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Abstract. Decision making (DM) processes are becoming increasingly com-

plex. The reasons are manifold. DM usually involves many aspects; some are

purely technical, while others are subjective and derived from social, political,

and environmental factors, among others. As a result, they involve items that are

not easily comparable under the same units of measurement. Problems are made

even more complex by the fact that current governance processes tend to involve

all the stakeholders in the DM process.

In this paper we consider the AHP methodology (analytic hierarchy process),

which is used to build consistent aggregate results from data provided by decision

makers. As some of the actors involved may not be completely familiar with all

the criteria under consideration, it is common that the body of opinion, expressed

in terms of pairwise comparison, is incomplete. To overcome this weakness, we

propose a framework that enables users to provide data on their preferences in a

partial and/or incomplete way and at different times. This article is an advance

towards a dynamic model of AHP. The authors have addressed the problem of

adding a new criterion or deleting obsolete criteria. Here, we address the consistent

completion of a reciprocal matrix as a mechanism to obtain a consistent body

of opinion issued in an incomplete manner by a specific actor. This feature is

incorporated into a process of linearization previously introduced by the authors,

which is concisely presented. Finally, we provide an application for leakage control

in a water supply company. The adoption of suitable control leakage policies in

water supply is a problem of enormous interest in the water industry, particularly

in urban hydraulics.
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1 Introduction

The alternatives may be varied in decision making (DM) processes, and the decision consists

in choosing the most desirable alternative after considering a set of criteria. The decision

process can be complicated for several reasons. One of these reasons arises from the fact

that criteria are not often comparable using the same unit of measurement. Also, there is a

tendency in current governance processes to involve all the stakeholders in the DM process.

For these reasons the process of decision making can be very complex and so adequate tools

are necessary to support the process.

AHP (analytic hierarchy process) was introduced by Saaty [24, 25, 26] and with appropri-

ate modifications the process can be used to integrate all of these aspects. Its hierarchical

structure is an effective framework for DM and organizes the problem in terms of objectives,

criteria, and alternatives. Also, the evaluation of criteria and alternatives in pairs and the sub-

sequent construction of comparison matrices have been shown to be effective mechanisms for

the joint treatment of tangible and intangible objectives. The use of appropriate mathemati-

cal techniques enables the prioritization of heterogeneous –and often very different– elements.

This is crucial in decision-making. We present the basic elements of AHP in Section 2.

There are several problems associated with this methodology. The main problem is the

possible lack of consistency in comparison matrices, as comparative judgments are subjective

since they are issued by experts and/or other actors in the decision process. These matrices

should accommodate a chosen scale (see [12, 22, 18, 23], including, of course, the work by

Saaty). Consequently, it is predictable –even reasonable– that the issued global opinion

body lacks a minimum consistency, which is essential for the prioritization to be meaningful,

reliable, and consequently, conducive to a sound decision. The literature contains numerous

mechanisms to improve consistency, [11, 21, 8, 1, 20, 9, 13, 3, 4, 6] among many others,

and any attempt to improve consistency results in a better quality decision [18]. Among the

methods to improve consistency, we present in Section 3 the linearization method introduced

by the authors [4] on which the main contribution of this article is built.

A major problem is caused by the growing necessity for all the actors to be involved in

decision processes. This leads to a couple of challenges. Firstly, the design of appropriate

mechanisms for achieving consensus on a final decision that integrates the different points

of view, possibly conflicting, of the various actors. This is one of the challenges to which

most effort is currently being devoted; see among others [19, 29, 2, 10, 15]. However, as a

precondition, some actors may not be completely familiar with one or more of the elements

about which they have to issue their judgment or opinion. The authors have addressed this

issue in [5] for a specific scenario: the addition or deletion of a criterion. In leakage control,
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for example, only economic aspects have so far been considered. However, environmental

concerns are becoming important, and more recently, social elements have begun to play an

important role in decision-making policy on leakage control. It is natural that some of the

actors involved are not familiar enough with all the issues to make appropriate comparison

judgements. In this paper we address this scenario: that of stakeholders being consulted

when they are not familiar with the effects that some elements may have in the problem.

As a result, it is difficult to gather complete information about the preferences of such a

decision maker at a given moment. It seems reasonable to allow such an actor to express

their preferences several times at his or her own convenience. Meanwhile, partial results

based on partial preference data may be generated from data collected at various times –and

this data may eventually be consolidated when the information is complete.

