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Abstract

A new approach is proposed for shape optimization of shell surfaces, where requirements
on the aesthetic aspect and the constructability as well as the structural rationality are si-
multaneously considered in the problem formulation. The surface shape is modeled using
Bézier surface to reduce the number of variables, while the ability to generate moderately
complex shape is maintained. To apply the new approach to shell structures that have various
plan shapes, the surface shape which has a rectangle plan is modeled using a tensor product
Bézier surface, and the surface shape with an irregular plan is modeled using a triangular
patch Bezier surface. The strain energy is used to represent the mechanical performance,
and the aesthetic aspects and smoothness of the surface are quantified by algebraic invariants
of the surface. The developable surface that has high constructability is created by impos-
ing appropriate algebraic invariants constraints. Tifiectiveness of the present approach is
confirmed through several numerical examples and the characteristics of the results are dis-
cussed.

Keywords: shape optimization, nonlinear programming, sensitivity analysgjé8 surface,
algebraic invariants.

1. Introduction

Advancement of computer technologies as well as the developments of structural materials
and construction methods enabled us to design so da#ledform shellwhich has complex

shape and topology that cannot be categorized to traditional shapes. However, the mechani-
cal behavior of such shell is very complicated, and it is very difficult for a designer to decide
feasible shape of a real-world structure based on his/her experience and intuition as a com-
promise of aesthetical property and mechanical rationality. Furthermore, it is important in
practical design that the smoothness of the shape should be maintained while moderately
complex geomerty is searched. It may be possible for the designer to assign the most desired
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shape explicitly. However, in some cases some local and global properties can be assigned
for the target shape. In this respect, qualitative measures for defining roundness may be ef-
fectively utilized-?. However, there are other measures of smoothness to be considered by
the designers.

In this study, a new approach is proposed for shape optimization of shells modeled using
Bézier surface. The strain energy is used to represent the mechanical performance, and the
aesthetic aspects and smoothness of the surface are quantified by algebraic invariants of the
surface representing curvature, convexity, gradient, etc. The condition of the developable
surface is ensured by incorporating the constraints on the principal curvature.

2. Shape representation by Bzier surface

The number of variables for optimization can be drastically reduced without sacrificing smooth-
ness and complexity of the surface using tlezir surface. Moreover, the basis functions of
Bézier surface can be expressed explicity with respect to the coordinates of the control points,
which enables us to carry out sensitivity analysis of the algebraic invariants analytically.

2. 1. Tensor product Bezier surface

The pointS) j(s,t) = [x(s,t),y(s,t),z(s,t)]T on a tensor product &ier surface is defined
with parameters,t € [0, 1] as

J
Sia(s) = ) ) aiBii(9)Ba() (1)

|
i=0 j=0

whereg;; = [Qxij, Oy,j» Ozjj] " IS the control point, and, ;(s) andB;(t) are the Bernstein basis
functions.l andJ are the orders of the functions. The vectorxgfy-, andz-coordinates of
control points are denoted lay, gy, andqg,, respectively; e.qgy is defined as

Gx = [Ox00, - » Ox035*** » Oxi0s > Oxia] " (2)

2. 2. Triangular patch Bézier surface
The pointSy(u,v,w) = [x(u,v,w), y(u,v,w), z(u,v,w)]" on a triangular patch &ier surface
is defined with parametetsv,w € [0, 1]J(u+ v+ w = 1) as

Sn(u,v,w) = Z @ikBnik(u,v,w) (i, j,k=0,1,---,n, 0°=01=1) (3
i+ j+k=n
wheregij = [Oxijk, Oy,ijk- Ozijk] " iS the control pointByjj«(u, v, w) is the bivariate Bernstein
basis function, and is the order of the function. The vectorsf y-, andz-coordinates of
control points are denoted lay, gy, andg,, respectively; e.qgy is defined as

@x = [Gx000> " ** > Ox100 Ox011-1> - ** > Ox1-110* - » Ox010] - 4)
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3. B invariants and ~ invariants

We use the six algebraic invariangs, 81, 82, y1, v2, andys proposed by Iriet al. ® for
representing the geographical properties. Here, we regaodrdinates of the &ier surface
as the altitude of the geographical representation.

