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Abstract

Multiuser multiple-input multiple-output (MU-MIMO) techniques, such as scheduling and precod-

ing, have shown to improve the spectral efficiency of wireless communication systems. However, these

techniques require an accurate knowledge of the channel of the different users at the transmitter. In

frequency division duplex systems, this information has to be provided by the different users, motivating

the research of efficient limited feedback schemes. This paper presents a novel statistical characterization

of the spatial multiple-input single-output (MISO) channel. In this characterization, one antenna is

selected as the reference and the channel fading experienced from this antenna is also considered as

reference. The conditional probability density functions (CPDF) of the envelope and phase of the channel

fading coefficients from the rest of the antennas (denoted as non-reference channel fading and non-

reference antennas) are obtained given the reference one. Based on this statistical characterization, this

paper proposes a channel quantization scheme that individually quantizes the channel fading coefficient

of each transmit antenna that is seen by each user. The envelope and phase of the reference channel

fading are quantized considering a Rayleigh distribution and a uniform distribution, respectively. The

non-reference channel fading coefficients are quantized according to their respective CPDFs, which in

turn depend on the spatial correlation between each channel fading and the reference channel fading.

Numerical simulations have been carried out to compare the performance of the proposed conditional

quantization (CQ) scheme with a polar quantization (PQ) and with a quantization based on the Karhunen-

Loève (KL) transform. PQ does not consider spatial correlation, CQ needs one spatial correlation

coefficient per non-reference antenna, and the KL scheme makes use of the full spatial correlation

matrix. The results show that CQ achieves a lower quantization mean square error than the other

two schemes in highly and moderately correlated environments. When the spatial channel model is
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considered, the proposed scheme allows the spatial correlation to be successfully exploited in arrays

with N = 4 and N = 8 transmit antennas for antenna separations that are lower than d = 1.3λ and

d = 0.75λ, respectively.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques have helped improve the spectral efficiency

of wireless communication systems in the last decade [1–3]. In multiuser environments, these

techniques are even more beneficial due to the multiuser diversity since they allow for the

spatial multiplexing of different mobile stations (MSs), even when the MSs are not equipped

with multiple antennas [4]. However, multiuser MIMO (MU-MIMO) precoding and scheduling

techniques require an accurate knowledge of the channel state information (CSI) at the base

station (BS) in order to achieve the expected performance.

In frequency division duplex (FDD) systems, since CSI at the BS cannot be obtained directly

from the reverse link, it must be provided by the MSs, preferably through a low-rate feedback

channel. The amount of feedback information depends on the system scenario and is generally

larger when the channel introduces some form of disturbance, such as spatial or multiuser

interference [5]. Thus, designing limited feedback schemes to reduce the amount of feedback

information plays an important role in the design of multiuser communication systems.

Limited feedback schemes for MIMO and MU-MIMO systems have been extensively studied

in the literature (see [5] and references therein). Many of the previous works take advantage of

the correlation in the CSI in order to reduce the amount of feedback information. A multicarrier

MIMO system is proposed in [6, 7], where only the beamforming vectors of a set of subcarriers

are sent back by the MSs. Taking advantage of the frequency correlation, the beamforming

vectors at the rest of subcarriers are obtained by spherical interpolation. In [8], the transmit

beamforming vector is quantized at the receiver by using a switched codebook. An adaptive

quantization framework is proposed where the codebook used for the quantization is chosen

from a set of predetermined codebooks that are based on the channel statistics. Alternatively, a

systematic codebook is proposed in [9], where, instead of switching the codebook, the codebook

is updated through scalings and rotations using the statistical information of the channel.

In point-to-point MIMO systems, sending back the quantized beamforming matrix can be

useful. However, in multiuser systems where the BS has to manage the multiuser interference
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and the users do not have any information about each other, sending back the quantized per-user

channel matrix can increase the flexibility in the design of scheduling and precoding. Both a

user selection scheme and a precoding scheme for spatially uncorrelated channels in a MU-

MIMO system are proposed in [10], where a feedback model based on channel quantization is

considered. Different tradeoffs between the number of feedback bits, the number of MSs and the

signal-to-noise ratio (SNR) have been derived for this system. In [11], the bandwidth is divided

into resource blocks taking into account the coherence bandwidth. The channel is considered

to be constant for the subcarriers within a resource block, and the design of the codebook for

the channel quantization exploits the spatial and frequency correlations. A comparison between

analog feedback and quantized feedback is carried out in [12], showing that quantized feedback

offers a better performance. Classical uniform quantization of uncorrelated random variables

is used to quantize the CSI in the time-domain. Optimal quantizers for uncorrelated Gaussian

sources were obtained in [13]. These quantizers can be used for quantizing circularly-symmetric

complex Gaussian sources by applying independent quantization to the real and imaginary parts,

which is also known as rectangular quantization. Other authors have considered polar quantizers,

where the magnitude and the phase of the complex values are independently quantized. Polar

quantization has shown to slightly outperform rectangular quantization [14]. In optimal and

uniform polar quantizers, the phase is quantized using an average of 1.52 and 1.47 bits more

than the magnitude.

With regard to practical MU-MIMO systems, the different transmit antennas may present

spatial correlation, which can be used to further reduce the feedback overhead. The idea of

transform coding is to carry out a linear transformation of the original data vector in order to

remove redundancy and perform the quantization over uncorrelated data [15]. The Karhunen-

Loève (KL) transform is applied before channel quantization in [16] due to the fact that the KL

transform achieves maximum decorrelation of Gaussian sources [17]. However, it requires the

knowledge of the full spatial correlation matrix at the BS, which in turn has to be sent back by

the MSs. Depending on the mobility and the number of antennas of the MSs, this amount of

information can cause a critical feedback overhead in the system.

This paper presents the statistical characterization of the spatial downlink channel in a mul-

tiuser multiple-input single-output (MU-MISO) system assuming the Kronecker correlation model.

In this characterization, one of the antennas in the array is chosen as the reference antenna and
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the channel fading from this antenna is considered to be the reference channel fading. The

fading from the rest of the channels (known as non-reference channel fading) is statistically

characterized by the envelope and phase given the reference fading and the corresponding

correlation coefficient.