Several authors [17, 7] have addressed the problem of producing preference data generated

from incomplete information using various techniques that mainly involve optimization ap-

plied to different objective functions. For example, in [7] an approximation to the priority

vector is obtained from an incomplete judgement. In Section 4 we provide a full matrix

termination mechanism for an incomplete comparison matrix produced by an actor. This

mechanism uses an algebraic method (instead of optimization processes) to minimize a dis-

tance in a matrix set (see [5, Sec. 2.2] for a justification of this metric). As a result it is

efficient, robust, and easy to use.

To conclude the paper, in Section 5 we present the case of a judgment made by an actor

from a water supply system in relation to leakage management policies. We present some

conclusions and comments on specific elements for future work in Section 6.

2 AHP basics

The AHP developed by Saaty [24] formalizes the intuitive understanding of complex problems

by building a hierarchical model.

The purpose of the method is to allow the actor involved to visually structure a multicri-

teria problem in a hierarchical manner. This hierarchy consists of three levels: the highest

level contains the goal, the middle level contains the criteria, and the lowest level presents al-

ternatives. Once the hierarchical model is constructed, comparisons are made between pairs

of criteria and also between pairs of alternatives for each criterion. The process typically

concludes by providing a summary of results through a process of aggregation.

The entire process is based on the fact that it enables the assignation of numerical values to

the judgments given by the actor, making it possible to measure how each element contributes

to the level of the hierarchy that is immediately above. Use is made of a specific scale for

these comparisons in terms of preference or importance. We use here the scale developed by

Saaty [24], with the possibility of including intermediate numerical (decimal) values in the

scale to model hesitation between two adjacent judgments [27].
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In the first step, the expert makes a comparison between pairs of criteria. Based on the

scale of values, a comparison matrix of criteria is built. It is a square matrix of order n,

A = [aij], 1 ≤ i, j ≤ n, where n is the number of criteria considered. The element aij

represents the comparison between element i and element j. Subsequently, a similar exercise

comparing alternatives for each criterion is performed, thus building comparison matrices of

alternatives.

We recall here the main facts about this type of matrix. Consider a real matrix of size

n × n. A is positive if aij > 0 for all i, j, A is homogeneous if A is positive and aii = 1 for

all i, A is reciprocal if A is positive and aij = 1/aji, for all i, j. These are typical properties

of comparison matrices commonly found in AHP. In addition, A is consistent if A is positive

and aik = aijajk, for all i, j, k. We shall always consider vectors of IRn as column vectors.

Among the various characterizations of consistent matrices, let us recall the following:

Proposition 1 (Theorem 1 of [6]). A positive matrix A is consistent if and only if there is a

vector x in IRn such that A = xJ(x)T , where J is the map that associates a positive matrix

A = [aij ] with the matrix whose entry (i, j) is 1/aij .

We also recall that if X is any matrix, XT denotes the transpose matrix of X. The

characterization given by Proposition 1 can be used to build the consistent matrix closest to

a given comparison matrix, after obtaining the priority vector x. This vector is closely related

to the Perron vector of a positive matrix.

The principal eigenvalue of a comparison matrix and its associated eigenvector (Perron

vector) provide information for complex decision-making: the normalized Perron eigenvector

provides the priority vector sought [25, 26]. Generally, however, A is not consistent. The

hypothesis that the estimates of these values are small perturbations of the ‘correct’ values also

guarantees small perturbation to the eigenvalues (see, for example [28]). For non-consistent

matrices, the problem to be solved is the eigenvalue problem Aw = λmaxw, where λmax is

the single largest eigenvalue of A that provides the Perron eigenvector as an estimate of the

vector of priorities. As a measure of the inconsistency, Saaty proposes using the consistency

index CI = (λmax−n)/(n− 1) and the consistency ratio CR = CI/RI, where RI is an average

consistency [26]. If CR < 0.1, the estimate is accepted, otherwise, a new comparison matrix

is requested until CR < 0.1.

3 Consistency through linearization

There are several proposals in the literature to improve the consistency of a matrix. In this

paper we use the technique called linearization [4]. The process begins with a comparison

matrix provided by the actor who issued the judgment. Most of these matrices turn out to

be inconsistent, even if issued by the best expert(s) in a topic. It is also highly probable

that these matrices do not have acceptable consistency ratios. In this situation it is necessary
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to apply a method to improve the consistency, such as the linearization method concisely

presented below.

Let Mm,n be the set composed of m × n real matrices, and let M+
m,n be the subset of

Mm,n formed of matrices whose entries are positive. The symbol tr(A) denotes the trace

of the square matrix A. Let us denote by Rn and Cn the sets of reciprocal and consistent,

respectively, n × n matrices. It is evident that Cn ⊆ Rn. Furthermore, it is also simple to

obtain that C2 = R2 and if n > 2, then Cn 6= Rn. In addition, 1n will denote the n × 1

column vector all of whose components are 1. Let, finally, {e1, . . . , en} be the standard basis

of IRn.