3. 1. Definitions of tensors and vectors

Here, only the invariants on the tensor produétzr surface is formulated. In the following,

the covariant and the contravariant components are indicated by the subscript and superscript,
respectively. The components of the covariant gradient vegtitie covariant hessialn, and

the covariant metric tensgraredefined

Zs hSS hSt gSS gSt
= N h = N = 5
= [Zt] - [hts htt} g [gts Ou ®)
which are obtained from
_0z(s,t) _0z(s,)
ZS - as > - at (6)
8%z(s,1) 8%z(s,1) 9%z(s,1)
hss = Fream hy = Fra hst = hys = 5ot (7)
_981,5(s,1) TS 4(s.1) _ 981 5(s,1) TS 4(s.1)
ST 9s as T ot at @®
o 8814(s1) 78S 4(s 1)
Ost = Ots = 9 ot

Let z andg denotethe contravariant gradient vector picoordinate and the contravariant
metric tensor, respectivelfhenthe following relations holds:

g=g9g'z=gz z=gz )
In addition, we define the following contravariant vector ~

Ell ElZ _ 0 1
E21 E22 -1 0

7;}:5;5, -

The product of a covariant vector and a contravariant vectortlaidilinear form with re-
spect to a second-order covarj@ohtravariant tensor and a conrtavarieovariant vector
are invariant with respect to the definition of the parameter of the surface. Brerdy

invariants are defined as follows:

z =

(10)

fo= ). > &%z =) Z2(20) (11)
£=sta=st ¢=st

Br=, ) g (12)
£=stlA=st
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e e 2 2 2, 2 i€ @3)

&=st A=s,tu=s,tv=st

Y1= Z Z hAngf (14)

A=s,té=st

v = Z Z h#7' = Z Z h, 27" (15)
A=S '[.f:St A=sté=st

Y3=y et(g) /Z;t;t hiZZ' (16)

For the triangular patch &ier surface, We only have to replas¢ with u,v (,w), andl, J
with n, respectively. Note that is automatically assigned fromandv usingw=1-u-v.

4. Surface properties based on algebraic invariants

The six algebraic invarian8, 81, 82, Y1, y2, andys, defined using the vectors and tensors
given in Sec.3. 1., are used for quantitative evaluation of the surface properties. The local
properties in the neighborhood of a point P on the surface are characterized by the invariants
as follows:

B2 > 0 Thecontours in the neighbourhood of P are coaxial (part of) similar ellipses. Espe-
cially, when,B2 4,, the contours arépart of) concentric circles and the surface is
locally isotropically curved. The shape is locally concavg if- 0, and locally convex
if P1 < 0.

B2 < 0 Thecontours in the neighbourhood of P are (part of) coaxial hyperbolas. Locally, the
surface is conuvein some directions and concave in others. There are special directions
in which the contour lines are straight (i.e., neither concave nor convex).

B2 = 0 Oneof the principal curvatures is 0. Furthermore, the other principal curvature is
positive if 31 > 0; and neative if 8; < 0; and 0 if3; = 0 that means a locally flat
surface.

Bo = 0 Pis a critical point (locally maximum/minimum value afcoordinate).

v2 = 0 Direction of gradient vector coincides with one of the principal direction, and the
surface near P is locallyytindrical and concave in one principal directiony| < |ys|
andys > 0; wheras it is locally cylindrical and convex in one principal direction if
lyal < lysl andys < 0.

In addition,8; andB, correspond to the twice the average curvature and the Gaussian curva-
ture, respectively. Furthermore; /B, is the curvature in the steepest descent direction, and
v3/Bo is the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without
expansion or contraction. Such surface is called developable surface, which is characterized
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by vanishing Gaussian curvature. Therefore, to generate a developable surface, the constraint
B2 = 0 should be satisfied at any point on the surface.

