𝑀𝑆𝐸𝑓𝑖𝑡 	was	 selected	 as	 dependant	 variable;	 whereas	 the	 measurement	
parameters	were	selected	as	the	independent	factors	of	the	ANOVA	study.	The	ANOVA	
analysis	was	performed	 for	 a	 confidence	 level	 of	 95%.	 Table	2	corresponds	with	 the	
obtained	ANOVA	table;	while	figure	6	represents	the	Pareto	chart	extracted	from	the	
ANOVA	analysis.	
	
The	ANOVA	table	gives	the	statistical	significance	(quantified	by	the	p-value)	of	all	the	
simple	and	the	interaction	effects;	while	the	Pareto	chart	gives	both,	the	sign	and	the	



magnitude,	of	the	effect	of	each	factor	and	each	interaction	on	the	dependant	variable	
[31].	
	
It	can	be	observed	that	three	main	factors	have	a	statistically	significant	effect	on	the	
dependant	 parameter	with	 a	 95%	 confidence	 level:	 the	maximum	 stabilization	 time,	
the	 number	 of	 stabilization	 cycles	 and	 the	 minimum	 number	 of	 integration	 cycles.	
Moreover,	the	interaction	between	the	maximum	stabilization	time	and	the	minimum	
cycle	 fraction;	 and	 the	 interaction	 between	 the	maximum	 integration	 time	 and	 the	
minimum	number	of	integration	cycles	also	have	statistically	significant	effects	on	the	
dependant	 parameter.	 So,	 the	 statistically	 significant	 interactions	 correspond	 with	
interactions	 between	 factors	 that	 define	 the	 same	 measurement	 step:	 there	 is	 a	
significant	interaction	associated	to	the	acquisition	step	and	another	one	associated	to	
the	stabilization	one.	
	
In	addition,	it	can	be	seen	that	both,	the	maximum	stabilization	time	and	the	minimum	
cycle	fraction,	have	a	positive	effect	on	the	dependant	variable:	higher	values	of	these	
factors	 lead	 to	 a	 higher	 value	 of	 the	mean	 square	 error,	 and	 therefore	 to	 a	 higher	
deviation	 from	 the	 reference	 spectrum.	 These	 parameters	 define	 the	 stabilization	
segment	 for	 low	 and	 very	 low	 frequencies,	 for	 which	 the	 cycle	 times	 are	 high,	 and	
therefore	the	drift	of	the	PEM	fuel	cell	is	significant.	It	can	be	deduced	that	for	low	and	
very	 low	 frequencies	 the	 stabilization	 segment	 causes	 more	 drawbacks	 than	
improvements	 on	 the	 spectrum	 measurement.	 Meanwhile,	 the	 other	 three	
measurement	 parameters	 have	 a	 negative	 effect	 on	 the	 dependant	 parameter:	 an	
increase	 in	 these	 parameters	 causes	 a	 drop	 in	 the	 mean	 square	 error,	 hence	 to	
experimental	data	closer	to	the	reference	spectrum.	It	can	be	deduced	that	increasing	
the	acquisition	segment	time	always	improves	the	measurement	(in	the	studied	factor	
range);	 and	 that	 the	 stabilization	 segment	 improves	 the	measurement	 only	 for	 high	
frequencies.		
	

5.3.	Regression	model	
	
As	 stated	 in	 section	 3,	 after	 performing	 the	 ANOVA	 analysis,	 a	 response	 surface	
method	was	applied	in	order	to	obtain	a	regression	model	that	related	the	value	of	the	
dependant	 parameter	 	 𝑀𝑆𝐸1+) 	to	 the	 measurement	 parameters.	 According	 to	 the	
significance	results	extracted	from	the	ANOVA	analysis,	presented	in	section	5.2,	it	can	
be	 deduced	 that	 the	model	 should	 include	 the	 five	measurement	 parameters	 (since	
three	 of	 them	 have	 significant	 main	 effects;	 whereas	 the	 other	 two	 appear	 in	
significant	interaction	terms),	and	the	two	significant	interaction	terms.	Therefore,	the	
following	quadratic	model	was	proposed:	
	



	 𝑀𝑆𝐸1+) 𝑥1 =
1
2 ∙ 𝑥1

Q ∙ 𝑨 ∙ 𝑥1 + 𝑏 ∙ 𝑥1 + 𝑐	 (6)	