We shall use the nonlinear mappings L and its inverse E, which are defined now

L : M+
n,n → Mn,n, (L(A))ij = log(aij),

E : Mn,n → M+
n,n, (E(A))i,j = exp(aij).

As we have indicated, the following problem is significant: given A ∈ Rn, how can we find

its closest matrix B ∈ Cn? Evidently, we have to specify the exact meaning of the words

‘closest matrix’ to answer this question. In other parlance, we have to define a distance in

M+
n,n. We shall utilize the distance in M+

n,n

d(A,B) = ‖L(A)− L(B)‖F , A,B ∈ M+
n,n, (1)

derived from the Frobenius norm ‖ · ‖F , i.e., ‖X‖2F = tr(XTX). This map, which is easily

proven to be a distance, makes M+
n,n a complete metric space endowed with the distance the

map defines. Furthermore, the use of this distance in AHP problems is natural – as justified

in [5, Sec 2.2].

To solve the aforementioned problem, the following linear mapping will be useful

φn : IRn → Mn,n, φn(x) = x1Tn − 1nx
T . (2)

The following results were given in [4]. We will consider Mn,n as an Euclidean vector space

endowed with the following inner product: 〈A,B〉 = tr(ATB) for A,B ∈ Mn,n. We shall also

endow any IRp with the Euclidean norm: i.e., ‖x‖2 = xTx for x ∈ IRp.

Theorem 1 (Theorems 2.2 and 2.4 of [4]). Let Ln denote the set {L(A) : A ∈ Cn}. Then

(i) Ln is a linear subspace of Mn,n whose dimension is n− 1 and coincides with Imφn.

(ii) If {y1, . . . ,yn−1} is an orthogonal basis of (span{1n})
⊥, then {φn(y1), . . . , φn(yn−1)}

is an orthogonal basis of Ln.

Theorem 2 (Theorem 2.5 of [4]). Let {y1, . . . ,yn−1} be an orthogonal basis of (span{1n})
⊥.

If A ∈ M+
n,n, then the following matrix

XA =
1

2n

n−1
∑

i=1

tr
(

L(A)Tφn(yi)
)

‖yi‖2
φn(yi)
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is the orthogonal projection of L(A) onto Ln. In other words, the matrix E(XA) is the closest

consistent matrix to A in the sense of the distance given in (1).

The utility of this result is that if A ∈ M+
n,n is reciprocal, then E(XA) is consistent and it

is expected to be a good approximation of A.

4 Consistent completion of an incomplete comparison matrix

In this section we consider the scenario already stated in the introduction, in which the actor

involved is not acquainted with the effects that some elements may have in the problem. The

goal is to use (consistently) the partial information given by the actor, with which only an

incomplete comparison matrix can be built, i.e., a matrix with some missing entries (located

in symmetrical positions).

That is to say, consider the following problem.

Problem 1. Let A ∈ M+
n,n be a reciprocal matrix with some unspecified symmetrical entries.

How can it be completed consistently?

In general, the answer to this problem is negative, as evidenced by the following matrix.

A =











1 2 3 ⋆

1/2 1 1 2

1/3 1 1 ⋆

⋆ 1/2 ⋆ 1











. (3)

This matrix cannot be completed (assigning values to the asterisks) consistently since its rank

is greater than or equal to 3 (there is a 3×3 nonsingular submatrix) taking into account that,

as proven in [6], a consistent matrix is necessarily of rank 1.

In the light of this counterexample, we formulate the following problem.

Problem 2. Let A be an n×n reciprocal matrix with some unspecified (symmetrical) entries.

How can it be completed so that it is ‘as much consistent as possible’?

By using some logarithms this problem can be reformulated more accurately within the

context of the linearization method described above.

Problem 3. Let A be an n × n reciprocal and positive matrix with some unspecified (sym-

metrical) entries. How can it be completed so as to minimize d(A,Cn)?

In this statement d(·, ·) represents the distance defined in (1).

This problem has an interesting added value. Indeed, it can also be used to provide con-

sistency to a reciprocal matrix where some entries are considered untouchable, that is, whose
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values are not to be modified in the process of improving the consistency of a comparison

matrix.

