
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

28 September - 2 Octorber 2009, Universidad Politecnica de Valencia, Spain
Alberto DOMINGO and Carlos LAZARO (eds.)

Shape Optimization of Free-form Shells Considering Strain
Energy and Algebraic Invariants of Parametric Surface

Shinnosuke FUJITA∗, Makoto OHSAKIa

∗Graduate Student, Dept. of Architecture and Architectural Eng., Kyoto University
Kyotodaigaku-Katsura, Nishikyo-ku,Kyoto 615-8540, Japan

Email : rp2-fujita@archi.kyoto-u.ac.jp

aAssociate Professor, Dept. of Architecture and Architectural Eng., Kyoto University

Abstract
A new approach is proposed for shape optimization of shell surfaces, where requirements
on the aesthetic aspect and the constructability as well as the structural rationality are si-
multaneously considered in the problem formulation. The surface shape is modeled using
Bézier surface to reduce the number of variables, while the ability to generate moderately
complex shape is maintained. To apply the new approach to shell structures that have various
plan shapes, the surface shape which has a rectangle plan is modeled using a tensor product
Bézier surface, and the surface shape with an irregular plan is modeled using a triangular
patch B́ezier surface. The strain energy is used to represent the mechanical performance,
and the aesthetic aspects and smoothness of the surface are quantified by algebraic invariants
of the surface. The developable surface that has high constructability is created by impos-
ing appropriate algebraic invariants constraints. The effectiveness of the present approach is
confirmed through several numerical examples and the characteristics of the results are dis-
cussed.

Keywords: shape optimization, nonlinear programming, sensitivity analysis, Bézier surface,
algebraic invariants.

1. Introduction
Advancement of computer technologies as well as the developments of structural materials
and construction methods enabled us to design so calledfree-form shell, which has complex
shape and topology that cannot be categorized to traditional shapes. However, the mechani-
cal behavior of such shell is very complicated, and it is very difficult for a designer to decide
feasible shape of a real-world structure based on his/her experience and intuition as a com-
promise of aesthetical property and mechanical rationality. Furthermore, it is important in
practical design that the smoothness of the shape should be maintained while moderately
complex geomerty is searched. It may be possible for the designer to assign the most desired
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shape explicitly. However, in some cases some local and global properties can be assigned
for the target shape. In this respect, qualitative measures for defining roundness may be ef-
fectively utilized1, 2). However, there are other measures of smoothness to be considered by
the designers.

In this study, a new approach is proposed for shape optimization of shells modeled using
Bézier surface. The strain energy is used to represent the mechanical performance, and the
aesthetic aspects and smoothness of the surface are quantified by algebraic invariants of the
surface representing curvature, convexity, gradient, etc. The condition of the developable
surface is ensured by incorporating the constraints on the principal curvature.

2. Shape representation by B́ezier surface
The number of variables for optimization can be drastically reduced without sacrificing smooth-
ness and complexity of the surface using the Bézier surface. Moreover, the basis functions of
Bézier surface can be expressed explicity with respect to the coordinates of the control points,
which enables us to carry out sensitivity analysis of the algebraic invariants analytically.

2. 1. Tensor product B́ezier surface
The pointSI ,J(s,t) = [x(s, t), y(s,t), z(s,t)]> on a tensor product B́ezier surface is defined
with parameterss,t ∈ [0,1] as

SI ,J(s,t) =

I∑

i=0

J∑

j=0

qi j BI ,i(s)BJ, j(t) (1)

whereqi j = [qx,i j ,qy,i j ,qz,i j ]> is the control point, andBI ,i(s) andBJ, j(t) are the Bernstein basis
functions.I andJ are the orders of the functions. The vectors ofx-, y-, andz-coordinates of
control points are denoted byqx, qy, andqz, respectively; e.q.,qx is defined as

qx =
[
qx,00, · · · ,qx,0J, · · · ,qx,I0, · · · ,qx,IJ

]> (2)