	
Where	𝑥1	denotes	 the	 vector	 of	 independent	 factors.	 It	 has	 already	 been	 explained	
that	in	this	case	the	independent	factors	are	the	measurement	parameters.	Thus,	the	
factor	vector	is	defined	by	the	following	expression:	
	
	 𝑥1

Q = 𝜏3 𝜈3 𝜈:: 𝜏:: 𝜉:: 	 (7)	

	
𝑨	is	 the	 second	 order	 effect	matrix.	 It	 contains	 the	 coefficients	 of	 the	 second	 order	
simple	effects	(quadratic	effects)	and	the	coefficients	of	the	interaction	effects	(second	
order	 cross	 effects).	 Since	 the	 ANOVA	 analysis	 revealed	 that	 there	 were	 only	 two	
second	 order	 significant	 effects,	 the	 second	 order	 effect	 matrix	 is	 of	 the	 following	
form:			
	
	

𝑨 =

0 𝑎WX∙YX 0 0 0
𝑎WX∙YX 0 0 0 0
0 0 0 0 0
0 0 0 0 𝑎WZZ∙[ZZ
0 0 0 𝑎WZZ∙[ZZ 0

	

	

(8)	

Where	𝑎WX∙YX 	is	 the	 coefficient	 associated	 with	 the	 acquisition	 step	 interaction;	 and	
𝑎WZZ∙[ZZ 	is	the	coefficient	associated	with	the	stabilization	step.	
	
Finally,	𝑐	represents	 the	 model	 constant;	 and	𝑏	stands	 for	 the	 simple	 effect	 vector,	
given	by:	
	
	

𝑏 =

𝑏WX
𝑏YX
𝑏YZZ
𝑏WZZ
𝑏[ZZ

	

	

(9)	

	
The	proposed	black	box	model	is	defined	by	8	coefficients:	5	simple	effect	coefficients	
(one	 for	 each	 measurement	 parameter),	 2	 interaction	 coefficients	 (one	 for	 each	
measurement	 step)	 and	 a	 constant	 coefficient.	 As	 it	 was	 stated	 in	 section	 2,	 33	
experimental	points	were	obtained.	 In	order	to	get	a	significant	model	fitting	using	a	
response	surface	method,	it	 is	recommended	to	have	at	least	10	experimental	points	
more	than	parameters	considered	in	the	model	[32].	Therefore,	in	this	case,	there	are	
enough	experimental	points	to	obtain	a	significant	fitting.	The	values	of	the	different	



regression	model	coefficients	were	obtained	using	RSM,	and	the	obtained	results	are	
given	in	table	3.	
	
The	model	has	a	determination	coefficient	of	83.35%:	this	means	that	83.35%	of	the	
variability	of	the	experimental	points	is	explained	by	the	model.	This	is	a	significant	𝑅F	
value:	it	indicates	that	the	model	achieves	to	adequately	represent	the	relation	of	the	
fitting	mean	square	and	the	measurement	parameters.	
	
In	 order	 to	 confirm	 that	 the	 obtained	model	 is	 statistically	 significant,	 the	 following	
statistical	hypothesis	contrast	is	considered:	
	

𝐻a:				𝑇ℎ𝑒	𝑚𝑜𝑑𝑒𝑙	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑒𝑎𝑛𝑖𝑛𝑔𝑓𝑢𝑙
𝐻/:											𝑇ℎ𝑒	𝑚𝑜𝑑𝑒𝑙	𝑖𝑠		𝑚𝑒𝑎𝑛𝑖𝑛𝑔𝑓𝑢𝑙

	

	
Table	4	gives	the	ANOVA	table	obtained	for	the	above	hypothesis	contrast	test.	Since	
the	 obtained	 p-value	 is	0.0104,	 it	 can	 be	 concluded	 that	 the	 model	 is	 statistically	
significant	with	a	confidence	level	of	nearly	99%.	
	
In	 brief,	 the	 obtained	 regression	 model	 is	 statistically	 meaningful;	 and	 manages	 to	
properly	 model	 the	 effect	 of	 the	 measurement	 parameters	 on	 the	 dependant	
parameter,	𝑀𝑆𝐸1+).	Therefore,	the	model	can	be	accepted	and	considered	as	valid	for	
the	purposes	of	this	study.	
	
