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Abstract

Experimental and clinical data demonstrate that atrial fibrillation (AF) maintenance in animals and 

groups of patients depends on localized reentrant sources localized primarily to the pulmonary 

veins (PVs) and the left atrium(LA) posterior wall in paroxysmal AF but elsewhere, including the 

right atrium (RA), in persistent AF. Moreover, AF can be eliminated by directly ablating AF-

driving sources or “rotors,” that exhibit high-frequency, periodic activity. The RADAR-AF 

randomized trial demonstrated that an ablation procedure based on a more target-specific strategy 

aimed at eliminating high frequency sites responsible for AF maintenance is as efficacious as and 

safer than empirically isolating all the PVs.

In contrast to the standard ECG, global atrial noninvasive frequency analysis allows non-invasive 

identification of high-frequency sources before the arrival at the electrophysiology laboratory for 

ablation. Body surface potential map (BSPM) replicates the endocardial distribution of DFs with 

localization of the highest DF (HDF) and can identify small areas containing the high-frequency 

sources. Overall, BSPM had a sensitivity of 75% and specificity of 100% for capturing 

intracardiac EGMs as having LARA DF gradient. However, raw BSPM data analysis of AF 

patterns of activity showed incomplete and instable reentrant patterns of activation. Thus, we 

developed an analysis approach whereby a narrow band-pass filtering allowed selecting the 

electrical activity projected on the torso at the HDF, which stabilized the projection of rotors that 

potentially drive AF on the surface. Consequently, driving reentrant patterns (“rotors”) with 

spatiotemporal stability during >70% of the AF time could be observed noninvasibly after HDF-

filtering. Moreover, computer simulations found that the combination of BSPM phase mapping 

with DF analysis enabled the discrimination of true rotational patterns even during the most 

complex AF. Altogether, these studies show that the combination of DF analysis with phase maps 
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of HDF-filtered surface ECG recordings allows noninvasive localization of atrial reentries during 

AF and further a physiologically-based rationale for personalized diagnosis and treatment of 

patients with AF.

Keywords

Atrial fibrillation; Body surface mapping; Rotors; Dominant frequency Fourier transform; Phase 
mapping

Introduction

Atrial fibrillation (AF) is the most common arrhythmia seen in clinical practice and is 

associated with increased risk of stroke, heart failure and death.1 Although antiarrhythmic 

drugs have limited efficacy, the demonstration of AF triggers in the atrial sleeves of the 

pulmonary veins (PVs) has led to a significant improvement in therapy.2, 3

Several ablative strategies have been developed with the objective of creating 

circumferential lesions around the PV ostia.4 Empiric circumferential pulmonary vein 

isolation (CPVI) is effective in ~70-80% of patients with paroxysmal AF and has become 

therapy of choice for drug-refractory AF in these patients.5 However, results still remain 

suboptimal due to the presence of non-PV sources maintaining AF.4, 6, 7 Moreover, the 

success rate of CPVI in the more prevalent persistent and long-lasting AF populations is 

significantly lower and extensive substrate based ablation strategies have been used with 

conflicting results.8, 9

Experimental and clinical data from our laboratory support the hypothesis that both acute 

and persistent AF in the sheep and some groups of human patients is not a random 

phenomenon. Studies analyzing the spatiotemporal organization of waves and dominant 

frequency (DF) in the isolated sheep heart demonstrate that AF maintenance in this model 

depends on localized reentrant sources in the left atrium (LA) and fibrillatory conduction in 

its periphery.10-15As a natural consequence of these studies, we translated the analysis on 

the organization of DF to human AF and found that AF reentrant sources are localized 

primarily to the PVs and LA posterior wall in the case of paroxysmal AF but elsewhere in 

the case of persistent AF.16-20 Several of these observational studies showed that AF could 

be eliminated by directly ablating AF-driving sources or “rotors,” that exhibit high-

frequency, periodic activity, based on either electrogram visual analysis, dominant 

frequency analysis or panoramic endocardial mapping.2, 17-19, 21-25 Recently the first 

randomized clinical trial, RADAR-AF, demonstrated that in paroxysmal AF patients, 

selective ablation of sites responsible for AF maintenance is as effective as CPVI, and 

decreased ablation risks.26 These results demonstrate that a an ablation procedure based on a 

more target-specific strategy aimed at eliminating high frequency sites responsible for AF 

maintenance is as efficacious and safer than empirically isolating all the PVs.