Let us think about the incomplete matrix A given in (3). Observe that L(A) can be written

as

B(λ, µ) =











0 log 2 log 3 λ

− log 2 0 0 log 2

− log 3 0 0 µ

−λ − log 2 −µ 0











= B0 + λ











0 0 0 1

0 0 0 0

0 0 0 0

−1 0 0 0











+ µ











0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0











= B0 + λ(e1e
T
4 − e4e

T
1 ) + µ(e3e

T
4 − e4e

T
3 ),

where λ and µ are unspecified real numbers and

B0 =











0 log 2 log 3 0

− log 2 0 0 log 2

− log 3 0 0 0

0 − log 2 0 0











.

From now on we will use the notation

Bij = eie
T
j − eje

T
i , 1 ≤ i < j ≤ n. (4)

In general, we can state the following simple but important fact.

Proposition 2. Let A ∈ M+
n,n be a reciprocal matrix with some unspecified (symmetrical)

entries. Then there exist a skew-Hermitian matrix B0 ∈ Mn,n and λ1, . . . , λk ∈ IR such that

L(A) = B0 +

k
∑

r=1

λrBirjr .

From now on, {y1, . . . ,yn−1} will denote any orthogonal basis of (span{1n})
⊥. Let us

observe that Theorem 2.6 of [4] enables us to find an orthonormal basis of (span{1n})
⊥

without any computation. Taking into account this result, Theorem 1, and Proposition 2,

Problem 3 can be stated equivalently as

Problem 4. Let B0 ∈ Mn,n be a skew-Hermitian matrix and 1 ≤ i1, j1, . . . , ik, jk ≤ n be

indices with ir < jr, r = 1, . . . , k. Find λ1, . . . , λk and µ1, . . . , µn−1 such that
∥

∥

∥

∥

∥

B0 +

k
∑

r=1

λrBirjr −

n−1
∑

s=1

µsφn(ys)

∥

∥

∥

∥

∥

F

≤

∥

∥

∥

∥

∥

B0 +

k
∑

r=1

λ′
rBirjr −

n−1
∑

s=1

µ′
sφn(ys)

∥

∥

∥

∥

∥

F

(5)

for all λ′
1, . . . , λ

′
k, µ

′
1, . . . , µ

′
n−1 ∈ IR.
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To solve Problem 4 we shall apply the following result whose proof is included for the sake

of completeness.

Theorem 3. Let U, V be linear subspaces of an Euclidean vector space E, p,q ∈ E, and

u ∈ U , v ∈ V . The following affirmations are equivalent.

(i) ‖p+ u− (q+ v)‖ ≤ ‖p+ u′ − (q+ v′)‖ for all (u′,v′) ∈ U × V .

(ii) p+ u− (q+ v) ∈ U⊥ ∩ V ⊥.

Proof. (i) ⇒ (ii): Let x = p+ u− (q+ v). Take y an arbitrary vector of U . By hypothesis,

we obtain for any λ ∈ IR

‖x‖2 ≤ ‖p+ u+ λy − (q+ v)‖2 = ‖x+ λy‖2 = ‖x‖2 + λ2‖y‖2 + 2λ〈x,y〉.

Therefore,

0 ≤ λ2‖x‖2 + 2λ〈x,y〉. (6)

If we take λ > 0, then 0 ≤ λ‖x‖2 + 2〈x,y〉, which by making λ → 0+ reduces to 0 ≤ 〈x,y〉.

If we take λ < 0, then (6) implies 0 ≥ λ‖x‖2 + 2〈x,y〉, which by making λ → 0− reduces to

0 ≥ 〈x,y〉. Therefore, 0 = 〈x,y〉. Since y was an arbitrary vector of U , then x ∈ U⊥.

The proof of x ∈ V ⊥ is similar.

(ii) ⇒ (i): Observe that p + u − (q + v) ∈ U⊥ ∩ V ⊥ = (U + V )⊥. By the Pythagorean

theorem, if (u′,v′) ∈ U × V , then

‖p+u′−(q+v′)‖2 = ‖[p+u−(q+v)]+[u′−u+v−v′]‖2 = ‖p+u−(q+v)‖2+‖u′−u+v−v′‖2.

Now, it is evident ‖p+ u′ − (q+ v′)‖ ≥ ‖p+ u− (q+ v)‖.

Observe that if p + U and q + V are linear manifolds of an Euclidean space, then by

decomposing p− q = x− u+ v, where x ∈ (U + V )⊥, u ∈ U , v ∈ V , and using Theorem 3,

we can assure that there is always a solution for the following problem: find u,v ∈ U × V

such that

‖p+ u− (q+ v)‖ ≤ ‖p+ u′ − (q+ v′)‖ ∀ (u′,v′) ∈ U × V.