In this work, we also propose a channel quantization scheme that makes use of this statistical

characterization to reduce the feedback information. In the proposed scheme, the envelope and

phase of the reference channel fading are quantized taking into account a Rayleigh distribution

and a uniform distribution, respectively [18, 19]. For the non-reference channel fading, the quan-

tization is performed considering the probability density functions (PDF), which in turn depend

on the reference channel fading and the spatial correlation between each channel fading and the

reference one. The main advantage of the proposed scheme is that instead of having to send

back the entire correlation matrix, only the correlation coefficients between the reference channel

fading and each of the non-reference fading coefficients need to be sent back. This approach can

offer significant savings in feedback overhead. Numerical results have been obtained using the

spatial channel model (SCM) from the Third Generation Partnership Project (3GPP) [20]. The

results show that the proposed scheme outperforms the KL scheme and the scheme based on

standard polar quantization in highly and moderately correlated scenarios. Thus, the contributions

of this article can be summarized as follows:

• Statistical envelope and phase characterizations of the non-reference channel fading co-

efficients given the reference fading are presented from the results of [21, 22]. These

characterizations, which focus on the channel quantization design, include the expressions

of the raw moments needed for the codebook generation. An approximation of the phase

difference distribution presented in [22] showing a lower computational complexity is also

proposed.

• A channel quantization scheme that makes use of the envelope and phase statistical char-

acterizations is presented. This scheme exploits the spatial correlation in order to reduce

the feedback information. Comparisons to similar quantization schemes are shown and a

discussion about the performance in terms of mean square error (MSE), complexity, and

required feedback is also provided.

The paper is organized as follows. Section II presents the channel model and its statistical
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characterization, including the envelope and the phase characterizations. Section III describes

the proposed quantization scheme, which takes into account the statistical characterization.

Simulations for the evaluation of the proposed scheme compared to other known quantization

schemes are carried out in Section IV. Section V presents the conclusions.

The following notation is used throughout the paper: boldface upper-case letters denote matri-

ces (e.g., A); boldface lower-case letters denote vectors (e.g., a); and italics denote scalars (e.g.,

a or A). Superscripts (·)H and (·)∗ stand for matrix Hermitian transpose and scalar complex

conjugate, respectively. Re{·}, Im{·}, | · | and ∠(·) refer to the real part, the imaginary part, the

absolute value, and the phase of a complex value, respectively. The Euclidean norm of a vector

is denoted by ‖ · ‖. The sets of m × n real and complex matrices are denoted by Rm×n and

Cm×n, respectively. The scalar quantization of a value is expressed as â = Q(a). The operators

d·e and b·c map a real number to the smallest following integer or the largest previous integer,

respectively. Finally, E[·] denotes the expectation operator.

II. STATISTICAL CHARACTERIZATION OF THE SPATIAL CHANNEL

We consider a narrowband MU-MISO FDD communication system with a single base station

(BS) that simultaneously transmits to multiple mobile stations (MSs) using spatial multiplexing,

as shown in Fig. 1. The BS is equipped with a uniform linear array of N antennas and the MSs

have a single antenna. Each MS is assumed to obtain an error-free channel estimation and has

to send back the quantized version of the estimated channel through the feedback channel since

this information will be necessary for scheduling and precoding tasks at the BS. Focusing on a

given MS, the received signal can be expressed as

y = hHx + n, (1)

where vector h = [h1, . . . , hN ]H ∈ CN×1 is composed of the channel fading coefficients between

each antenna in the BS and the antenna in the MS, vector x ∈ CN×1 represents the signal

transmitted by the BS and is subject to a power constraint E[‖x‖2] ≤ PT, and n is the noise

component at the MS, which follows a circularly-symmetric complex Gaussian distribution with

zero mean and unit variance, CN (0, 1). Using the Kronecker correlation model, the channel

vector can be expressed as [18, 23]

h = C1/2
s g, (2)
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where Cs = E
[
hhH

]
∈ CN×N is the spatial correlation matrix at the transmitter and g ∈ CN×1 is

a vector whose elements are independent and identically distributed (i.i.d.) circularly-symmetric

complex Gaussian variables, with zero mean and unit variance, CN (0, 1). Previous research [24]

has shown that the Kronecker model results in poor estimates for capacity. However, this model

is not used to evaluate the channel capacity, but to study the effect of the spatial correlation at

the transmitter in the feedback scheme.

BS . 
. 
.

. 
 .
  

.#1

#N

MS

MS

FEEDBACK

FEEDBACK

Fig. 1: System model.

In this section, we present the statistical characterization of the channel vector modeled in (2).

First, a system with only N = 2 transmit antennas is considered; however, once the statistical

characterization is stated, it is extended to the case of N > 2 antennas. It is important to note

that, due to the separable correlation assumed in the Kronecker model [18], this analysis can

be straightforwardly extended when the MSs have multiple antennas and the correlation is also

present at the receiver. Let g = [g1, g2]T be a vector with i.i.d. elements, as stated in (2), and let

Cs be the spatial correlation matrix at the transmitter, given by

Cs =

 1 ρ∗

ρ 1

 . (3)

Following (2) and (3), the elements of vector h can be expressed as

h1 = k1g1 + k∗2g2 (4)

h2 = k2g1 + k1g2, (5)
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where k1 and k2 are given by

k1 =

√
1 + |ρ|+

√
1− |ρ|

2
∈ R+ (6)

k2 =
ρ(
√

1 + |ρ| −
√

1− |ρ|)
2|ρ|

∈ C. (7)

It can be noted that, for arbitrary correlated channels, k2
1 +|k2|2 = 1. For uncorrelated channels

(|ρ| = 0), the previous equations become k1 = 1 and lim|ρ|→0 k2 = 0, while for highly correlated

channels (|ρ| ≈ 1), k1 ≈ |k2| ≈ 1/
√

(2). Thus, since h1 and h2 are a linear combination of i.i.d.