Therefore, it would be arguably desirable to noninvasibly both identify the location of the 

sources responsible for AF maintenance before the procedure in order to design the ideal 

ablation strategy for each individual AF patient as well as to be able to perform a panoramic 
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real-time localization of sources during the procedure.27, 28 Although the highest frequency 

sources in paroxysmal AF are most commonly located in the junction of the left atrium with 

the PVs, they have also been identified elsewhere in the atria and may shift in time. Recent 

studies by our group have shown that panoramic, global, atrial noninvasive frequency 

analysis is feasible in AF patients and may allow the identification of high-frequency 

sources before the arrival at the electrophysiology laboratory for ablation. Body surface map 

(BSPM) replicates the endocardial distribution of DFs and can identify small areas 

containing the high-frequency sources that result in fibrillatory conduction to the reminder 

of the atria, and may decrease the time required for the search and elimination of the highest 

DF (HDF) site.29 Moreover, we recently have shown that phase maps of surface potentials 

during AF after HDF-filtering allow observing driving reentrant patterns (“rotors”)with 

spatiotemporal stability during >70% of the AF time.30Thus, as will be shown in the 

following sections, the ability of BSPM to detect site(s) driving AF may enable a 

noninvasive personalized diagnosis and treatment of patients with AF.

The non-invasive mapping system

In our studies, AF patients wore a custom-made, adjustable vest with 64 electrodes covering 

the entire torso surface (Figure 1) during the ablation procedure.17, 29, 30 The vest included 

recording electrodes on the anterior (N=28), posterior (N=34) and lateral sides (N=2) of the 

torso. In addition, three limb leads were recorded and used to generate the Wilson Terminal. 

The BSPM vest was placed prior to the catheterization and fastened anteriorly, allowing 

access to the patient chest in case external electrical cardioversion was needed during the 

course of the study. Surface unipolar electrocardiographic recordings were obtained by 

using a commercial system for bio-potential measurements (Active Two, Biosemi, The 

Netherlands) at a sampling frequency of 2048 Hz and stored on hard disk for off-line 

analyses.31 Ventricular activity was removed from the unipolar recordings prior to analysis 

either numerically, or by application of adenosine.29

Spectral analysis of body surface potential mapping

Previous studies have highlighted the major role of maximal DF (DFmax) sources in the 

maintenance of AF in animals and humans.14, 17, 32 Arguably, prior knowledge of which 

atrium harbors the DFmax source that maintains the arrhythmia may allow better planning 

of the ablation procedure, and may accelerate the intracardiac localization of the highest DF 

point and reduce ablation time. Thus we explored the ability of the body surface DFs to 

capture the intracardiac DFmax.

Surface leads and simultaneously recorded intracardiac signals presented closely related 

spectral components. In Figure 2 we present spectral analyses of data from a representative 

patient in whom the presence of distinct atrial site with high-frequency activity in the 

posterior LA could be determined noninvasively. In Figure 2A, three representative EGMs 

illustrate the range of activation rates across the atria, with DFs ranging from 5.75 Hz in the 

RA to 7 Hz in the LA near the left superior pulmonary vein (LSPV). Simultaneously 

recorded surface leads also showed different DFs at nearly the same frequency range found 

in the EGM recordings, as shown in Figure 2B by three representative leads corresponding 

to the surface left (SL), surface posterior (SP) and surface right (SR) regions. Surface DFs 
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mostly correlated with the activation rate of nearest atrial tissue: the highest endocardial DF 

point was observed at the nearest point on the torso surface (central posterior) and the lowest 

activation rate of the RA was found at the nearest portion of the surface ECG (right inferior). 

Intracardiac CARTO DF maps obtained prior to adenosine infusion and surface DF 

distributions obtained during adenosine infusion showed good correspondence (Figure 2C 

and 2D), but a direct comparison of frequencies from CARTO and surface maps was 

unattainable due to its sequential nature and because adenosine accelerates AF activation in 

humans.18.