This former result will be applied to solve Problem 4 when the Euclidean vector space is Mn,n

endowed with this inner product: 〈X,Y 〉 = tr(XTY ) for X,Y ∈ Mn,n.

We need the following result, which may be obtained from Equation (5) of [4]: If {y1, . . . ,yn−1}

is an orthogonal basis of (span{1n})
⊥, then

‖φn(yr)‖
2
F = 2n‖yr‖

2, r = 1, . . . , n− 1, (7)

where the mapping φn is defined in (2).

Several elementary and known properties of the trace operator are collected in the following

result for the convenience of the reader.
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Proposition 3. Let A ∈ Mn,m, B ∈ Mn,m, and C ∈ Mm,n. Then

(i) tr(A) = tr(AT ).

(ii) The trace is linear, i.e., tr(αA+ βB) = α tr(A) + β tr(B) for any α, β ∈ IR.

(iii) tr(AC) = tr(CA).

The following technical lemmas will be used.

Lemma 1. Let the matrices Bij be defined as in (4). Then

tr(BT
pqBrs) =







2 if (p, q) = (r, s),

0 if (p, q) 6= (r, s).

Proof: First we simplify BT
pqBrs:

BT
pqBrs = [epe

T
q − eqe

T
p ]

T [ere
T
s − ese

T
r ]

= [eqe
T
p − epe

T
q ][ere

T
s − ese

T
r ]

= eqe
T
p ere

T
s − eqe

T
p ese

T
r − epe

T
q ere

T
s + epe

T
q ese

T
r .

Observe that eTp er, e
T
p es, e

T
q er, and eTq es are scalars and, consequently, commute with any

matrix. Furthermore, since {e1, . . . , en} is an orthonormal basis of IRn, then eTi ej = δij ,

where δ is used to denote the Kronecker’s delta. Thus,

BT
pqBrs = δpreqe

T
s − δpseqe

T
r − δqrepe

T
s + δqsepe

T
r .

By using Proposition 3 one has

tr(BT
pqBrs) = tr(δpreqe

T
s − δpseqe

T
r − δqrepe

T
s + δqsepe

T
r )

= δpr tr(e
T
s eq)− δps tr(e

T
r eq)− δqr tr(e

T
s ep) + δqs tr(e

T
r ep)

= δpre
T
s eq − δpse

T
r eq − δqre

T
s ep + δqse

T
r ep

= δprδsq − δpsδrq − δqrδsp + δqsδrp

= 2(δprδqs − δpsδqr).

If (p, q) = (r, s), it is evident that δpr = δqs = 1. By definition (4), it follows that p < q

and r < s, hence p = r < s and r = p < q, and therefore, δps = δqr = 0.

If p 6= r, obviously δpr = 0. Remember that we can use p < q and r < s. We have two

possibilities: p < r or r < p. The former leads to p < r < s, hence δps = 0. The latter leads

to r < p < q, therefore δqr = 0.

If q 6= s, the reasoning is symmetrical as in the prior paragraph and we can conclude

δprδqs − δpsδqr = 0. �

Lemma 2. For any y = (y1, . . . , yn)
T ∈ IRn and 1 ≤ i < j ≤ n one has tr(BT

ijφn(y)) =

2(yj − yi).
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Proof: Observe that eTi 1n = eTj 1n = 1. Let us bear in mind that yi = eTi y and yj = eTj y

are scalar and commute with any matrix. Thus

BT
ijφn(y) =

(

eie
T
j − eje

T
i

) (

y1Tn − 1ny
T
)

= eie
T
j y1

T
n − eje

T
i y1

T
n − eie

T
j 1ny

T + eje
T
i 1ny

T

= yjei1
T
n − yiej1

T
n − eiy

T + ejy
T .

Using Proposition 3 leads to

tr(BT
ijφn(y)) = yj tr(ei1

T
n )− yi tr(ej1

T
n )− tr(eiy

T ) + tr(ejy
T )

= yj tr(1
T
nei)− yi tr(1

T
nej)− tr(yT ei) + tr(yT ej)

= 2yj − 2yi.

This finishes the proof of the Lemma. �

If we define for 1 ≤ i < j ≤ n

dij = ej − ei,

the conclusion of Lemma 2 can be rewritten as tr(BT
ijφn(y)) = 2dT

ijy.