CN (0, 1) random variables, they will also show a CN (0, 1) distribution. The real and imaginary

parts of h1 and h2 have equal power given by

E
[
(Re{h1})2

]
= E

[
(Im{h1})2

]
= E

[
(Re{h2})2

]
= E

[
(Im{h2})2

]
=
k2

1 + |k2|2

2
=

1

2
. (8)

The covariances between the real and imaginary parts of h1 and h2 are given by the following

relationships:

E [Re{h1}Im{h1}] = E [Re{h2}Im{h2}] = 0 (9)

E [Re{h1}Re{h2}] = E [Im{h1}Im{h2}] = k1Re{k2} =
Re{ρ}

2
(10)

E [Re{h1}Im{h2}] = −E [Im{h1}Re{h2}] = k1Im{k2} =
Im{ρ}

2
. (11)

A. Envelope statistical characterization. Case N = 2

Let us define, without loss of generality, transmit antenna number 2 as the reference antenna

and antenna number 1 as the non-reference antenna, and their corresponding reference and non-

reference channel fading coefficients as hr = h2 and hnr = h1. The envelope of each channel

shows the following Rayleigh distribution,

frr(rr) =
rr

b2
R

exp(− r2
r

2b2
R

) (12)

frnr(rnr) =
rnr

b2
R

exp(− r
2
nr

2b2
R

), (13)

where rr = |hr|, rnr = |hnr| and bR =
√

1/2 is the parameter of the Rayleigh distribution.

As seen [21], the joint probability distribution of the two envelopes, rr and rnr, can be expressed

by means of the bivariate Rayleigh distribution as

f(rnr, rr) =
rnrrr

b4
R(1− |ρ|2)

exp

(
− r2

nr + r2
r

2b2
R(1− |ρ|2)

)
I0

(
rnrrr|ρ|

b2
R(1− |ρ|2)

)
, (14)
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where I0(·) is the modified Bessel function of the first kind of order 0. From (12) and (14),

the conditional probability density function (CPDF) of rnr given rr and correlation coefficient1

ρ can be expressed as

f(rnr|rr, ρ) =
rnr

b2
R(1− |ρ|2)

exp

(
− r2

nr + r2
r |ρ|2

2b2
R(1− |ρ|2)

)
I0

(
rnrrr|ρ|

b2
R(1− |ρ|2)

)
. (15)

Fig. 2 shows the analytical CPDF described by (15) and the empirical results obtained through

Monte Carlo simulations with 106 channel realizations for different values of reference fading

envelopes, rr, and a fixed value of |ρ| = 0.9. The Rayleigh PDF shown in (13) is denoted as

Analytical Rayleigh. It can be observed that the CPDFs of the non-reference fading envelope

are located approximately close to the value of the reference due to the high correlation.

 

 
Analytical Rayleigh
Analytical rr = 0.25
Analytical rr = 0.5
Analytical rr = 1
Analytical rr = 2
Empirical rr = 0.25

Empirical rr = 0.5

Empirical rr = 1

Empirical rr = 2

0 0.5 1 1.5 2 2.5 3 3.5 4
rnr

 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

P
D

F

Fig. 2: Conditional probability density function of (15) for different envelope values of the

reference channel fading, rr, and a fixed value of |ρ| = 0.9.

Fig. 3 shows the analytical CPDF of (15) and the empirical results obtained through Monte

Carlo simulations with 106 channel realizations for a fixed value of rr = 2 and different values of

the correlation coefficient magnitude, |ρ|. In this figure, it can be observed that, as the correlation

1In (15), we include the correlation coefficient as a parameter, f(rnr|rr, ρ), to explicitly note the dependence of the CPDF

on ρ.
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increases, the PDFs become narrower and closer to the value of the reference fading envelope.

It is also important to note that (15) is equivalent to (13) for uncorrelated antennas (|ρ| = 0).

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f (
r n

r|
r r

=
 2

, 
ρ)

0 0.5 1 1.5 2 2.5 3 3.5 4
rnr

Analytical |ρ| = 0.95

Empirical |ρ| = 0.95
Empirical |ρ| = 0.9
Empirical |ρ| = 0.8
Empirical |ρ| = 0.7
Empirical |ρ| = 0

Analytical |ρ| = 0.9
Analytical |ρ| = 0.8
Analytical |ρ| = 0.7
Analytical |ρ| = 0

Fig. 3: Conditional probability density function of (15) for a fixed value of rr = 2 and different

values of the correlation coefficient, |ρ|.

Expressing the modified Bessel function of the first kind of order 0, I0(x), through its Taylor

series expansion around x = 0 [25, Sec. 9], the nth moment of f(rnr|rr, ρ) for a given rr and ρ

can be calculated as

mn =

∫ ∞
0

rnnrf(rnr|rr, ρ)drnr = exp

(
−C
A

) ∞∑
k=0

CkΓ
(
k + n

2
+ 1
)

Ak−
n
2 (k!)2

, (16)

where A = 2b2
R(1−|ρ|2), C = r2

r |ρ|2, and Γ(·) is the Gamma function [25, Sec. 6]. The integral

in (16) has been calculated in the Appendix within an arbitrary interval [a, b], and its result can

be directly applied to interval [0,∞].

As can be seen in (16), the closed expressions of the mean and variance of the PDFs cannot

be easily simplified. From Fig. 2, it becomes apparent that the variance of the PDF does not

significantly change with the reference fading, rr. However, Fig. 3 shows that the variance of the

non-reference fading decreases and the mean value tends to get closer to the reference fading,

rr, as the value of the correlation coefficient increases.
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B. Phase statistical characterization. Case N = 2

The phase of a channel fading follows a uniform distribution in the half-open interval [−π, π),

and its PDF can be expressed as [26]

fθr(θr) = fθnr(θnr) =

 1
2π
, −π ≤ θ < π

0, otherwise
(17)

where θr = ∠hr, θnr = ∠hnr, and θ generically denotes either θr or θnr.