The	validity	of	regression	models	 is	restrained	to	the	domain	of	the	data	from	which	
they	 are	 obtained	 from	 [31].	 Consequently,	 the	 regression	 model	 obtained	 in	 this	
section	is	only	applicable	for	the	range	of	measurement	parameters	considered	in	the	
experimental	design,	and	given	in	table	1.	A	 low	bond	vector	and	a	high	bond	vector	
are	defined:	
	

𝑥"+n =

0.1
1
5
1.0
0.00

	 (10)	

	
	

𝑥"'o =

1.0
5
15
40.0
0.50

	 (11)	

	
The	regression	model	can	be	written	as:	
	



	 𝑀𝑆𝐸1+) :				 𝑥	𝜖	ℝr 𝑥"+n+ ≤ 𝑥+ ≤ 𝑥"'o+0	∀𝑖	𝜖	 1; 2;… ; 5 → 	ℝw

																																																												𝑥1 →
1
2 ∙ 𝑥1

Q ∙ 𝑨 ∙ 𝑥1 + 𝑏 ∙ 𝑥1 + 𝑐
	 (12)	

	
5.4.	Optimization	

	
The	goal	of	this	study	is	to	obtain	the	optimum	measurement	parameters	that	lead	to	
an	 experimental	 spectrum	 as	 close	 as	 possible	 to	 the	 reference	 one.	 Therefore,	 the	
optimal	measurement	parameters	are	the	parameters	that	minimize	the	mean	square	
error,	𝑀𝑆𝐸1+).	This	corresponds	to	the	following	optimization	problem:	
	
	 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒																							𝑀𝑆𝐸1+) 𝑥1 	

	𝑥1																																														
				𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜						𝑥"+n ≼ℝ{| 𝑥1 ≼ℝ{| 𝑥"'o				

	 (13)	

	
Where	𝑀𝑆𝐸1+) 𝑥1 	stands	 for	 the	 regression	 model,	 obtained	 in	 section	 5.3.	≼ℝ{| 	
denotes	the	generalized	inequality	defined	by	the	non	negative		ℝr	orthant	 ℝw

r .	This	
generalized	inequality	corresponds	to	the	componentwise	vector	inequality.	The	bond	
restrictions	are	 included	 in	 the	optimization	problem	since	 the	model	 is	only	valid	 in	
the	studied	parameter	range.	
	
Due	 to	 the	 regression	 model	 form,	 this	 optimization	 problem	 is	 a	 quadratic	
optimization	problem	[34].	The	convexity	of	 the	problem	determines	how	difficult	 to	
solve	 is	 the	 optimization	 problem,	 and	 the	 appropriate	 resolution	method	 [35].	 The	
convexity	of	a	quadratic	optimization	problem	is	given	by	the	properties	of	the	second	
order	 term	 matrix,	𝑨	[36].	 In	 this	 case,	 matrix	𝑨	is	 an	 indefinite	 matrix:	 therefore,	
optimization	 problem	 (13)	 is	 a	 non-convex	 optimization	 problem.	 Such	 kind	 of	
problems	 is	NP-hard	 [37].	 There	 are	 algorithms	 for	 obtaining	 the	 global	 optimum	of	
non	convex	quadratic	optimization	problems,	 such	as	 the	LPCC	method	 [38]	and	 the	
globally	solving	method	based	on	completely	positive	programming	[39].	However,	in	
general,	non	linear	programming	methods	are	used	to	solve	this	kind	of	optimization	
problem:	 the	 most	 common	 ones	 being	 the	 active	 set	 method,	 the	 interior	 point	
method	and	 the	 trust	 region	method	 [40].	 These	algorithms	are	 implemented	 in	 the	
quadprog	 function	 of	 the	 Mathlab®	 optimization	 toolbox	 [41].	 Consequently,	 the	
aforementioned	toolbox	was	used	to	solve	the	optimization	problem	in	this	work.	The	
obtained	optimum	values	are	given	in	table	5.	
	