It is evident that any skew-Hermitian matrix B0 ∈ Mn can be uniquely expressed as

B0 =
∑

i<j

ρijBij, (8)

where the matrices Bij are defined in (4). Therefore, if the skew-Hermitian matrix B0 is

decomposed as in (8) and y ∈ IRn, then by applying Lemma 1 and Lemma 2 we obtain

tr(BT
0 Brs) = 2ρrs and tr(BT

0 φn(y)) = 2
∑

i<j

ρijd
T
ijy. (9)

The following theorem is the main result of the article. Observe that if A ∈ M+
n,n is a

reciprocal incomplete matrix, as we showed in the example after Problem 3, then L(A) can

be written as L(A) = B0 +
∑k

r=1 λrBirjr . Observe furthermore that the (ir, jr) entry of B0

is zero for r = 1, · · · , k.

Theorem 4. Let B0 ∈ Mn,n be a skew-Hermitian matrix represented as in (8) and 1 ≤

i1, j1, . . . , ik, jk ≤ n with ir < jr (for r = 1, . . . , k). Assume that the (ir, jr) entry of B0 is

zero for r = 1, · · · , k. The solution of Problem 4 satisfies

λ = Sµ,

(

D −
1

n
STS

)

µ = b,

where λ = [λ1 · · · λk]
T , µ = [µ1 · · · µn−1]

T , S is the k × (n − 1) matrix whose (r, s)

entry is dT
irjr

ys, D is the diagonal (n − 1) × (n − 1) matrix whose (s, s) entry is ‖ys‖
2, and

b = [wTy1 · · · wTyn−1]
T , being w = 1

n

∑

i<j ρijdij .
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Proof. By Theorem 3 we know that a solution λ1, . . . , λk, µ1, . . . , µn−1 of Problem 4 exists,

and the matrix

B0 +
k

∑

r=1

λrBirjr −
n−1
∑

s=1

µsφn(ys)

is orthogonal to Bi1j1 , . . . , Bikjk and φn(y1), . . . , φn(yn−1). Let r ∈ {1, . . . , k} be fixed. Since

the (ir, jr) entry of B0 is zero, then 〈B0, Birjr〉 = 0. We obtain from (9), Lemma 1, and

Lemma 2

0 =

〈

B0 +
k

∑

r=1

λrBirjr −
n−1
∑

s=1

µsφn(ys), Birjr

〉

= 2λr − 2
n−1
∑

s=1

µsd
T
irjr

ys. (10)

Now, fix any s ∈ {1, . . . , n− 1}. We obtain from (7), (9), Lemma 2, and Theorem 1

0 =

〈

B0 +

k
∑

r=1

λrBirjr −

n−1
∑

s=1

µsφn(ys), φn(ys)

〉

= 2
∑

i<j

ρijd
T
ijys+2

k
∑

r=1

λrd
T
irjr

ys−2nµs‖ys‖
2. (11)

If we define w = 1
n

∑

i<j ρijdij, then (11) reduces to

µs‖ys‖
2 = wTys +

1

n

k
∑

r=1

λrd
T
irjr

ys.

Set αrs = dT
irjr

ys for r = 1, . . . , k and s = 1, . . . , n − 1. Equalities (10) and (11) can be

written as
































1 0 · · · 0 −α11 −α12 · · · −α1n−1

0 1 · · · 0 −α21 −α22 · · · −α2n−1

...
...

. . .
...

...
...

. . .
...

0 0 · · · 1 −αk1 −αk2 · · · −αkn−1

−α11

n
−α21

n
· · · −αk1

n
‖y1‖

2 0 · · · 0

−α12

n
−α22

n
· · · −αk2

n
0 ‖y2‖

2 · · · 0
...

...
. . .

...
...

...
. . .

...

−α1n−1

n
−α2n−1

n
· · · −αkn−1

n
0 0 · · · ‖yn−1‖

2























































λ1

...

λk

µ1

...

µn−1























=























0
...

0

wTy1

...

wTyn−1























.

By following the notation of the Theorem, the above matrix equality can be written as

[

Ik −S

− 1
n
ST D

][

λ

µ

]

=

[

0

b

]

.

By a simple Gaussian block elimination,

[

Ik −S 0

− 1
n
ST D b

]

→

[

Ik −S 0

0 D − 1
n
STS b

]

.

It should be evident that λ and µ satisfy the thesis of the theorem.
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Next we present an m-file that can be executed in Matlab or Octave. This file computes

the most consistent completion of an incomplete reciprocal matrix in the sense of Theorem 4

when this completion is unique. We maintain a similar notation with Theorem 4, with the

only difference that matrix S is stored in alpha.

function [lambda mu] = th4(A, P)

% A is the matrix to be completed (if we do not know a {ij}, then A(i,j)=1.

% P is a (0, 1)-matrix such that if we do not know a {ij}, then P(i,j)=1.