5. Numerical examples
5. 1. Description of shell model and optimization problem

30m

Rise [m] 6.00
Young’s modulus | [GPa] | 21.00 - - -
- “/T Poigson ratio 0.17 @ Control point defined to design variable
30m .
Unit weight [KN/m3]| 24.00 . . N
O Pinned support Tickness [m] 0.10 O Control point generated from symmetry

—10m

40m ———————10m—

AVAVAVAVAVAVAVAVAVAN
JAVAVAVAVAVAVAVAVAVAVA

WAVAVAVAVAVAVAVAVAVAVAVAS
; NN )
\VAVA

Rise [m] 8.00 @ Control point defined to design variable
Young’s modulus | [GPa] | 21,00 P .
Poison ratio 0.17 QO Control point generated from symmetry
O Pinned support Unit weight [kN/m3][ 24.00 D Fi i
@ Fixed support Tickness [m] 0.10 2 Fixed control point
(b)Model T

Figure 1 : Plan, diagonal view, various parameter values, @&mieB patches of rectangular
andtriangularmodels

The shapes of the shell structures shown in Figure 1 are optimized considering the algebraic
invariants and the strain energy under self-weight. Displacements and stresses under self-
weight are calculated by linear static finite element analysis. The constant strain triangular
element is adopted for the in-plane deformation and nonconforming triangle element pro-
posed by Zienkiewicst al. % is adopted for the out-of-plane deformation. The design vari-
ables of each model are tlzecoordinatesy, of the control points which are reduced using
symmetry conditions. For model T, the control points on the fixed supports are excluded from
the design variable. The continuity of the gradient and curvature along the interior boundary
between Bzier patches is not necessarily satisfied.

The optimum shape is found under constraints on the coordinates of the model R’s supports
and the algebraic invariants. Moreover, to prevent unrealistic shape with extremely large

rise, and to improve the convergence property of optimization algorithm, an upper bound is

given for the area of shell’s middle surface (henceforth area). Since the shell has a uniform
thickness, the area constraint is equivalent to the volume or weight constraint that is usually
regarded as representing the material cost.

In each of the optimization problem formulated below, total number of degrees of freedom,
nodal displacement vector, linear stiness matrix, area, and vector consisting of z-coordinates
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of the Model R’s supports are denotedmyd € R", K € R*", S, andr: € R?, respectively.

The value of the initial shape is shown by 0 subscript. The sequential quadratic programming
method in SNOPY is used for optimization.

5. 2. Optimal solutions of model R

5. 2. 1. Optimal shape without constraints on algebraic invariants

We first find optimal shape without constraints on algebraic invariants. The strain energy is
minimized as follows under constraints on the locations of the supports, and the upper-bound
constraint on the area:

minimize f(q,) = }dTKd

. _ (17)
subject to { f _ST,O* fzo
z z,
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Figure 2 : Initial shape Figure 3 : Optimal shape

The initial and optimal shapes are shown in Figures a(e)3(a), respectively. The dashed

and solid lines, respectively, in Figures 2(b) and 3(b) are the undeformed and deformed
shapes, where the displacements are magnified by the factor 100. The optimal objective
value f(g,), maximum values of displacemedi.,, COMpressive stress;,,,, tensile stress

othae and bending stress®, are also shown in the figures. It can be confirmed from the
optimization result that bending and tensile stresses are reduced and the shape is optimized
so that the shell resists the self-weight mainly with compression.