Equations (4) and (5) show that the joint probability distribution of the phases, θr and θnr,

cannot be easily calculated, and, to our knowledge, no previous work relating to the statistics

of the two phases can be found in the literature. However, considering a high correlation

environment with |ρ| ≈ 1, k2 can be written as

k2 ≈ ejθρk1, (18)

where θρ = ∠ρ. By substituting (18) into (4) and (5), hnr can be written as a function of hr

expressed as hnr ≈ e−jθρhr. Thus, the relation between the two phases is given by

θnr ≈ θr − θρ. (19)

This approximation holds for highly correlated channels, but it includes an error that increases

as the correlation decreases. In order to evaluate the error of this approximation, we define the

phase deviation as

∆ = θnr − (θr − θρ). (20)

The distribution of the phase deviation ∆ has been obtained in [22]. In our case, the PDF of

the phase deviation can be expressed as2

f∆(∆, ρ) =
2(1− |ρ|2)

3π(1− |ρ| cos ∆)2 2F1

(
2,

1

2
;
5

2
;−1 + |ρ| cos ∆

1− |ρ| cos ∆

)
, (21)

where 2F1(·, ·; ·; ·) is the Gaussian hypergeometric function [25, Sec. 15].

Fig. 4 shows the analytical PDF (21) and the empirical results obtained through a Monte Carlo

simulation with 104 channel realizations for different values of the correlation magnitude, |ρ|. It

can be noted that, as the correlation coefficient decreases, this PDF tends to exhibit a uniform

distribution, as observed in (17). On the other hand, its variance decreases as the correlation

coefficient increases.

2In (21), the correlation coefficient is included as a parameter, f∆(∆, ρ), to explicitly note the dependence of the PDF on ρ.
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Analytical |ρ| = 0.9

Empirical |ρ|=0
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Δ

f Δ
(Δ
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Analytical |ρ| = 0.5
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Empirical |ρ|=0.7
Empirical |ρ|=0.5

Fig. 4: Probability density function of ∆ in (21) for different values of the correlation coefficient,

|ρ|.

C. Envelope and phase characterization for N > 2

The previous characterization can be extended to a system with a linear array of N > 2

transmit antennas. First, an antenna is selected as a reference. The envelope and phase of the

fading of the reference antenna are characterized by (12) and (17), respectively. With regard to

the N−1 non-reference antennas, the envelope and phase of the nth non-reference channel fading

are expressed as r(n)
nr and θ

(n)
nr , respectively. The envelope and phase are characterized by their

own channel fading, the correlation coefficient of the nth non-reference antenna with respect to

the reference antenna, ρn, and the reference channel fading. Finally, (15) defines the statistical

characterization of the non-reference fading envelope, r(n)
nr , and (21) defines the corresponding

function of its phase deviation, ∆(n).

III. PROPOSED QUANTIZATION SCHEME

In this section, we make use of the statistical characterization discussed in Section II to

propose a quantization scheme for a system with an arbitrary number of transmit antennas, N .

Uniform polar quantization has been considered in the proposed scheme. The choice of uniform

quantization is motivated by a lower complexity with respect to non-uniform quantization in
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the codebook generation task, while the choice of polar quantization is because the statistical

characterization of the channel has been obtained in terms of the envelope and phase of the

channel fading coefficients. The steps for the quantization scheme are summarized in Table I. It

is important to note that these steps are performed by the different MSs independently of each

other.

First, a transmit antenna is chosen as a reference. In order to obtain a better quantization

performance, the following heuristic formula for the selection of the reference antenna could be

used:

Nr = arg max
N ′r

N∑
n=1
n6=N ′r

|ρn,N ′r |, 1 ≤ N ′r ≤ N, (22)

where Nr is the reference antenna and ρn,N ′r is the correlation coefficient between the nth and the

N ′rth antennas. With this strategy, the selected antenna presents the highest cumulative correlation

between itself and the rest of the antennas. A large correlation value provides a lower quantization

error as can be inferred from Figs. 3 and 4. The fading experienced from this antenna is denoted

as the reference channel fading. The channel fading coefficients from the rest of the antennas

are denoted as non-reference channel fading.

The envelope and the phase of the reference channel fading (whose PDFs are given in (12) and

(17), respectively) are quantized using uniform polar quantization ((A.1) and (A.2) in Table I).

The non-reference channel fading coefficients are quantized taking advantage of their correlation

with the reference channel fading, which is assumed to be known at both receiver and transmitter.

Rows (A.3) and (A.4) in Table I show the quantization of the nth non-reference fading. The

envelope quantization process considers the CPDF seen in (15). It is important to note that the

CPDF uses the quantized version r̂r to quantize r(n)
nr , since this parameter is the one that will be

available at the BS. In the phase quantization process, the phase deviation ∆(n) = θ
(n)
nr −(θ̂r−θρn)

is quantized instead of quantizing θ
(n)
nr , since θ̂r and θρn are known by the BS. Note that, we

use the PDF depicted in (33) instead of the PDF depicted in (21). This will be discussed in

Section III-B. Also note that the notation for the number of bits used in the quantization of each

parameter has also been included in Table I, and will be defined in Section III-D.

At the BS, the reference fading can be easily reconstructed from its quantized envelope and

phase ((B.1) in Table I). The non-reference fading coefficients, ĥ(n)
nr , can be calculated using

(B.2) in Table I given the relationship of the phases shown in (20).
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TABLE I: Proposed quantization scheme

A.- MS: channel quantization

Quantized value PDF considered Quantization bits

1.- r̂r (12) BMr (A.1)

2.- θ̂r (17) BPr (A.2)

3.- r̂
(n)
nr (15) BMnr,n (A.3)

4.- ∆̂(n) (33) BPnr,n (A.4)

B.- BS: channel reconstruction

1.- ĥr = r̂r exp
(
jθ̂r

)
(B.1)

2.- ĥ
(n)
nr = r̂

(n)
nr exp

(
j(∆̂(n) + θ̂r − θρn)

)
(B.2)

A. Codebook generation for the reference channel fading

Uniform polar quantization is used to quantize the reference channel fading. The decision

thresholds and the output values for the envelope (rr,m, r̂r,m) and the phase (θr,p, θ̂r,p) of the

reference channel fading have been obtained in [14] and are given by:

rr,m = mdr m = 1, . . . ,Mr − 1 (23)

r̂r,m = (m− 1/2)dr m = 1, . . . ,Mr (24)