2. 2. Triangular patch Bézier surface
The pointSn(u,v,w) = [x(u,v,w), y(u,v,w), z(u,v,w)]> on a triangular patch B́ezier surface
is defined with parametersu,v,w ∈ [0,1](u + v + w = 1) as

Sn(u,v,w) =
∑

i+ j+k=n

qi jk Bn,i jk (u,v,w) (i, j, k = 0,1, · · · ,n, 00 = 0! = 1) (3)

whereqi jk = [qx,i jk ,qy,i jk ,qz,i jk ]> is the control point,Bn,i jk (u,v,w) is the bivariate Bernstein
basis function, andn is the order of the function. The vectors ofx-, y-, andz-coordinates of
control points are denoted byqx, qy, andqz, respectively; e.q.,qx is defined as

qx =
[
qx,00I , · · · ,qx,I00,qx,01I−1, · · · ,qx,I−110, · · · ,qx,0I0

]> (4)
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3. β invariants and γ invariants
We use the six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3 proposed by Iriet al. 3) for
representing the geographical properties. Here, we regardz-coordinates of the B́ezier surface
as the altitude of the geographical representation.

3. 1. Definitions of tensors and vectors
Here, only the invariants on the tensor product Bézier surface is formulated. In the following,
the covariant and the contravariant components are indicated by the subscript and superscript,
respectively. The components of the covariant gradient vectorz, the covariant hessianh, and
the covariant metric tensorg aredefined

z =

[
zs

zt

]
, h =

[
hss hst

hts htt

]
, g =

[
gss gst

gts gtt

]
(5)

which are obtained from

zs =
∂z(s,t)
∂s

, zt =
∂z(s,t)
∂t

(6)

hss =
∂2z(s,t)
∂s2

, htt =
∂2z(s,t)
∂t2

, hst = hts =
∂2z(s, t)
∂s∂t

(7)

gss =
∂SI ,J(s,t)

∂s

> ∂SI ,J(s,t)
∂s

, gtt =
∂SI ,J(s,t)

∂t

> ∂SI ,J(s,t)
∂t

gst = gts =
∂SI ,J(s, t)

∂s

> ∂SI ,J(s, t)
∂t

(8)

Let z andg denotethe contravariant gradient vector ofz-coordinate and the contravariant
metric tensor, respectively.Thenthe following relations holds:

g = g−1, z = gz, z = gz (9)

In addition, we define the following contravariant vector ˜z:

z̃ =

[
z̃s

z̃t

]
= Ẽz, Ẽ =

[
Ẽ11 Ẽ12

Ẽ21 Ẽ22

]
=

[
0 1
−1 0

]
(10)

The product of a covariant vector and a contravariant vector, andthebilinear form with re-
spect to a second-order covariant/contravariant tensor and a conrtavariant/covariant vector
are invariant with respect to the definition of the parameter of the surface. Then,β andγ
invariants are defined as follows:

β0 =
∑

ξ=s,t

∑

λ=s,t

gξλzξzλ =
∑

ξ=s,t

zξzξ (≥ 0) (11)

β1 =
∑

ξ=s,t

∑

λ=s,t

hλξg
ξλ (12)
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β2 =
1

2det(g)

∑

ξ=s,t

∑

λ=s,t

∑

µ=s,t

∑

ν=s,t

hνλhµξẼ
ξλẼµν (13)

γ1 =
∑

λ=s,t

∑

ξ=s,t

hλξz
ξzλ (14)

γ2 =
∑

λ=s,t

∑

ξ=s,t

hλξz̃
ξzλ =

∑

λ=s,t

∑

ξ=s,t

hλξz
ξz̃λ (15)

γ3 =
1

det(g)

∑

λ=s,t

∑

ξ=s,t

hλξz̃
ξz̃λ (16)

For the triangular patch B́ezier surface, We only have to replaces,t with u,v (,w), and I , J
with n, respectively. Note thatw is automatically assigned fromu andv usingw = 1− u− v.