5. 2. 2. Optimal shape with constraints @rinvariants

We next consider the following optimization problem by introducing the constraind on
invariants to obtain a locally convex surface:

minimize f(q,) = }dTKd

5 Bzvalue at point ¢

S-S9<0 ¢ : B1value at point ¢
o 12‘ -0 181 B p (18)
i 4 z,0
subject to >0
2 - -
- |® S constraint point | )
g < 18 ¢ : Invariants cor};stramts pomt
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whereg < 0 to ensure convexity around poinindicated by the dot in the figure.
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Figure 4 : Optimal shapg(= —0.1) Figure 5 : Optimal shapes(= —0.15)

Figures4 and 5 show the optimization results for= —0.1 and-0.15, respectively. As is
seen, the masimum values of displacement, compressive srestensile stress increase
as a result of assigning requirement of local convexity. The displacement and stresses also

increase by increasing the absolute valugiof

5. 2. 3. Optimal shape with constraints grinvariants
We next solve the following problem with constraintsgimvariants to obtain locally cylin-

drical and convex surface:

minimize f(q,) = %dTKd

S-5,<0 _
T, —150=0 Y5 : yzvalue at pointi
. y5 =0 ¥{ : y1value at pointi 19)
subjectto § “Z> " g2 0
73l YL >
v§ <" [@y constaint pornts|
(i=12) ci : Invariants constraints point

where the constraints on thenvariants are gien at point1 andc2 indicated by dots in the

figure.
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08 ax = 3.2601[Nmmn?]
ah]ax = 0.3743[Nmn?] 2 3
O hhax = 1.3615[Nmn?] f(gz) = 3.0852[kNm]

(b) (a)

Figure7 : Optimalshape(y' = —0.025)

Figures6 and 7 shav the optimizationresultsfor 3 = 3% = -0.015andy** = %2 =
—0.025, respectively. It can be confirmed that a locally cylindrical and convex sutfase

% % = 3.1842[Nmn]

oy = 0.7586[Nmn?]

02 % = 1.0645[Nmn?]
b)

f(q2) = 2.1156[kNm]
(@)

Figure 6 : Optimal shap&/{( = —0.015)
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been successfully obtained by introducing the constraints on itheriants.

5. 2. 4. Optimal shape with developability constraints

Finally, we generate a developable surface by shape optimization. The following problem is
to be solved so that, vanishes at 25 points indicated by the dots in the figure:

minimize f(q) = %dTKd

B : Bpvalue at pointi

S._ So<0 i ’ (20)
subjectto { "z 7 "z0 = ;

96457
oS 2.8690[1\&"%%12] &\\
hoax = 0.5547[Nmn?] RS
OTmax = 2.5(é;10[l\ymmz] max[wgl] = (5.53285>< 10712
C

Figure 8 : Optimal shape

The optimal shape is shown in Figure 8. It can be seen from FBfa)ehat maximum value

of ,83‘ has been successfully minimized, although there is no guaranteg thatomes 0 at

the points where the constraints are not given. The contour lines became almost straight and
parallel It can be confirmed from Figure 8(a) 1/4 part of model R seems to be deveopable.

Furthermore, both of the strain energy and the maximum vertical displacement have smaller
values than the initial shape.

5. 3. Optimal solutions of model T

5. 3. 1. Optimal shape without constraints on algebraic invariants

We first find optimal shape without constraints on algebraic invariants. The strain energy is
minimized as follows under constraints on the upper-bound constraint on the area:

minimize f(q,) = %dTKd
subjectto S-Sp<0

(21)

The initial and optimal shapes are shown in Figures 9(a) and 10(a), respectivetjaStnex
andsolid lines, respectively, in Figures 9(b) and 10(b) are the undeformed and deformed
shapes, where the displacements are magnified by the factor 50. Like a model R, it can be
confirmed from the optimization result that bending and tensile stresses are reduced and the
shape is optimized so that the shell resists the self-weight mainly with compression.
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Figure 9 : Initial shape Figure 10 : Optimal shape

5. 3. 2. Optimal shape with constraints @rinvariants

We next consider the following optimization problem by introducing the constraintgon
invariants to obtain a locally convex surface:

. 1 . .
minimize f(q,) = =d"Kd S : Bzvalue at point ¢
: Bvalue at point ¢

C
S-5<0 % :81 (22)
Subject to ﬁg > 9 @ S constraint

C < ﬁ oint
1= c : Invariants constraints point

whereg < 0 to ensure convexity around poinindicated by the dot in the figure.