In panels A and B of Figure 3, we display difference maps obtained by subtracting DF 

values on the surface map from the intracardiac DFmax in patients from Figures 2 and 

another patient in which the DFmax resides in the RA. In each case, the white arrow points 

to the red color DFmax domain on the surface, which corresponds to the region with zero 

difference with the intracardiac DFmax. These examples demonstrate that the surface 

DFmax can accurately detect the value of the intracardiac DFmax value, regardless of 

whether the latter is localized to the LA or the RA. To further analyze the correspondence 

between intracardiac and surface AF frequencies in the RA and LA we grouped the 

intracardiac DFmax values measured in the LA and RA and correlated them with the DFs of 

EGMs from matching portions on the body surface. These matching portions were defined 

as those in which the difference between the intracardiac DFmax in each atrium and the 

surface DFmax was ≤0.5 Hz. Panels C and D of Figure 3 show that when the entire patient 

population under study was included, there was a good correspondence between maximum 

DFs found in each atrial chamber and right and left matching portions of the body surface, 

respectively. The correlation between right surface leads and right intracardiac EGMs was 

0.96, whereas correlation for left leads with left intracardiac EGMs was 0.92 (Figure 3E and 

3F). The attempted correlation of surface leads with EGMs of the opposed atrial chamber 

yielded much lower correlation values (RA body surface leads vs intracardiac LA EGMs, 

0.26; one tail t-test after Fisher r-to-z transform: p<0.0001 vs. r=0.96; left body surface leads 

vs intracardiac RA EGMs, 0.46; p=0.0052 vs. r=0.92).

Such a strong, side-specific correspondence of frequencies enabled reliable determination of 

atrial frequency gradients non-invasively.29The DF gradients on the 64 electrodes of the 

BSPM showed a good correlation with the DF gradients obtained by the simultaneous 

intracardiac EGMs (correlation coefficient = 0.93). On the other hand, surface frequency 

gradients estimated by the standard precordial ECG leads yielded a poor correspondence 

with gradients estimated from the intracardiac EGMs, with a correlation coefficient equal to 

0.41 when considering all 6 standard leads, or equal to 0.51 when considering only V1 and 

V6 (p=0.0051 when compared with the correlation of the full BSPM DF gradients).27, 29

To predict the ability of the BSPM to detect intracardiac LA-to-RA DF gradients, we 

classified patients with a LA-RA gradient in DF (maximal right and left values differ by 

more than 0.5 Hz) versus without LA-RA gradient, otherwise. Overall, the sensitivity of the 

BSPM to capture intracardiac EGMs as having LA-RA gradient in DF was 75%, but the 

specificity of the BSPM in capturing those gradients was 100%. The sensitivity and 

specificity of the standard ECG leads V1 and V6 in detecting a LA-to-RA DF gradient were 

67% and 50% respectively. In other words, while the BSPM was able to identify most, but 
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not all, intracardiac DF gradients, each DF gradient identified by the BSPM was a true 

gradient as determined by the intracardiac recordings. Standard ECG leads, however, 

allowed the detection of a lower proportion of patients with LA-to-RA DF gradients as 

compared to all BSPM leads and also mistakenly identified LA-RA DF gradients that were 

not confirmed in the EGM recordings.

Surface mapping of atrial patterns of activity during AF

Surface phase maps of the unipolar voltage time-series recorded during AF show unstable 

patterns, as can be appreciated by the transient singularity points (SPs) seen in the maps 

from a sample patient presented in the left panel of Figure 4A.30 Long-lasting SPs were 

rarely observed during AF without band-pass filtering and those observed tended to drift 

erratically large distances in short time. However, after bandpass filtering of the potential 

signal around the HDF (6.8 Hz), surface phase maps showed more stable SPs for the same 

AF episode (Figure 4A, right panel). In Panel B the arrows connecting sequential activations 

in ECGs recorded around the SP in Figure 4A show a clear reentrant pattern which 

following HDF-filtering transformed into long-lasting rotational patterns with stable SPs. 

Considering data from all patients, stable SPs were found in unfiltered AF signals during 

8.3±5.7% of the time vs. 73.1±16.8% following HDF-filtered signals (p<0.01). The average 

SPs’ duration concomitantly increased following the HDF-filtering (160±43 vs. 342±138 

ms, p<0.01). At an average HDF of 9.2±2.3 (BSPM) or 9.3±2.0 (EGM) Hz, the latter 

corresponds to an average of 2.9±0.7 continuous rotations per SP observed in our cohort of 

14 patients.30 Many observed SPs drift and appear or disappear on the borders of the surface 

mapped area, or in the beginning and end of the periods analyzed, thus this average number 

of rotations represents a lower limit for their life span. Indeed, Figure 4C and Video 1 

(available online at http://www.cardiacep.theclinics.com/). show a rotor in the middle of the 

mapped area at the beginning of the period analyzed that after about 1400 ms disappears at 

the lower boundary of the area. After a period of fuzzy SP behavior in the posterior torso 

(see Video 1) for about 330 ms, an SP appears and remains in the mapped area for the rest of 

the analyzed period. This case shows that the actual life span of rotors could be longer than 

the conservative average life-span we calculate. Further evidence of atrial rotor drifting is 

provided by the simultaneous EGM recorded at the highest DF site (Figure 4E), which is 

unstable in intervals 1-4 and monomorphic at interval 4-5, which is consistent with the 

observed drifting on the torso surface.