4. Surface properties based on algebraic invariants
The six algebraic invariantsβ0, β1, β2, γ1, γ2, andγ3, defined using the vectors and tensors
given in Sec.3. 1. , are used for quantitative evaluation of the surface properties. The local
properties in the neighborhood of a point P on the surface are characterized by the invariants
as follows:

β2 > 0 Thecontours in the neighbourhood of P are coaxial (part of) similar ellipses. Espe-

cially, whenβ2
1 = 4β2, the contours are(part of) concentric circles and the surface is

locally isotropically curved. The shape is locally concave ifβ1 > 0, and locally convex
if β1 < 0.

β2 < 0 Thecontours in the neighbourhood of P are (part of) coaxial hyperbolas. Locally, the
surface is convex in some directions and concave in others. There are special directions
in which the contour lines are straight (i.e., neither concave nor convex).

β2 = 0 Oneof the principal curvatures is 0. Furthermore, the other principal curvature is
positive if β1 > 0; and negative if β1 < 0; and 0 ifβ1 = 0 that means a locally flat
surface.

β0 = 0 P is a critical point (locally maximum/minimum value ofz-coordinate).

γ2 = 0 Direction of gradient vector coincides with one of the principal direction, and the
surface near P is locally cylindrical and concave in one principal direction if|γ1| < |γ3|
andγ3 > 0; wheras it is locally cylindrical and convex in one principal direction if
|γ1| < |γ3| andγ3 < 0.

In addition,β1 andβ2 correspond to the twice the average curvature and the Gaussian curva-
ture, respectively. Furthermore,γ1/β0 is the curvature in the steepest descent direction, and
γ3/β0 is the curvature in its perpendicular direction.

In view of constructability, it is desirable that the surface can be developed to a plane without
expansion or contraction. Such surface is called developable surface, which is characterized
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by vanishing Gaussian curvature. Therefore, to generate a developable surface, the constraint
β2 = 0 should be satisfied at any point on the surface.

5. Numerical examples
5. 1. Description of shell model and optimization problem

30m

30m

Pinned support

Rise [m] 6.00
Young’s modulus [GPa] 21.00

Poison ratio 0.17
Unit weight [kN/m3] 24.00
Tickness [m] 0.10

Control point defined to design variable

Control point generated from symmetry

(a)Model R

Pinned support
Fixed support

10m 10m40m

Rise [m] 8.00
Young’s modulus [GPa] 21.00

Poison ratio 0.17
Unit weight [kN/m3] 24.00

Tickness [m] 0.10

Control point defined to design variable

Control point generated from symmetry

Fixed control point

(b) Model T

Figure 1 : Plan, diagonal view, various parameter values, and Bézier patches of rectangular
andtriangularmodels

The shapes of the shell structures shown in Figure 1 are optimized considering the algebraic
invariants and the strain energy under self-weight. Displacements and stresses under self-
weight are calculated by linear static finite element analysis. The constant strain triangular
element4) is adopted for the in-plane deformation and nonconforming triangle element pro-
posed by Zienkiewicset al. 5) is adopted for the out-of-plane deformation. The design vari-
ables of each model are thez-coordinatesqz of the control points which are reduced using
symmetry conditions. For model T, the control points on the fixed supports are excluded from
the design variable. The continuity of the gradient and curvature along the interior boundary
between B́ezier patches is not necessarily satisfied.

The optimum shape is found under constraints on the coordinates of the model R’s supports
and the algebraic invariants. Moreover, to prevent unrealistic shape with extremely large
rise, and to improve the convergence property of optimization algorithm, an upper bound is
given for the area of shell’s middle surface (henceforth area). Since the shell has a uniform
thickness, the area constraint is equivalent to the volume or weight constraint that is usually
regarded as representing the material cost.

In each of the optimization problem formulated below, total number of degrees of freedom,
nodal displacement vector, linear stiness matrix, area, and vector consisting of z-coordinates
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of the Model R’s supports are denoted byn, d ∈ Rn, K ∈ Rn×n, S, andr∗z ∈ R2, respectively.