5.5.	EIS	measurements	with	the	optimum	measurement	parameters	
	
Figure	 7	 compares	 one	 of	 the	 150	 spectra	 obtained	 with	 NOVA®’s	 default	
measurement	parameters	used	for	the	determination	of	the	reference	spectrum	(the	



other	 149	 spectra	 present	 a	 similar	 pattern	 to	 the	 shown	 one);	 with	 the	 spectrum	
obtained	 with	 the	 optimum	measurement	 parameters.	 The	 difference	 is	 significant:	
while	the	spectrum	obtained	with	the	optimum	measurement	parameters	is	nearly	the	
reference	 spectrum;	 the	 spectrum	 obtained	 with	 NOVA®’s	 default	 measurement	
parameters	 presents	 a	 significant	 deviation	 from	 the	 reference	 spectrum.	 The	
spectrum	obtained	with	the	optimum	measurements	parameters	gives	the	equivalent	
information	to	150	spectra	obtained	with	the	default	measurement	parameters	(since	
150	default	spectra	were	used	to	determine	the	reference	spectrum).		
	
The	 general	 practice	 in	 EIS	 is	 to	 fit	 the	measured	 spectra	 to	 an	 equivalent	 electrical	
circuit	[28].	For	this	reason,	in	order	to	quantify	the	difference	between	both	spectra	
shown	in	figure	7,	they	were	fitted	to	the	reference	equivalent	circuit	given	in	figure	1.	
The	 considered	 equivalent	 circuit	 consists	 in	 a	𝑅(𝑅𝐶𝑃𝐸) 	circuit.	 It	 considers	 4	
parameters:	 the	series	resistance	 𝑅% ,	 the	parallel	 resistance	 𝑅� ,	and	the	constant	
phase	element	 𝑄a, 𝛼 .	Table	6	shows	the	model	parameters	obtained	from	fitting	the	
default	 parameter	 and	 the	 optimum	 parameter	 spectra.	 In	 the	 same	 table,	 the	
reference	value	of	each	parameter	is	given.	Using	these	reference	values,	the	relative	
error	of	each	parameter,	𝜀+,	was	determined	using	the	following	expression:	
	
	

𝜀+ =
𝑋𝑖 − 𝑋𝑖 𝑟𝑒𝑓
𝑋𝑖 𝑟𝑒𝑓

	 (14)	

	
Where	 	𝑋+ 𝑟𝑒𝑓 	stands	 for	 the	 reference	 value	 for	 the	𝑖-th	model	 parameter;	 and	𝑋+ 	
denotes	the	value	of	the	corresponding	parameter.	Table	6	lists	the	relative	errors	for	
the	model	 parameters	 determined	 from	 the	 fitting	 of	 the	 default	 and	 the	 optimum	
spectra.	 It	 can	be	observed	 that	 the	 relative	errors	of	 the	parameters	obtained	 from	
the	 default	 spectrum	 are	 more	 than	 3	 times	 bigger	 than	 the	 relative	 errors	 of	 the	
parameters	 obtained	 from	 the	 optimum	 spectrum,	 for	 every	model	 parameter.	 The	
total	relative	error	in	the	default	case	is	74%,	whereas	in	the	optimum	case	it	is	only	of	
16%:	the	optimum	measurement	parameters	lead	to	a	total	relative	error	with	respect	
to	the	reference	case	4.5	times	lower	than	the	default	measurement	parameters.	This	
shows	that	there	is	a	significant	quantitative	improvement	of	the	EIS	analysis	results	if	
the	optimum	measurement	parameters	are	used	for	the	EIS	measurements.		
	
Therefore,	if	the	usual	proceeding	of	not	optimizing	the	measurement	parameters	and	
just	 taking	 the	 default	 values	 was	 done	 with	 the	 system	 studied	 in	 this	 work,	 the	
obtained	spectra	would	have	a	significant	error.	This	shows	the	importance	of	properly	
selecting	 the	measurement	 parameters	 in	 order	 to	 get	 the	 best	 quality	 spectra	 that	
lead	to	model	parameters	with	less	error.	
	