Simulations to understand HDF band-pass filtering of AF patterns

The finding that the dynamics of the body surface SPs dramatically depends on the HDF-

filtering raises questions regarding the phase maps interpretation. Unfortunately, the ability 

to collect simultaneously electrical data in the atria and inside the torso volume and surface 

to make inferences between atrial activity and its manifestation on the body surface is 

limited, leading us to rely on computer simulations for guidance.

In Figure 5 a simulation with a LA–RA atrial model and the multi-spheres torso model is 

depicted. In this model there is a single functional rotor in the LA hemisphere turning at 7.2 

Hz while the RA hemisphere is passively activated at lower a frequency (3.9 Hz). Figure 2A 

shows the phase maps of three concentric layers between the epicardium (left) and the torso 
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surface (right) at various times. The phase maps become smoother toward the torso surface, 

reflecting the low-pass filter effect of the passive torso volume on the extracellular 

potentials. In the epicardial layer there is one stable SP at the location of the functional rotor 

(LA) that appears at similar positions in the outer layers, and another SP at the less stable 

wavebreak location at the interface between the faster LA and the slower RA. Azimuth and 

elevation of SPs detected on the surface are not preserved across layers, so the filament 

arising from the LA rotor exhibits a deflection in its trajectory to the torso. The deflection 

angle of the filaments before HDF-filtering is not stationary over time and, instead, the 

filament trajectory describes a cone. However, Figure 5B shows that HDF-filtering 

significantly reduces the filaments’ deflection and stabilizes them to follow a straight path 

from the epicardium to the surface. The simulations suggested that SPs arising at the 

interface between LA and RA as a consequence of abrupt changes in propagation direction 

that reached the outermost layer disappear after HDF-filtering since their activation 

frequencies did not match with the HDF.30 In addition, we notice that a mirror filament 

appears with opposite direction and chirality as compared to the true rotor originating at the 

SP on the LA epicardium. Indeed, following the attenuation of RA activation frequencies, 

potentials on the RA hemisphere are caused by the rotating electrical activity on the LA and 

observed from a contralateral point of view.

The torso as a low-pass filter for rotor activity

We further explore the behavior of filaments under more complex wave patternsresulting 

from a 50% LA area and 50% fibrotic area model.30 In this case epicardial activity consists 

of a LA rotor with a stable SP and a highlydisorganized activity with several unstable SPs in 

the fibrotic area. Most of the filaments originate at SPs involving a small piece of fibrotic 

tissue and not at the driving rotor. In that case the torso volume conductor stabilizes 

filaments and eliminates all but a single filaments’ pair reaching the surface. Our 

simulations clearly show that filaments are continuous and do not vanish inside the passive 

volume conductor, rather a filament does not reach the surface once it is joining its counter-

rotating neighbor. Overall, that mutual cancelation of filament pairs reduces the average 

number of SPs at increasing distances from the epicardium.

But as shown in Figure 5, only one of the SPs on the body surface is a “true” SP 

corresponding to a driving rotor, and others are termed “mirror” SPsas they appear 

following the extinction of an SP at the LA-RA interface as shown in Figure 5, or extinction 

of SPs in fibrotic area, with an extension of the stable LA rotor filament to the contralateral 

aspect of the torso.30 Indeed, the discrimination between true and mirror SPs can be 

performed based on the spectral properties of surface recordings. Although on the phase 

map these SPs seem undistinguishable; the spectral power at the HDF, the rotor frequency 

band,should be maximal only at “true” SPs.30

Regions of body surface rotational activity in human AF (filaments)

True SPs detected, defined as those with at least 60% of their spectral content at the HDF 

band, tended to concentrate at certain torso areas. In Figure 6A, the trajectory of a surface 