The value of the initial shape is shown by 0 subscript. The sequential quadratic programming
method in SNOPT6) is used for optimization.

5. 2. Optimal solutions of model R

5. 2. 1. Optimal shape without constraints on algebraic invariants
We first find optimal shape without constraints on algebraic invariants. The strain energy is
minimized as follows under constraints on the locations of the supports, and the upper-bound
constraint on the area:

minimize f (qz) =
1
2
d>Kd

subject to

{
S − S0 ≤ 0
r∗z − r∗z,0 = 0

(17)

f (qz) = 21.125[kNm]

dmax = 44.199[mm]
σc

max = 7.1183[N/mm2]
σt

max = 3.0838[N/mm2]
σb

max = 7.9380[N/mm2] f (qz) = 1.3556[kNm]

dmax = 1.8557[mm]
σc

max = 2.5682[N/mm2]
σt

max = 0.0583[N/mm2]
σb

max = 0.7813[N/mm2]
(a) (b) (a) (b)

Figure 2 : Initial shape Figure 3 : Optimal shape

The initial and optimal shapes are shown in Figures 2(a)and3(a), respectively. The dashed
and solid lines, respectively, in Figures 2(b) and 3(b) are the undeformed and deformed
shapes, where the displacements are magnified by the factor 100. The optimal objective
value f (qz), maximum values of displacementdmax, compressive stressσc

max, tensile stress
σt

max, and bending stressσb
max are also shown in the figures. It can be confirmed from the

optimization result that bending and tensile stresses are reduced and the shape is optimized
so that the shell resists the self-weight mainly with compression.

5. 2. 2. Optimal shape with constraints onβ invariants
We next consider the following optimization problem by introducing the constraints onβ
invariants to obtain a locally convex surface:

minimize f (qz) =
1
2
d>Kd

subject to



S − S0 ≤ 0
r∗z − r∗z,0 = 0
βc

2 > 0
βc

1 ≤ β
β constraint point

c : Invariants constraints point

βc
2 : β2value at point c
βc

1 : β1value at point c
(18)
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whereβ < 0 to ensure convexity around pointc indicated by the dot in the figure.

f (qz) = 1.8313[kNm]

dmax = 3.4742[mm]
σc

max = 3.0681[N/mm2]
σt

max = 0.2700[N/mm2]
σb

max = 0.5567[N/mm2] f (qz) = 2.9603[kNm]

dmax = 5.4138[mm]
σc

max = 3.1871[N/mm2]
σt

max = 0.3651[N/mm2]
σb

max = 1.1442[N/mm2]
(a) (b) (a) (b)

Figure 4 : Optimal shape (β = −0.1) Figure 5 : Optimal shape (β = −0.15)

Figures4 and 5 show the optimization results forβ = −0.1 and−0.15, respectively. As is
seen, the masimum values of displacement, compressive stress,and tensile stress increase
as a result of assigning requirement of local convexity. The displacement and stresses also
increase by increasing the absolute value ofβc

1.

5. 2. 3. Optimal shape with constraints onγ invariants
We next solve the following problem with constraints onγ invariants to obtain locally cylin-
drical and convex surface:

minimize f (qz) =
1
2
d>Kd

subject to



S − S0 ≤ 0
r∗z − r∗z,0 = 0
γci

2 = 0
γci

3
2 − γci

1
2
> 0

γci
3 ≤ γci

(i=1,2)

γ constraint points

ci : Invariants constraints point

γci
2 : γ2value at pointci
γci

1 : γ1value at pointci (19)

where the constraints on theγ invariants are given at pointsc1 andc2 indicated by dots in the
figure.

f (qz) = 2.1156[kNm]

dmax = 3.3191[mm]
σc

max = 3.2601[N/mm2]
σt

max = 0.3743[N/mm2]
σb

max = 1.3615[N/mm2] f (qz) = 3.0852[kNm]

dmax = 4.7070[mm]
σc

max = 3.1842[N/mm2]
σt

max = 0.7586[N/mm2]
σb

max = 1.0645[N/mm2]
(a) (b) (a) (b)

Figure 6 : Optimal shape (γi
= −0.015) Figure7 : Optimalshape(γi

= −0.025)

Figures6 and 7 show the optimizationresultsfor γc1
= γc2

= −0.015 andγc1
= γc2

=

−0.025,respectively. It can be confirmed that a locally cylindrical and convex surfacehas
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been successfully obtained by introducing the constraints on theγ invariants.