	 	



6.	Conclusions	
	
In	 conclusion,	 the	 optimum	 impedance	 measurement	 parameters	 for	 the	 system	
studied	 in	 this	 work	 are:	 1	 second	 integration	 time	 and	 5	 integration	 cycles;	 15	
stabilization	cycles,	1	second	maximum	stabilization	time	and	a	minimal	fraction	of	0.	
These	parameters	lead	to	a	spectrum	of	much	higher	quality	(less	error	with	respect	to	
the	 reference	 spectrum)	 than	 the	 spectrum	 obtained	 with	 NOVA®’s	 default	
parameters.	 Therefore,	 the	 developed	 methodology	 allowed	 obtaining	 the	 optimal	
measurement	parameters	that	minimized	the	spectrum	error:	 the	total	relative	error	
in	the	fitted	model	parameters	was	4.5	times	lower	when	the	optimum	measurement	
parameters	were	used	instead	of	the	default	measurement	parameters.		
	
	
	
Additionally,	 this	 work	 highlights	 the	 importance	 of	 a	 proper	 selection	 of	 the	
impedance	measurement	 parameters.	 Authors	 recommend	 that	 optimization	 of	 the	
measurement	 parameters	 is	 performed	 for	 each	 particular	 system,	 instead	 of	 the	
general	practice	of	taking	the	default	measurement	parameter	values.	
	
The	methodology	presented	in	this	work	is	quite	powerful.	However	it	has	two	major	
drawbacks:	the	reference	spectrum	must	be	known;	and	the	optimum	parameters	may	
vary	 from	 an	 operation	 point	 to	 another.	 Regarding	 the	 first	 issue,	 the	 reference	
spectrum	can	always	be	determined	(for	every	system	and	every	operation	condition)	
using	 the	 inferential	 methodology	 to	 obtain	 an	 accurate	 estimation	 of	 the	 “real”	
spectrum	 from	 a	 large	 number	 of	 measurements	 with	 the	 default	 measurement	
parameters.	 Regarding	 the	 second	 issue,	 in	 general	 the	 optimum	 measurement	
parameters	 can	 vary	 from	 one	 operation	 point	 to	 another.	 Consequently,	 the	
optimization	should	be	done	for	every	operation	point.	But	this	is	not	possible	from	a	
practical	 point	 of	 view.	 A	 compromise	 solution	 should	 be	 considered.	 The	
methodology	 presented	 in	 this	 work	 should	 be	 applied	 for	 average	 operation	
conditions.	 Rather	 than	 repeating	 the	 optimization	 for	 all	 the	 other	 operation	
conditions;	 the	 optimum	 measurement	 parameters	 for	 the	 average	 operation	
conditions	 are	 used	 for	 all	 the	 operation	 conditions.	 This	 may	 lead	 to	 suboptimal	
measurement	 parameters;	 but	 those	measurement	 parameters	will	 be	 closer	 to	 the	
optimum	ones	for	each	operation	condition	than	the	default	ones.	In	a	certain	sense,	
the	 first	 optimization	 for	 the	 average	 operation	 conditions	 is	 used	 to	 determine	 the	
order	of	magnitude	of	the	optimum	measurement	parameters	for	the	studied	system.	
Further	 work	 should	 be	 done	 in	 order	 to	 determine	 the	 variation	 of	 the	 optimum	
measurement	 conditions	with	 the	 operation	 conditions;	 and	 therefore,	 the	 practical	
viability	of	the	proposed	compromise	solution.	
	



7.	Nomenclature	
	
Latin	letters	
	
𝑨		 	 Matrix	of	second	order	effects		
𝑏		 	 Simple	effect	vector		
𝑓		 	 Frequency	 𝐻𝑧 	
𝑀𝑆𝐸		 	 Mean	square	error	 𝛺F 	
𝑁1		 	 Number	of	frequencies	at	which	the	impedance	is	measured	
𝑡' 𝑓 		 	 Duration	of	the	acquisition	step	for	frequency	𝑓	 𝑠 	
𝑡"(𝑓)	 	 Measurement	time	for	frequency	𝑓	 𝑠 	
𝑡)*)		 	 Total	measurement	time	 𝑠 	
𝑡% 𝑓 		 	 Duration	of	the	stabilization	step	for	frequency	𝑓	 𝑠 	
𝑥1		 	 Vector	of	factors	
𝑍		 	 Complex	electrochemical	impedance	 𝛺 	
𝑍′		 	 Real	part	of	the	electrochemical	impedance	 𝛺 	
𝑍′′		 	 Imaginary	part	of	the	electrochemical	impedance	 𝛺 	
	