θr,p = pdθ − π p = 1, . . . , Pr − 1 (25)

θ̂r,p = (p− 1/2)dθ − π p = 1, . . . , Pr (26)

where r0 = 0, rMr = ∞, θ0 = −π, and θPr = π. Parameters Mr and Pr are the number of

quantization levels for envelope and phase, respectively, and the parameters dr and dθ are the

interval sizes. Once Mr and Pr are fixed, the codebook is obtained by minimizing the distortion

function with respect to dr and dθ. Since the phase is uniformly distributed, the optimal interval

size for the phase is directly obtained with dθ = 2π/Pr. Thus, the optimal interval size dr can be

obtained through a one-dimensional Newton-Raphson optimization technique over the distortion

function [14]

Dr(dr) =
Mr∑
m=1

∫ rr,m

rr,m−1

(
r2

r + r̂2
r,m − 2sinc(Pr)rrr̂r,m

)
frr(rr)drr. (27)
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In real systems, parameters such as Mr and Pr are usually considered to be power of 2

integers [5]. Thus, BMr = log2Mr and BPr = log2 Pr are the number of bits dedicated to

quantizing the envelope and the phase, respectively, and Br = BMr +BPr is the number of bits

dedicated to quantizing the reference channel fading.

B. Codebook generation for non-reference channel fading

The uniform polar quantizer shown in [14] has been used for the reference channel fading.

However, Fig. 5(a) shows that a more suitable uniform quantizer for the envelope of non-reference

channel fading can be obtained by including a shift parameter, dr0. This parameter shifts the

decision thresholds and the output values of the envelope quantizer dr0 units, allowing a smaller or

larger first partition. The codebook for the phase of the non-reference channel fading coefficients

is shown in Fig. 5(b). For the sake of clarity, we have omitted the superscript (n), which denotes

the nth non-reference fading in the magnitude and phase of the channel fading coefficients and

in the parameters of the quantizer, (dr0, dr, and d∆), since a different quantizer has to be

obtained for each non-reference fading. However, the subindex n has been kept in the number

of quantization levels and in the correlation coefficient as this will be needed in the study of the

overall distortion and bit allocation. The partitions and the output values of the quantizer of the

non-reference channel fading coefficients can be expressed as:

rnr,m = dr0 +mdr m = 1, . . . ,Mnr,n − 1 (28)

r̂nr,m = dr0 + (m− 1/2)dr m = 1, . . . ,Mnr,n (29)

∆p = pd∆ p = −
(
Pnr,n

2
− 1

)
, . . . ,

(
Pnr,n

2
− 1

)
(30)

∆̂p = (p− 1/2)d∆ p = −
(
Pnr,n

2
− 1

)
, . . . ,

Pnr,n

2
(31)

where Mnr,n and Pnr,n are the number of quantization levels for the envelope and phase of the

nth non-reference channel fading, respectively, and m and p are integers.

For fixed values of the number of quantization levels for envelope and phase, and omitting

the quantization error of the reference fading, the distortion function for the nth non-reference

channel fading, given a certain reference envelope rr and the correlation coefficient between the
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(b) Codebook for phase quantization

Fig. 5: Illustrative example of parameters dr0, dr, and d∆ for a non-reference codebook for rr = 2,

|ρn| = 0.9, Mnr,n = 4, and Pnr,n = 4. The partitions and the output values are represented by

green segments and red X marks, respectively.

nth non-reference channel fading and the reference one, ρn, can be expressed as

Dnr(dr0, dr, d∆, ρn|rr) =

Mnr,n∑
m=1

Pnr,n∑
p=1

∫ rnr,m

rnr,m−1

∫ ∆p

∆p−1

∣∣∣rnre
j∆ − r̂nr,me

j∆̂p

∣∣∣2 f(rnr|rr, ρn)f∆(∆, ρn)drnrd∆, (32)

where ∆ = θnr−(θ̂r−θρn) is the phase deviation. Likewise, Mnr,n and Pnr,n are considered to be

power of 2 integers. Thus, BMnr,n = log2Mnr,n, BPnr,n = log2 Pnr,n, and Bnr,n = BMnr,n +BPnr,n

are the number of bits dedicated to quantizing the envelope, the phase, and the total number of

bits for the nth non-reference channel fading, respectively.

The solution for the definite integrals in (32) that involve the PDF of the phase deviation,

f∆(∆, ρn), requires numerical integration and the evaluation of the Gaussian hypergeometric

function, 2F1(·, ·; ·; ·), which results in a significant computational cost. In addition, the mini-

mization algorithm may require multiple evaluations of the distortion function at different points

to obtain the optimal codebook for each non-reference channel fading. In order to avoid this

highly demanding computation, we present an approximation to (21) using a truncated Laplace
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distribution:

f̃∆(∆, ρn) =


exp(−|∆|/bL,n)

2bL,n(1−exp(−π/bL,n))
, −π ≤ ∆ < π

0, otherwise
(33)

where bL,n is the parameter of the Laplace distribution that can be accurately adjusted in terms

of least square fitting for high correlation environments by

b2
L,n = 0.52|ρn|2 − 2.96|ρn|+ 2.45. (34)

This approximation allows the definite integral in (32) to be solved analytically using the results

provided in the Appendix.
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Fig. 6: Analytical PDF of the phase deviation, f∆(∆, ρn), and its approximation using the Laplace

distribution, f̃∆(∆, ρn), for different values of the correlation coefficient, |ρn|.

Fig. 6 shows the analytical PDF of the phase deviation, seen in (21), and the proposed Laplace

approximation, seen in (33), for different values of ρn. It can be observed that, as the correlation

coefficient increases, the approximation is closer to the analytical PDF and it includes a higher

error for small magnitudes of the correlation coefficient.