SP that drifted during 2 seconds on the posterior torso of a patient following LAHDF 

filtering (band-pass filtering at the HDF found in simultaneous left intracardiac EGMs 

Atienza et al. Page 6

Card Electrophysiol Clin. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



recordings) is depicted (see Video 1). In Figure 6B the trajectory of a SP that drifted during 

500 ms on the right anterior torso in another patient after RA-HDF filtering is shown (see 

Video 2, available online at http://www.cardiacep.theclinics.com/). In Figure 6C, the 2-

dimensional histogram of “true” SP locations after LA-HDF filtering in patients with an 

inter-atrial DF gradient>1 Hz (n=10) shows a predominant location of SPs on the posterior 

torso. The 2-dimensional histogram of “true” SP locations after RAHDF filtering in patients 

with inter-atrial DF gradient shows a predominant localization on the right anterior torso, 

Figure 6D. The locations of the maximal numbers of true LA or RA SPs (dark red regions) 

are shown in Panels C and D to reside well within the areas demarcated by the HDFs 

originating either at the LA or RA, respectively, based on our previous surface-atrial DF 

distribution correlation study.29

Conclusion and Clinical Implications

Global atrial non-invasive frequency analysis is feasible in AF patients and may allow the 

identification of high frequency sources prior to the arrival at the electrophysiology 

laboratory for ablation. Importantly, our results lead to the conclusion that, unlike high-

resolution BSPM, the standard precordial ECG leads alone are not a useful tool when 

attempting to localize the site of DFmax sites responsible for AF maintenance.

Our clinical-computational BSPM study on patterns of activity suggests that the body 

surface data on wavebreaks during AF is incomplete, but it contains features that can be 

linked to reentrant drivers of AF. We developed an approach whereby a narrow band-pass 

filtering allows selecting the electrical activity projected on the torso at the HDF, which 

stabilizes the projection of rotors that potentially drive AF on the surface. Phase maps of 

HDF-filtered surface ECG recordings may allow the noninvasive localization of atrial re-

entries during AF, enabling further physiologically-based rationale for considering the 

constraints of the inverse solutions.

Thus, our approach of a full panoramic BSPM procedure may help in planning and 

performing ablation procedures, decreasing the amount of time required for the search of AF 

drivers. The approach could arguably be used in patient selection since patients without 

inter-chamber DF gradient or clear localized drivers have lower ablation success rates.17 

Additionally, a priori knowledge of the chamber responsible of the maintenance of the 

arrhythmia in those patients presenting a DF gradient may help in planning and performing 

the ablation procedure, decreasing the time required for the search and elimination of drivers 

and/or the highest DF site.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Atrial fibrillation (AF) maintenance in experiments and certain groups of 

patients depends on localized reentrant sources with fibrillatory conduction to 

the remainder of the atria.

• AF can be eliminated by directly ablating AF-driving sources or “rotors” that 

exhibit high-frequency, periodic activity.

• The RADAR-AF randomized clinical trial demonstrated that in paroxysmal AF 

patients, selective ablation of highest frequency sites responsible for AF 

maintenance is as effective as CPVI, and decreased ablation risks.

• Body surface potential map dominant frequency estimation allows the global 

identification of high-frequency sources driving AF before and during the 

electrophysiology laboratory procedure for ablation.

• Phase maps of HDF-filtered BSPM recordings allow prior and real-time 

noninvasive localization of atrial re-entries during AF, enabling further 

physiologically-based rationale for personalized AF ablation procedures.
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Figure 1. 
The setup of the body surface recording electrodes. (A) Anterior and posterior views of the 

custom-made vest with 64 recording electrodes along vertical blue strips. (B) Schematic 

location of surface electrodes. Circles represent the location of recording electrodes. 

Electrodes representing the standard ECG precordial leads are denoted as black circles. (C) 

X-ray image displaying the locations of the intracardiac recording catheters together with 

the surface leads. Abl: ablation catheter; PV: Circular mapping at the right superior 

pulmonary vein; RA: right atrium; CS: coronary sinus. (From Guillem MS, Climent AM, 

Millet J, et al. Noninvasive localization of maximal frequency sites of atrial fibrillation by 

body surface potential mapping. Circulation. Arrhythmia and electrophysiology. 