% if we know a {ij}, then P(i, j)=0.

% Use: [lambda mu] = th4(A, P)

[n, m] = size(A);

B = log(A);

auxP = triu(P);

[noi noj] = find(auxP==1);

auxP = triu(P+ones(n,n),1);

[sii sij] = find(auxP==1);

kn = length(noi); ks = length(sii);

Y = y(n);

D = diag(ones(1,n)*Y.^2);

I = eye(n);

w = zeros(n,1);

alpha = zeros(kn,n-1);

for r = 1:kn

for s = 1:n-1

i = noi(r); j = noj(r);

alpha(r,s) = (I(j,:)-I(i,:))*Y(:,s);

end

end

for index = 1:ks

i = sii(index); j = sij(index);

w = w+B(i,j)*(I(:,j)-I(:,i));

end

w = w/n;

b = Y’*w;

mu = (D - alpha’*alpha/n)\b;

lambda = alpha*mu;

This file uses another m-file, y.m which computes the vectors y1, · · · ,yn−1 (see [4]). We

include this here for the sake of the completeness.
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function y = y (n)

y = zeros(n,n-1);

for k = 1:n-1

y (1:k,k) = ones (k,1);

y (k + 1,k) = -k;

end

We will now compare our procedure with two previous procedures that also complete an

incomplete reciprocal matrix.

In [17], instead of managing with multiplicative properties (Saaty’s treatment), the empha-

sis is on additive properties of the given matrices. A matrix R = (rij) is said to be reciprocal

in the additive sense if (rik−0.5)+(rkj−0.5) = rij−0.5 for any i, j, k. The purpose of [17] is to

minimize the global inconsistency index defined by ρ =
∑

ijk(rik+ rkj− rij−0.5)2 considering

the missing entries as variables. This solution involves solving a linear system. But, in several

cases, the solution obtained must be computed by solving a quadratic programming problem.

Also, notice that the condition k ≤ n− 2 must be satisfied to ensure that the aforementioned

linear system is nonsingular (here, 2k is the number of unknown entries and n is the size of

the incomplete matrix).

In [7], the logarithmic least squares method for incomplete matrices is solved. Explicitly,

given A an incomplete reciprocal matrix, if E = {(i, j) : aij and aji are given } the problem

consists in finding w = (w1, . . . , wn) such that w is the solution of

min
∑

(i,j)∈E

[log aij − log(wi/wj)]
2 + [log aji − log(wj/wi)]

2, w1 + · · · + wn = 1, wi > 0.

This vector w gives the priority vector. The authors showed that the solution is unique if,

and only if, some graph (related only with the positions (i, j) ∈ E) is connected. If this graph

is connected, the solution w can be obtained by solving a linear system whose matrix has a

strong connection with the Laplacian matrix of the aforementioned graph.

Observe that our method, although based on the minimisation of a natural distance in

M+
n,n, boils down to just the solution of a system of linear equations, so that no minimisation

process is needed. The method uses the multiplicative condition, as proposed by Saaty,

instead of the additive condition as in [17]; and last but not least, it produces an entire

consistent comparison matrix, instead of just the priority vector as in [7]. Obtaining the

entire consistent comparison matrix is crucial, for example if the aggregation of individual

judgments, as opposed to aggregation of individual priorities, is necessary within a given

participative process.

13



5 Application in the context of leak management

In this section we discuss how the above methodology is used in a decision process in which

the actor consulted made no comparative judgments between two sets of criteria with respect

to the adoption of a certain policy on leakage control. The main objective is to minimize water

loss through an appropriate leakage control policy. In a simplified framework, we consider

two alternatives: ALC (active leakage control) and PLC (passive leakage control). The first

consists of taking a priori actions in the supply system for prevention; while the second

involves repairing reported and/or obvious leaks [16]. Various criteria, including tangible

and intangible factors and qualitative factors, can be used to decide on the alternatives. To

illustrate the application of the methodology developed, we consider a set of five criteria:

C1: Cost of development planning and implementation;

C2: budget and credit;

C3: payback;

C4: social costs;

C5: environmental costs.

It is noted that the first three criteria are directly related to economic and financial aspects.

These criteria are intended to assess the economic cost of the project, the availability of

financial resources to meet the investment, and the recovery of investments. The last two

criteria relate to social and environmental impacts brought about by either the development

of a leakage control project with a proactive vision (as is the active control of leakage) or

conversely, the externalities resulting from only reacting to evident or reported leaks, thus

opting for a passive management of leakage control.