Using the proposed approximation (33) in (32), the distortion for the nth non-reference channel

fading given a certain reference envelope, rr, and the correlation coefficient between the nth non-
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reference antenna and the reference antenna, ρn, can be expressed as

Dnr(dr0, dr, d∆, ρn|rr) =

Mnr,n∑
m=1

∫ rnr,m

rnr,m−1

r2
nrf(rnr|rr, ρn)drnr +

Mnr,n∑
m=1

r̂2
nr,m

∫ rnr,m

rnr,m−1

f(rnr|rr, ρn)drnr (35)

− 2

Mnr,n∑
m=1

r̂nr,m

∫ rnr,m

rnr,m−1

rnrf(rnr|rr, ρn)drnr

Pnr,n∑
p=1

∫ ∆p

∆p−1

cos(∆− ∆̂p)f̃∆(∆, ρn)d∆,

where the first three integrals can be solved using the 2nd, 0th, and 1st moments of f(rnr|rr, ρn),

respectively, as shown in (16). The solution for the fourth integral can be found in equation (48)

of the Appendix.

The convergence of the minimization of the distortion expressed in (35), which is a 3-

dimension minimization problem on (dr0, dr, d∆), is not straightforward to analyze and is out of

the scope of this paper. The Nelder-Mead simplex method can be used to minimize the distortion

due to the good convergence properties that it has demonstrated in other problems and because

it does not require any derivative information [27].

We carried out preliminary simulations using non-uniform codebooks and the MSE obtained

has been slightly lower. Nevertheless, the convergence criterion of the minimization problem for

non-uniform codebooks was not met in all cases. For this reason, we have only included the

results obtained with uniform codebooks, where the convergence was achieved in all cases.

C. Overall distortion

In order to express the overall distortion, it is necessary to determine both the distortion due to

the quantization of the reference channel fading and the distortion due to the quantization of the

non-reference channel fading. In what follows, it is assumed that the aforementioned quantizers

are always optimized for the different number of levels and that the distortion is expressed in

terms of the number of quantization bits. Thus, the distortion in the reference and non-reference

fading quantization, seen in (27) and (32), for different number of quantization bits is denoted

as Dr(BMr , BPr) and Dnr(BMnr,n , BPnr,n , ρn|rr), respectively.

The distortion in a non-reference channel fading has been expressed in (32) and depends on

the current reference channel fading and the correlation coefficient. The average distortion in the
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nth non-reference channel fading for a given correlation coefficient can be expressed as

Dnr(BMnr,n , BPnr,n , ρn) =
Mr∑
m=1

Dnr(BMnr,n , BPnr,n , ρn|r̂r,m)P (r̂r,m), (36)

where r̂r,m is the mth value in the codebook of the reference envelope and P (r̂r,m) is the

probability of quantizing a reference envelope with the value r̂r,m, (i.e., the probability of the

mth envelope decision interval). This probability is given by

P (r̂r,m) =

∫ rr,m

rr,m−1

f(rr)drr = Γ

(
1,
r2

r,m−1

2b2
R

)
− Γ

(
1,
r2

r,m

2b2
R

)
, (37)

where Γ (s, x) denotes the upper incomplete Gamma function [25, Sec. 6]. Thus, the distortion

over the whole channel vector can be expressed as

D(BMr , BPr ,bMnr ,bPnr ,ρ) = Dr(BMr , BPr) +
∑
n∈Snr

Dnr(BMnr,n , BPnr,n , ρn), (38)

where bMnr , bPnr , and ρ are vectors that contain BMnr,n , BPnr,n , and ρn for the N − 1 non-

reference channel fading coefficients and Snr is the set of the N − 1 non-reference antennas.

The number of quantization bits dedicated to quantizing the non-reference fading coefficients is

given by Bnr =
∑

n∈Snr
Bnr,n, and the total number of quantization bits is B = Br +Bnr.

D. Bit allocation

The previous subsections have shown how to obtain the optimal codebook that minimizes the

distortion in reference and non-reference channel fading. However, the solution for allocating

the total amount of bits to quantize the envelopes and phases of the reference and non-reference

channel fading has not been discussed yet.

The number of bits dedicated to quantizing the reference channel fading depends on the corre-

lation between the channel fading coefficients. For uncorrelated or low-correlated environments,

the best performance is obtained with an equal bit allocation per channel fading since the PDFs of

the different fading coefficients are almost equal. However, as the correlation increases, a lower

overall distortion can be achieved by increasing the number of bits of the reference channel

fading, since this value will be used for the quantization of non-reference fading coefficients and

the variance of the rest of fading coefficients will be lower. In the proposed scheme, the number of

quantization bits for the reference channel fading varies from Br = dB/Ne to Br = dB/Ne+ 3,
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depending on the correlation. Therefore, the optimal bit allocation is obtained from pre-calculated

tables.

For the envelope and phase quantization of the reference channel fading, as shown in [14],

the average ratio between the number of levels of the phase and the magnitude quantizers for

the minimum distortion is 2.77, which is equivalent to allocating 1.47 more bits to the phase

than to the magnitude. Since the number of levels are assumed to be power of 2 integers, this

condition can be obtained by ensuring that

(BMr , BPr) :

 BPr −BMr = 1 Br odd

BPr −BMr = 2 Br even
(39)

We have checked that this technique obtains the minimum distortion for integer bit allocation

in at least the range 3 ≤ Br ≤ 14. Therefore, the number of bits dedicated to the reference

envelope and phase can be calculated directly as follows

BMr =

⌈
Br

2

⌉
− 1 (40)

BPr =

⌊
Br

2

⌋
+ 1. (41)

With regard to the bit allocation between the non-reference antennas, Bnr bits have to be

allocated between the envelope and phase of the non-reference fading coefficients BMnr,n and

BPnr,n bits, respectively, in order to minimize (38). The greedy bit allocation algorithm shown

in [15] is used to perform this task. This algorithm consists of allocating one bit at a time to the

most needy variable among the different envelopes and phases, where the degree of neediness is

measured by the average distortion given in (36). Even though this allocation is not optimal, it

yields good assignments in practice [15]. The results show that the overall distortion is minimized

by dedicating more bits to those channel fading coefficients that exhibit a lower correlation

with the reference coefficient, which in a linear array would be those fading coefficients whose

antennas are located the farthest away from the reference one.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed quantization scheme. In what

follows, we will refer to this scheme as the conditional quantization (CQ) scheme since the

quantization of the non-reference channel fading coefficients is influenced by the reference fading.
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To the best of our knowledge, no previous work has proposed different PDFs that are based on

the correlation coefficient in order to quantize the different channel fading coefficients. Thus,

the proposed scheme is compared with a scheme that is based on polar quantization (PQ) where

identical PDFs are used for all the channel fading coefficients since that scheme does not consider

correlation [14], and with another scheme that is based on the KL transform [15, 16]. The greedy

bit allocation algorithm is used in both of these schemes [15].