2013;6:294-30; with permission.)
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Figure 2. 
Recorded EGMs and ECGs and their DF distribution in a sample patient with a left-to-right 

DF gradient. (A) Three examples of EGMs recorded at different atrial sites and their 

corresponding power spectra. (B) Selected surface BSPM leads: Surface Left (SL), Surface 

Posterior (SP) and Surface Right (SR), and their corresponding power spectra. (C) 

Intracardiac DF map. Black arrow points to the LA region with highest DF at the LSPV. (D) 

DF map on the torso surface with superimposed locations of electrodes from (B). (From 

Guillem MS, Climent AM, Millet J, et al. Noninvasive localization of maximal frequency 

sites of atrial fibrillation by body surface potential mapping. Circulation. Arrhythmia and 

electrophysiology. 2013;6:294-30; with permission.)

Atienza et al. Page 12

Card Electrophysiol Clin. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Correspondence between intracardiac and surface dominant frequency (DFs). (A,B) 

Differences between maximum intracardiac eletrogram (EGM) DF and local surface DF 

represented in a color scale for two different patients. The red color domain on the surface 

(white arrows) represents the region with zero difference between the intracardiac and 

surface DFs. (A)Patient from Figure 2 with a left-to-right DF gradient.(B) Patient with a 

right-to-left DF gradient.(C,D) Summary maps showing the percent patients with the surface 

DFs less than 0.5 Hz different than the maximal left (C) and maximal right (D) intracardiac 

DFs. Areas outlined by the dashed curves represent the portion of the torso with a best 

correspondence with left and right EGMs. (E) Correlation plot showing highest DFs found 

in left EGMs vs. highest DFs found on the left portion of the torso. (F) Correlation plot 

showing highest DFs found in right EGMs vs. highest DFs found on the right portion of the 

torso. (From Guillem MS, Climent AM, Millet J, et al. Noninvasive localization of maximal 
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frequency sites of atrial fibrillation by body surface potential mapping. Circulation. 

Arrhythmia and electrophysiology. 2013;6:294-30; with permission.)
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Figure 4. 
Surface phase maps during AF. (A) Surface phase maps at three selected times for unfiltered 

(left) and for HDF-filtered (right) surface potentials. (B) ECGs at positions 1-6 marked in 

panel A before and after HDF-filtering and Power Spectral Density (PSD) for unfiltered 

ECGs. Time marker at 2656 ms corresponds to the top map in the HDF-filtered data in panel 

A. (C) PSs trajectories on the torso surface during a 3-sec long AF. (D) Percentage of time 

with rotors (up) and rotor duration (down) in surface phase maps from unfiltered and HDF-

filtered surface potentials over the entire cohort. (E) Electrogram recorded at the highest DF 

site in the atria (RSPV) simultaneously with the surface recordings. (From Rodrigo M, 

Guillem MS, Climent AM, et al. Body surface localization of left and right atrial high-
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frequency rotors in atrial fibrillation patients: A clinical-computational study. Heart Rhythm 

2014; 11(9):1584–91;with permission.)
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Figure 5. 
Epicardial and transition to surface phase maps during AF in a 50% LA–50% RA atrial 

model. (A) Phase maps at 4 time instants (top to down) in 3 concentric layers at increasing 

distances from the epicardium (left to right) and after HDF filtering of surface potentials. (B) 

Phase map of epicardial sphere and temporal distribution of filaments for unfiltered 

potentials and for HDF-filtered potentials. (Adapted from Rodrigo M, Guillem MS, Climent 

AM, et al. Body surface localization of left and right atrial high-frequency rotors in atrial 

fibrillation patients: A clinical-computational study. Heart Rhythm 2014; 11(9):1584–

91;with permission.)
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Figure 6. 
Spatial distribution of surface rotors in human AF. (A) Phase map and rotor tracking (blue 

scale) after LA-HDF filtering in an LA-fastest patient. (B) Phase map and rotor tracking 

(blue scale) after RA-HDF filtering in an RA-fastest patient. (C) Histogram of the rotor 

position for all rotors detected in patients with an inter-atrial DF gradient after LA-HDF 

filtering. LA-detected region is outlined with a dotted line. (D) Histogram of the rotor 

position for all rotors detected in patients with an inter-atrial DF gradient after RA-HDF 

filtering. RA-detected region is outlined with a dotted line. (From Rodrigo M, Guillem MS, 

Climent AM, et al. Body surface localization of left and right atrial high-frequency rotors in 

atrial fibrillation patients: A clinical-computational study. Heart Rhythm 2014; 11(9):1584–

91;with permission.)
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