Omax = 5.0515[mm]
TSax = 14.964[N'mnv] % ax = 18151 [N/mn¥]
O lhax = 0.4429[Nmmn¥] oy = 0.6046[Nmn?]

f(g) =30754[kNm] b — 0.4680[Nmn?]  f(gs) = 46700KNm]  obo = 1.2447[Nmn?]
(@) (b) (@) (b)

Omax = 8.0470[mm]

Figure 11 : Optimal shapg(E —0.2) Figure 12 : Optimal shapg & —0.4)

Figures11 and 12 show the optimization results for= —0.2 and -0.4, respectively. As

is seen, the masimum values of displacement, compressegsand tensile stress increase

as a result of assigning requirement of local convexity. The displacement and stresses also
increase by increasing the absolute valugiof
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5. 3. 3. Optimal shape with constraints grinvariants

We next solve the following problem with constraintsinvariants to obtain locally cylin-
drical and convex surface:

minimize f(q,) = %dTKd

-Sp < i o
Sci _38 <0 Y5 : yzvalue at pointi
. Yo" ¢ : yyvalue at pointi (23)
ci2 ci2 i Y -7 p
subjectto { y§“ -9 >0
’)/Ci < 7Ci points|
(ifl,fA) ci : Invariants constraints point

where the constraints on thdnvariants are gien at point<i (i = 1,- - - , 4) indicated by dots
in the figure.

Omax = 6.7083[mm]

Thhax = 15.744[Nmn] 0% . = 16.090[N'mn¥]

Thnax = 1.3053[Nmn?] oty = 1A970[Nmn?]

f(gz) = 45207[kNm] &2, = 1.1200[Nmn¥] f(q) = 6.1474kNm] &2, = 1.2640[Nmn?]
@ (b) (a) (b)

Omax = 8.7832[mm]

Figure 13 : Optimal shap& (= -0.03) Figure 14 : Optimal shap& (= —0.05)

Figuresl3 and 14 show the optimization resultsw?z —0.O3and7Ci = —0.05,respectively
(i = 1,---,4). It can be confirmed that a locally cylindrical and cexsurface has been
successfully obtained by introducing the constraints onytineariants.

5. 3. 4. Optimal shape with developability constraints

Finally, we generate a developable surface by shape optimization. The following problem is
to be solved so that, vanishes at 25 points indicated by the dots in the figure:

N 1 .
minimize - f(q) = EdTKd B5 : Bavalue at pointi
S=Se<0 K (24)

SUbjeCt to =0 @ / constrain

ci : Invariants constraints point

The optimal shape is shown in Figure 15. It canseenfrom Figure 15(c) that maximum

value of[a’gi has been successfully minimized, although there is no guarante® thetomes

0 at the points where the constraints are not given. The contour lines became almost straight
and parallel According to the contour lines of Figures 15(d), 1/6 part of model T seems to
be nearly developable. Furthermore, both of the strain energy and the maximum vertical
displacement have smaller values than the initial shape.
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G = 9:3447(mm, )
oo E 13.624[NmnY]
Tppax = 0.5764[Nmm?] il _ $1767% 10-12
ohoy= 1.6(3)71[Nmmz] max{|85'} 2 x

C

f(gz) = 3.1076[kNm]
(@)

Figure 15 : Optimal shape

6. Conclusions

The local properties of the shell surface can be explicitly controllegldbying an optimiza-

tion problem with constraints on the algebraic invariants of the surface. Moreover, a devel-
opable surface can be obtained by assigning the constraint such that the Gaussian curvature
vanishes everywhere on the surface. It is showed from the analytical result in various models
which is modeled by tensor producéBer surface and triangular patcle®er surface that

this method can apply to the shell that has various flat types and boundary conditions widely.

It may be concluded that the algebraic invariants are effective indices representing the local
properties of the surface, and the optimal shell shape considering the aesthetic aspects, con-
structability and mechanical rationality can be generated using the proposed approach at the
early design stage.
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