As stated in Section I, the KL scheme requires the knowledge of the entire spatial correlation

matrix at the BS. Since the spatial correlation matrix exhibits a Hermitian symmetry with unit

diagonal [28], it can be reconstructed at the BS by sending back the coefficients above or below

the main diagonal. Therefore, the number of coefficients of the spatial correlation matrix that

need to be estimated and sent back in the KL scheme is given by

Nc,KL =
N(N − 1)

2
, (42)

and it increases with N2. The CQ scheme only requires the correlation coefficients between the

reference channel fading and the fading of the rest of antennas, that is,

Nc,CQ = N − 1, (43)

resulting in a linear relation between the number of coefficients and the number of antennas. Thus,

the KL scheme needs to estimate and provide N/2 times the number of correlation coefficients

sent back by the CQ scheme. Since the MSs have different spatial correlation matrices depending

on their location, this information has to be fed back by every MS. In contrast, the PQ scheme

does not require any correlation coefficient.

MSs must keep the spatial correlation information periodically updated. The periodicity pa-

rameter Npd (in subframes) shows how often this information is updated in the LTE-Advanced

standard [29]. Since one CSI reference signal is sent every subframe [30, Chap. 29], we define

the parameter Lch = Npd as the number of channel quantizations that can be carried out

before updating the correlation information. Note that the quantization of the spatial correlation

matrix entails a reduction of the feedback rate dedicated to quantizing the instantaneous channel

information in systems with a fixed feedback rate.

With regard to the computational complexity of the CQ and KL schemes, the CQ directly

quantizes the envelope and phase of the channel fading coefficients, while the KL must perform
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a KL transform, and subsequently quantize the resulting KL coefficients. On the other hand, the

CQ scheme requires the calculation of an independent codebook for each value of the correlation

coefficient and each quantized value of the envelope of the reference channel fading, while the

KL scheme simply scales a Gaussian codebook for quantizing each KL coefficient. However,

the symmetry around the reference antenna in uniform linear arrays allows generating the CQ

codebook for one antenna from its symmetric counterpart. Moreover, the CQ codebooks can be

stored in tables based on the tabulated correlation coefficient so that channel fading coefficients

can be directly quantized from these tables.

In the simulation, the suburban macrocell scenario of the SCM has been considered [20]. The

system consists of a BS equipped with N antennas, an adjacent antenna separation of d meters,

several single antenna MSs moving at vMS = 40 km/h, and a carrier frequency of fc = 2 GHz.

The effects of path loss and shadowing have not been considered. Since the SCM does not

specify the spatial correlation explicitly, the correlation estimation has been performed using the

maximum likelihood estimator over segments of 40 ms, as detailed in [31]. The parameter Lch

is set to 10, which is one of the possible values detailed in [29]. Uniform quantization is used to

quantize the correlation coefficients using Bcc = 5 bits, which is a reasonable value according

to [32].

Figs. 7-9 compare the performance of the PQ, KL, and CQ schemes regarding the estimated

MSE per antenna, obtained through Monte Carlo simulations for different number of quantization

bits. The estimated MSE per antenna can be expressed as

MSE ≈ 1

KN

K∑
k=1

‖hk − ĥk‖2, (44)

where K = 105 is the number of channel realizations in the simulation and hk and ĥk are the

original and the quantized channel, respectively, for the kth channel realization. While the PQ

scheme uses all the bits to quantize the instantaneous CSI, the KL and CQ schemes dedicate

some bits to quantizing the correlation coefficients. In order to make a fair comparison, the

sum of bits dedicated to quantizing the instantaneous CSI and those dedicated to quantizing

the correlation information during Lch quantization processes is the same for the three schemes.

Thus, the horizontal axis in the three figures shows the average number of bits per channel

quantization.
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Fig. 7: MSE for N = 4, d = λ/2 and different average number of quantization bits.

Fig. 7 shows the MSE performance in a highly correlated scenario where the separation

between two adjacent antennas of the array is set to d = λ/2. It can be observed that the CQ

scheme outperforms the PQ and KL schemes, allowing a reduction of about 2−4 quantization bits

for a given MSE. Although the KL scheme is considered to be optimal in terms of decorrelation

of Gaussian sources, it quantizes more correlation coefficients than the CQ scheme as seen in

(42)-(43), which in turn results in fewer bits available to quantize the instantaneous CSI. In

addition, the KL scheme presents a higher sensitivity to estimation and quantization errors in

the correlation coefficients than the CQ scheme. This drawback could be solved by increasing

Bcc, but it entails a reduction in the number of bits dedicated to quantizing the instantaneous

CSI, obtaining a similar performance (the results with Bcc = 8 are omitted since a very similar

performance to that shown for Bcc = 5 is obtained). The choice of the optimal Bcc may depend

on the value of Lch since a longer validity period can be advantageous in order to provide more

accurate correlation information, however, this analysis is out of the scope of this paper.

In Fig. 8, the adjacent antenna separation is set to d = λ. Consequently, the correlation of

the transmit antennas decreases and so does the difference between the performance of the CQ
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scheme and the PQ scheme. However, the CQ scheme still outperforms the PQ scheme in almost

the entire considered range. The poor performance obtained by the KL scheme can be explained

by the considerable number of feedback bits that are used to quantize the correlation coefficients,

whereas the correlation is not as high in Fig. 8 as in Fig. 7.
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Fig. 8: MSE for N = 4, d = λ and different average number of quantization bits.

Fig. 9 shows the MSE performance for a system with N = 8 transmit antennas and d = λ/2.

It is important to note that, even though the antenna separation is as small as in Fig. 7, the

distance between non-adjacent antennas increases with the number of antennas and the correlation

between non-adjacent antennas decreases. In this case, the CQ scheme outperforms the PQ and

KL schemes, but the differences between the PQ scheme and the CQ scheme are not as relevant.