For this problem, Table 1 presents the views of the actor involved using the Saaty scale. For

this specific matrix, the pairwise comparison process was undertaken by an employee who is

part of the team overseeing the renovation of the drinking water network in the city of Valencia

(Spain). This task is within a project for assessing the best leakage control alternative [14]

that was specifically developed by the authors with Valencia’s main water utility. Many of

the matrices obtained in the course of this project have already been used by the authors

in previous works [3, 4, 5, 6, 13]. The matrix in Table 1 was not considered in the main

decision-making process as it was incomplete. However, despite its lack of completeness, the

matrix is worth considering precisely in the context of dealing with incomplete information (an

objective clearly within the scope of this paper). The incompleteness of this matrix is justified

as follows. The employee has the appropriate background to be considered an expert on the

problem being treated as he supervises works to improve the water supply infrastructure. He

is usually present when works are being carried out and so has some knowledge of the social

impact. However, he considered his familiarity with the environmental costs as weak; and

consequently, he limited his judgments to those elements in which he was fully acquainted.
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The asterisks indicate judgments not provided.

C1 C2 C3 C4 C5

C1 1 1 2 9 ∗

C2 1 1 3 9 7

C3 1/2 1/3 1 7 5

C4 1/9 1/9 1/7 1 ∗

C5 ∗ 1/7 1/5 ∗ 1

Table 1: Incomplete matrix of comparison of criteria

After applying the described process, the following values are obtained

λ1 = 2.07, λ2 = −0.24.

With these values the entire matrix in Table 2 is built. The priority vector for this consistently

C1 C2 C3 C4 C5

C1 1 1 2 9 7.92

C2 1 1 3 9 7

C3 1/2 1/3 1 7 5

C4 1/9 1/9 1/7 1 0.79

C5 0.13 1/7 1/5 1.27 1

Table 2: Consistently completed matrix of comparison of criteria

completed matrix (with CR = 1.60%) is

Z = [0.351 0.380 0.189 0.035 0.045]T ,

showing a clear dominance of the economic criteria. The actor in question avoided comparing

environmental costs with those of planning and implementation because he dared not estimate

how much more importance to give planning and implementation over environmental costs.

Moreover, although he had no clear ideas on the subject, he considered environmental costs

to be less important than budgeting and investment recovery. Finally, he chose not to issue

a comparative judgment between social and environmental costs.

The developed ‘consistent completion mechanism’ reveals, based on the comparisons issued,

that environmental costs, together with social costs, are not among the top priorities for the

actor involved.

We omit in this document, the final aggregation process, which would normally take place

and make use of a comparison of alternatives for each criterion, since the main objective of

this article has already been shown, namely, consistent completion.
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It should be noted that this mechanism of consistent completion is clearly explicit and

involves only a few simple matrix calculations. As a result, its application does not involve

any special calculation burden. In fact, it can be simply and directly implemented in any

computing environment that includes matrix functions.

6 Conclusions

In [5] we consider that AHP methodology can be thought as a dynamic model, following

the idea that input in decision-making depends on whether actors indicate their preferences

once or at several times. We presented mechanisms for adding and deleting criteria efficiently

to preserve the work previously done on consistency with the criteria used so far. In this

contribution, we have considered the scenario in which the actors consulted are not familiar

with the effects of some elements. As it can be unreasonable to wait for complete data

collection and quality information on the preferences of decision makers, we think that data

on user preferences may be completed several times at the user’s convenience. As a result,

the static input mode can be easily modified so that partial results are considered (based on

partial preference data obtained from data collected at different times). The final decision will

be produced when the information is complete, using, for example, the mechanisms described

in this paper and [5]. Enabling a dynamic approach in traditional techniques will undoubtedly

open the door to a variety of topics for future research.

The method we propose is computationally efficient and is based on a linearization process

previously introduced by the authors [4]. In order to illustrate the operation of the algorithm,

we have presented an experiment that considers a problem of decision making in a water

supply utility in relation to the adoption of a leakage control policy -active or passive control

being the alternatives under consideration.

Part of the future work should focus on the formalization of methods of consensus decision-

making in which it is desirable or necessary to include the views of various actors -as is the

trend in many current processes of governance.
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ciana. The first author also received support from Spanish project PAID-06-12. The use of

English in this paper was revised by John Rawlins.

16



References

[1] J. Barzilai, Deriving weights from pairwise comparison matrices, J. Oper. Res. Soc. 48,

12, 1997, 1226-1232.

[2] D. Ben-Arieth, T. Easton, B. Evans, Minimum cost consensus with quadratic cost func-

tions, IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Hu-

mans 39, 2009, 210217.
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