	
Greek	letters	
	
𝜀+ 		 	 Relative	error	
𝜉::		 	 Minimum	stabilization	cycle	fraction	
𝜏3	 	 Maximum	integration	time	 𝑠 	
𝜏::		 	 Maximum	stabilization	time	 𝑠 	
𝜈3		 	 Minimum	number	of	integration	cycles	
𝜈::		 	 Number	of	stabilization	cycles	
𝜔		 	 Angular	frequency	 𝑟𝑎𝑑 ∙ 𝑠6/ 	
	
	
Subscripts	
	
𝑓𝑖𝑡		 	 Fitting	of	the	experimental	spectrum	
𝑟𝑒𝑓		 	 Reference	spectrum	
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Table	1.	Quantitative	values	of	the	encoded	factor	levels	

Factor	 𝑳𝒆𝒗𝒆𝒍	 − 𝟏	 𝑳𝒆𝒗𝒆𝒍	𝟎	 𝑳𝒆𝒗𝒆𝒍	 + 𝟏	 Software	
default	

𝝉𝑰 𝒔 	 0.10	 0.55	 1.00	 0.125	
𝝂𝑰 𝑪𝒚𝒄𝒍𝒆𝒔 	 1	 3	 5	 1	
𝝂𝑺𝑺 𝑪𝒚𝒄𝒍𝒆𝒔 	 5	 10	 15	 10	

𝝉𝑺𝑺 𝒔 	 1.0	 20.5	 40.0	 1.0	
𝝃𝑺𝑺	 0.00	 0.25	 0.50	 0.00	

	
	 	



Table	2.	ANOVA	table	for	𝑴𝑺𝑬𝒇𝒊𝒕	parameter	

Factor	 Sum	of	
squares	

Degrees	of	
freedom	

Mean	
square	 F	ratio	 p-value	

𝝉𝑰	 3.30 ∙ 10−11	 1	 3.30 ∙ 10−11	 3.05	 0.0986	

𝝂𝑰	 6.51 ∙ 10−11	 1	 6.51 ∙ 10−11	 6.03	 0.0252	

𝝂𝑺𝑺	 7.49 ∙ 10−11	 1	 7.49 ∙ 10−11	 6.93	 0.0174	

𝝉𝑺𝑺	 1.15 ∙ 10−10	 1	 1.15 ∙ 10−10	 10.64	 0.0046	

𝝃𝑺𝑺	 6.37 ∙ 10−12	 1	 6.37 ∙ 10−12	 0.59	 0.4531	

𝝉𝑰 ∙ 𝝂𝑰	 6.40 ∙ 10−11	 1	 6.40 ∙ 10−11	 5.92	 0.0263	

𝝉𝑰 ∙ 𝝂𝑺𝑺	 3.11 ∙ 10−13	 1	 3.11 ∙ 10−13	 0.03	 0.8673	

𝝉𝑰 ∙ 𝝉𝑺𝑺	 1.04 ∙ 10−11	 1	 1.04 ∙ 10−11	 0.96	 0.3414	

𝝉𝑰 ∙ 𝝃𝑺𝑺	 2.50 ∙ 10−11	 1	 2.50 ∙ 10−11	 2.31	 0.1468	

𝝂𝑰 ∙ 𝝂𝑺𝑺	 2.91 ∙ 10−13	 1	 2.91 ∙ 10−13	 0.03	 0.8715	

𝝂𝑰 ∙ 𝝉𝑺𝑺	 2.21 ∙ 10−11	 1	 2.21 ∙ 10−11	 2.04	 0.1709	

𝝂𝑰 ∙ 𝝃𝑺𝑺	 1.04 ∙ 10−12	 1	 1.04 ∙ 10−12	 0.10	 0.7599	

𝝂𝑺𝑺 ∙ 𝝉𝑺𝑺	 9.62 ∙ 10−12	 1	 9.62 ∙ 10−12	 0.89	 0.3585	

𝝂𝑺𝑺 ∙ 𝝃𝑺𝑺	 1.11 ∙ 10−13	 1	 1.11 ∙ 10−13	 0.01	 0.9205	

𝝉𝑺𝑺 ∙ 𝝃𝑺𝑺	 7.85 ∙ 10−11	 1	 7.85 ∙ 10−11	 7.27	 0.0153	

Residual	 1.84 ∙ 10−10	 17	 1.08 ∙ 10−11	 	 	

Total	 6.89 ∙ 10−10	 32	 	 	 	
	
	
	