The KL scheme has to quantize Nc,KL = 28 correlation coefficients, whereas CQ only has to

quantize Nc,CQ = 7. Thus, CQ can use more bits to quantize the instantaneous CSI and performs

better over the entire range of bits.

Fig. 10 shows the MSE of the different schemes in terms of the adjacent antenna separation,

d, for N = 4 antennas and an average number of 28 quantization bits, whereas Fig. 11

shows the MSE for N = 8 antennas and an average number of 56 quantization bits. Note
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Fig. 9: MSE for N = 8, d = λ/2 and different average number of quantization bits.

that spatial correlation together with the statistical characterization of the respective fading can

be successfully used to reduce the MSE in the quantization of a MIMO channel in highly

correlated environments, corresponding to arrays with close antennas. In our simulated systems,

the correlation could be exploited by the CQ scheme to obtain the best performance for antenna

separations below d = 1.3λ and d = 0.75λ for the cases of N = 4 and N = 8 antennas,

respectively. It is important to note that the CQ scheme is equivalent to the PQ scheme when the

correlation is not considered, although this case has not been contemplated in the simulations.

Thus, the MSs would hypothetically choose whether or not to provide the correlation information,

assuming the BS that ρ = 0 when the information is not provided, and achieving the best

performance between CQ and PQ for each case. Similarly, the KL scheme is equivalent to

rectangular quantization when the correlation is not considered and its performance is almost

identical to the PQ scheme [13].

V. CONCLUSION

A spatial statistical characterization of the channel in a system with multiple transmit antennas

has been presented in this work. In this characterization, one antenna is selected as the reference
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Fig. 10: MSE for N = 4, different antenna separations and an average number of quantization

bits of 28 bits.

antenna and the channel fading from this antenna is considered to be the reference channel fading.

The statistics for the fading of the rest of the channels are stated and related to the reference

fading by means of the correlation coefficient. The envelope of a non-reference channel fading

is characterized using the conditional probability density function given the envelope of the

reference channel fading and the correlation coefficient of the non-reference channel fading with

the reference fading. The phase of a non-reference channel fading is characterized by using an

approximation that is based on high correlation and the statistical characterization of the error

that is induced by this approximation.

A new channel quantization scheme that makes use of this characterization to reduce the

feedback information has also been proposed. In this scheme, the envelope and the phase of the

reference channel fading are quantized considering a Rayleigh distribution and a uniform distribu-

tion, respectively. The envelopes of the non-reference channel fading coefficients are quantized

according to their conditional probability density function given the reference channel fading
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Fig. 11: MSE for N = 8, different antenna separations and an average number of quantization

bits of 56 bits.

envelope and the correlation coefficient. Finally, the phase of the non-reference channel fading

is fed back by quantizing the error of its approximation using the proposed characterization.

The proposed scheme has been compared with a scheme that is based on standard polar

quantization where the spatial correlation is not taken into account, and a scheme based on the

Karhunen-Loève transform, which achieves maximum decorrelation of Gaussian sources. The

main advantage of the proposed scheme is that, unlike the scheme based on the Karhunen-

Loève transform, it does not require the entire spatial correlation matrix. Thus, fewer feedback

bits are used to quantize the correlation information and more bits are available to quantize the

instantaneous CSI. The comparison has been carried out using the 3GPP spatial channel model

(SCM). The numerical results show that the proposed scheme clearly outperforms the other two

schemes in highly correlated scenarios. For the particular parameters used in our simulations,

the proposed scheme allows the spatial correlation to be successfully exploited in arrays with

adjacent antenna separations that are lower than d = 1.3λ and d = 0.75λ for N = 4 and N = 8
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antennas, respectively. In addition, this scheme can be straightforwardly adapted to ignore the

correlation when no benefit is obtained from it.

APPENDIX

DETAILS OF CALCULATIONS

The distortion in non-reference fading that is seen in (32) can be calculated by making use

of the following results. For the conditional probability distribution f(r1|r2), ma,b
n is defined as

ma,b
n (rr, ρ) =

∫ b

a

rnnrf(rnr|rr)drnr =

=

∫ b

a

rn+1
nr

b2(1− |p|2)
exp

(
− r2

nr + r2
r |p|2

2b2(1− |p|2)

) ∞∑
k=0

(rnrrr|p|)2k

(2b2(1− |p|2))2k (k!)2
drnr, (45)

where the Taylor series expansion around x = 0 of the modified Bessel function of the first kind

with order 0 has been used [25, Sec. 9],

I0(x) =
∞∑
k=0

x2k

22k(k!)2
. (46)

Defining A = 2b2(1 − |p|2), C = r2
r |p|2 and using a change of variables t = r2

nr/A, we can

express ma,b
n (rr, ρ) as

ma,b
n (rr, ρ) = exp

(
−C
A

) ∞∑
k=0

Ck
(

Γ
(
k + n

2
+ 1, a

2

A

)
− Γ

(
k + n

2
+ 1, b

2

A

))
Ak−

n
2 (k!)2

, (47)

where Γ (s, x) denotes the upper incomplete Gamma function [25, Sec. 6]. When a = 0 and

b→∞, ma,b
n (rr, ρ) becomes the moment taken about 0, also known as raw moment, which has

been expressed in (16).
The following result, which is related to the phase deviation ∆, also appears as a part of (32)

and can be obtained through an integration by parts:∫ ∆p

∆p−1

cos(∆− ∆̂p)f̃∆(∆, ρ)d∆ =
1

2(1− exp(−π/bL))(1 + b2L)

[
(sgn(∆p)− sgn(∆p−1)) cos(∆̂p)

− exp

(
−|∆p−1|

bL

)(
b sin(∆p−1 − ∆̂p)− sgn(∆p−1) cos(∆p−1 − ∆̂p)

)
+ exp

(
−|∆p|
bL

)(
b sin(∆p − ∆̂p)− sgn(∆p) cos(∆p − ∆̂p)

)]
, (48)

where bL is given by (34).
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