5. 2. 4. Optimal shape with developability constraints
Finally, we generate a developable surface by shape optimization. The following problem is
to be solved so thatβ2 vanishes at 25 points indicated by the dots in the figure:

minimize f (q) =
1
2
d>Kd

subject to



S − S0 ≤ 0
r∗z − r∗z,0 = 0
βci

2 = 0
(i=1,··· ,25)

β constraint points

ci : Invariants constraints point

βci
2 : β2value at pointci

(20)

f (qz) = 2.8912[kNm]

dmax = 9.6457[mm]
σc

max = 2.8690[N/mm2]
σt

max = 0.5547[N/mm2]
σb

max = 2.5140[N/mm2]

1.0
3.0

5.0

7.0

max
{
|βci

2 |
}

= 5.3285× 10−12

(a) (b) (c)

Figure 8 : Optimal shape

The optimal shape is shown in Figure 8. It can be seen from Figure8(c) that maximum value
of βci

2 has been successfully minimized, although there is no guarantee thatβ2 becomes 0 at
the points where the constraints are not given. The contour lines became almost straight and
parallel It can be confirmed from Figure 8(a) 1/4 part of model R seems to be deveopable.
Furthermore, both of the strain energy and the maximum vertical displacement have smaller
values than the initial shape.

5. 3. Optimal solutions of model T

5. 3. 1. Optimal shape without constraints on algebraic invariants
We first find optimal shape without constraints on algebraic invariants. The strain energy is
minimized as follows under constraints on the upper-bound constraint on the area:

minimize f (qz) =
1
2
d>Kd

subject to S − S0 ≤ 0
(21)

The initial and optimal shapes are shown in Figures 9(a) and 10(a), respectively. Thedashed
and solid lines, respectively, in Figures 9(b) and 10(b) are the undeformed and deformed
shapes, where the displacements are magnified by the factor 50. Like a model R, it can be
confirmed from the optimization result that bending and tensile stresses are reduced and the
shape is optimized so that the shell resists the self-weight mainly with compression.
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f (qz) = 24.716[kNm]

dmax = 157.46[mm]
σc

max = 14.470[N/mm2]
σt

max = 4.3369[N/mm2]
σb

max = 23.979[N/mm2] f (qz) = 2.7353[kNm]

dmax = 4.2280[mm]
σc

max = 14.096[N/mm2]
σt

max = 0.4112[N/mm2]
σb

max = 0.4279[N/mm2]
(a) (b) (a) (b)

Figure 9 : Initial shape Figure 10 : Optimal shape

5. 3. 2. Optimal shape with constraints onβ invariants
We next consider the following optimization problem by introducing the constraints onβ
invariants to obtain a locally convex surface:

minimize f (qz) =
1
2
d>Kd

subject to


S − S0 ≤ 0
βc

2 > 0
βc

1 ≤ β
β constraint

          point

c : Invariants constraints point

βc
2 : β2value at point c
βc

1 : β1value at point c
(22)

whereβ < 0 to ensure convexity around pointc indicated by the dot in the figure.

f (qz) = 3.0754[kNm]

dmax = 5.0515[mm]
σc

max = 14.964[N/mm2]
σt

max = 0.4429[N/mm2]
σb

max = 0.4680[N/mm2] f (qz) = 4.6700[kNm]

dmax = 8.0470[mm]
σc

max = 18.151[N/mm2]
σt

max = 0.6046[N/mm2]
σb

max = 1.2447[N/mm2]
(a) (b) (a) (b)

Figure 11 : Optimal shape (β = −0.2) Figure 12 : Optimal shape (β = −0.4)

Figures11 and 12 show the optimization results forβ = −0.2 and−0.4, respectively. As
is seen, the masimum values of displacement, compressivestress,and tensile stress increase
as a result of assigning requirement of local convexity. The displacement and stresses also
increase by increasing the absolute value ofβc

1.