	
	
	
	
	
	
	
	
	 	



Table	3.	Regresion	model	coefficients	
Model	

parameter	
Estimated	
value	 Units	

𝑐	 8.84 ∙ 106�	 𝛺F	

𝑏WX 	 −6.97 ∙ 106�	 𝛺F ∙ 𝑠6/	

𝑏YX 	 −1.58 ∙ 106�	 𝛺F	

𝑏YZZ 	 −3.06 ∙ 106�	 𝛺F	

𝑏WZZ 	 1.69 ∙ 106�	 𝛺F ∙ 𝑠6/	

𝑏[ZZ 	 8.37 ∙ 106�	 𝛺F	

𝑎WX∙YX 	 −1.57 ∙ 106�	 𝛺F ∙ 𝑠6/	

𝑎WZZ∙[ZZ 	 3.21 ∙ 106�	 𝛺F ∙ 𝑠6/	

𝑅F 83.35%	 	

	
	
	 	



Table	4.	ANOVA	table	for	the	model	significance	test	

Factor	 Sum	of	
squares	

Degrees	of	
freedom	

Mean	
square	 F	ratio	 p-value	

𝑴𝒐𝒅𝒆𝒍	 2.94 ∙ 106/a	 7	 4.20 ∙ 106//	 2.66	 𝟎. 𝟎𝟏𝟎𝟒	
Residual	 3.95 ∙ 106/a	 25	 1.58 ∙ 106//	 	 	

Total	 6.89 ∙ 106/a	 32	 	 	 	
	
	 	



Table	5.	Optimum	value	for	each	one	of	the	measurement	parameters	
Measurement	
parameter	

Optimum	
value	

𝝉𝑰	 1.0	𝑠	
𝝂𝑰	 5	𝑐𝑦𝑐𝑙𝑒𝑠	
𝝂𝑺𝑺	 15	𝑐𝑦𝑐𝑙𝑒𝑠	
𝝉𝑺𝑺	 1.0	𝑠	
𝝃𝑺𝑺	 0.00	

	
	
	 	



Table	6.	Comparison	of	the	model	parameters	obtained	using	default	and	optimum	
measurement	parameters	

Model	parameter	 Reference	
Default	 Optimum	

Value	 Relative	error	(%)	 Value	 Relative	error	(%)	
𝑹𝒔	(𝜴)	 0.00573	 0.00612	 7.17	 0.00575	 0.69	
𝑹𝒑	(𝜴)	 0.0383	 0.0413	 7.58	 0.0386	 0.71	

𝑸𝟎	(𝑭 ∙ 𝒔𝜶6𝟏)	 0.4391	 0.2248	 48.81	 0.3773	 14.06	
𝜶	 0.8928	 0.9890	 10.78	 0.8860	 0.77	

	 	 Total	 74.33	 Total	 16.23	
	

	 	



	
	

	
Figure	1.	Reference	spectrum	and	electric	equivalent	circuit	

	
	 	



	

	
Figure	2.	Outline	of	the	methodology	used	in	this	work	
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Figure	3.	Experimental	setup	

	
	



	
Figure	4.	Results	for	experiment	(−;−;−;−;−)	(Integration	time:	0.1	s;	Number	of	

integration	cycles:	1	cycle;	Number	of	stabilization	cycles:	5	cycles;	Stabilization	time:	1	
s;	Minimum	cycle	fraction:	0)	
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Figure	5.	Results	for	experiment	(+;+;−;−;+)	(Integration	time:	1	s;	Number	of	

integration	cycles:	5	cycles;	Number	of	stabilization	cycles:	5	cycles;	Stabilization	time:	
1	s;	Minimum	cycle	fraction:	0.5)	
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Figure	6.	Pareto	chart	for	the	mean	square	error	of	the	experimental	data	fit	with	

respect	to	the	reference	data,	built	for	a	confidence	level	of	95.4%	
	
	 	



	

	
Figure	7.	Spectra	measured	with	the	optimum	measurement	parameters	and	with	the	

NOVA®	default	parameters	
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