533



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures

5. 3. 3. Optimal shape with constraints onγ invariants
We next solve the following problem with constraints onγ invariants to obtain locally cylin-
drical and convex surface:

minimize f (qz) =
1
2
d>Kd

subjectto



S − S0 ≤ 0
γci

2 = 0
γci

3
2 − γci

1
2
> 0

γci
3 ≤ γci

(i=1,··· ,4)

γ constraint

         points

ci : Invariants constraints point

γci
2 : γ2value at pointci
γci

1 : γ1value at pointci (23)

where the constraints on theγ invariants are given at pointsci (i = 1, · · · ,4) indicated by dots
in the figure.

f (qz) = 4.5207[kNm]

dmax = 6.7083[mm]
σc

max = 15.744[N/mm2]
σt

max = 1.3053[N/mm2]
σb

max = 1.1200[N/mm2] f (qz) = 6.1474[kNm]

dmax = 8.7832[mm]
σc

max = 16.090[N/mm2]
σt

max = 1.4970[N/mm2]
σb

max = 1.2640[N/mm2]
(a) (b) (a) (b)

Figure 13 : Optimal shape (γ = −0.03) Figure 14 : Optimal shape (γ = −0.05)

Figures13 and 14 show the optimization results forγci
= −0.03andγci

= −0.05,respectively
(i = 1, · · · ,4). It can be confirmed that a locally cylindrical and convex surface has been
successfully obtained by introducing the constraints on theγ invariants.

5. 3. 4. Optimal shape with developability constraints
Finally, we generate a developable surface by shape optimization. The following problem is
to be solved so thatβ2 vanishes at 25 points indicated by the dots in the figure:

minimize f (q) =
1
2
d>Kd

subject to


S − S0 ≤ 0
βci

2 = 0
(i=1,··· ,20)

β constraint

         points

ci : Invariants constraints point

βci
2 : β2value at pointci

(24)

The optimal shape is shown in Figure 15. It can beseenfrom Figure 15(c) that maximum
value ofβci

2 has been successfully minimized, although there is no guarantee thatβ2 becomes
0 at the points where the constraints are not given. The contour lines became almost straight
and parallel According to the contour lines of Figures 15(d), 1/6 part of model T seems to
be nearly developable. Furthermore, both of the strain energy and the maximum vertical
displacement have smaller values than the initial shape.
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f (qz) = 3.1076[kNm]

dmax = 9.3447[mm]
σc

max = 13.624[N/mm2]
σt

max = 0.5764[N/mm2]
σb

max = 1.6571[N/mm2]
1.0

3.0

5.0

5.0

3.0
1.0

3.0
1.0

6.5

6.55.0

max
{
|βci

2 |
}

= 3.1767× 10−12

(a) (b) (c)

Figure 15 : Optimal shape

6. Conclusions
The local properties of the shell surface can be explicitly controlled bysolvingan optimiza-
tion problem with constraints on the algebraic invariants of the surface. Moreover, a devel-
opable surface can be obtained by assigning the constraint such that the Gaussian curvature
vanishes everywhere on the surface. It is showed from the analytical result in various models
which is modeled by tensor product Bézier surface and triangular patch Bézier surface that
this method can apply to the shell that has various flat types and boundary conditions widely.
It may be concluded that the algebraic invariants are effective indices representing the local
properties of the surface, and the optimal shell shape considering the aesthetic aspects, con-
structability and mechanical rationality can be generated using the proposed approach at the
early design stage.
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