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Abstract

The implantation of NOx sensors in diesel engines is necessary in order to track emissions at the

engine exhaust for diagnosing and control of the after-treatment devices. However, the use of

models is still necessary as the output from these sensors is delayed and filtered. The present pa-

per deals with the problem of NOx estimation in two parts covering modelling and data fusion of

a sensor signal and the model, respectively. This is the first part where a NOx model is developed

based on a nominal set-point relative fitting of the NOx with a series of corrections for accounting

with variations on λ−1, temperatures and other signals. The NOx model combines look-up tables

with physical-based equations and is designed for being implemented on commercial ECUs. The

relatively low calibration effort and the reported results presented with a turbocharged diesel en-

gine shows the feasibility of the model and the possibilities for on-board implementation. This

paper is the first part of a two-parts paper dedicated to the on-board estimation of NOx.

Keywords: NOx model; look-up tables; diesel engine; NOx sensor; control
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1. Introduction

The world attention about environmental protection has resulted in new strict laws which es-

tablish the requirements for pollutant emissions, and therefore define priorities in the technology 
development [1]. In such sense, the Euro standards [2] fix the emissions limits for NOx and PM 
for the European Union mobile sources. Concretely, light-duty diesel engines must reduce NOx 
emissions by 20% with regards to EURO 5 and 50% with regards to EURO 6 if comparing with 
previous EURO 4 standard.

The monitoring of emissions in diesel engines require the use of sensors, model based strate-

gies or a combination of both. For instance, the dynamic responses of the on-board sensors are 
limited, and then models are still necessary. This paper focuses on the development of an ECU-

oriented NOx model for predicting NOx emissions at the engine exhaust. This model is based on
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maps that get the nominal behaviour of the engine according to the injected fuel mass flow and 
the engine speed, and different corrections for coping with the boost pressure and temperature, 
air mass flow, coolant temperature, humidity and in-cylinder temperature variations at conditions 
different to the base calibration. Provided that if the engine is running slowly among different 
engine operating points, the base maps can be enough for retrieving the model outputs, these 
corrections are needed when the engine runs in transients. In addition, the text gives hints on how 
to consider injection timing variations and indeed a multi-mode approach when the engine is 
running cold. All required inputs for the model, excepting the humidity, come from available 
signals in standard ECUs. The model is validated for a steady-state data set and in different 
engine dynamic cycles for a turbocharged diesel engine.

After-treatment systems are not considered but the model is still valid for predicting exhaust 
NOx emissions, being able to use it in the diagnosis and control of SCR or LNT, when a NOx 
sensor is installed downstream of them. Furthermore, if SCR or LNT are modelled, the model 
can be extended for predicting pipe-out NOx. Finally, the model is valid without the presence of 
a N O x sensor for estimating raw engine exhaust emissions.

2. Review of the background for modelling NOx in diesel engines

The term NOx includes all nitrogen oxides, but it is the nitric oxide (NO) the predominant

at the diesel engine exhaust [3]. The NOx formation is affected by three different mechanisms:

thermal, prompt and from fuel-bound nitrogen [4]. The thermal mechanism is the most relevant

in diesel engines where high temperatures benefit reaction of N and O2 from air producing NOx.

NOx formation physics in combustion and explosion processes were modelled by Zeldovych

[5] in 1946, and formulated for IC engines by Lavoie et al. [6] in 1970 with the well-known

extended-Zeldovych mechanism

N + NO � NO2

N + O2 � NO + O
N + OH � NO + H

(1)

According to Heywood [3], the typical characteristic times of the NO formation in diesel engines 
combustion are in the order of seconds and thus under the hypothesis of equilibrium of certain 
species, the dNO/dt can be fitted with the initial NO formation rate by the Arrhenius equation

dNO
dt
=

k1

T 0.5
e−k2/T [O2]0.5[N] (2)

The strong dependency with the temperature T is clear: when T increases, NO (and thus NOx)

increases exponentially. The other mechanisms can be relevant in some specific conditions such

as LTC [7, 8].

The cylinder conditions, namely temperature, pressure and oxygen concentration [9, 10, 11],

are the most important variables for determining NOx concentration at the engine exhaust. But

because of the cylinder severe conditions, price and signals problems have prevented to use in-

cylinder sensors in commercial vehicles. Despite all of these, the continuous improvements of

pressure sensors and their applications are justifying its nearby implementation [12]. The case of

the temperature sensors is more complicated [13], and their use is not foreseen in applications.

Therefore, the solution for estimating in-cylinder conditions on real-time is using virtual sensors.

2



Physical models for NOx estimation are often based in the heat release, using the pressure

sensor signal for estimating flame temperature (T f ) in the cylinder. The problem is not trivial

and a multi-zone discretisation is advisable. Furthermore, the residual gasses (internal EGR)

affect the process and these are not always easy to estimate. An usual solution to the problem is

applying mass and energy conservation equations to each zone (walls, injector neighbourhood,

etc.) in conjunction with heat transfer equations, among them it stands out the heat transfer to

the cylinder walls [14], which could be approached by using Woschni equation [15]. Finally,

NOx emissions are calculated by using the extended Zeldovych mechanism. Good examples for

estimating NOx by using heat release are [16, 17, 18, 19]. In the case of SI engines, [20, 21] use

ionisation current on spark for approaching pressure, but this is not available in diesel engines.

The accuracy of the prediction anyhow is not as satisfactory as expected, and the accuracy is still

an issue.

There is an open discussion about using time or crank angle based models for the NOx predic-

tion. For the case of pressure based models, crank angle sampling seems more logical as volume

can be easily linked with pressure trace. However, these models require heavy calculations and

big memory resources. The time required for completing one engine cycle is often bigger than

the characteristic time of the engine. In order to overcome this limitation, some authors have

proposed simplifications. Guardiola et al. [18] develop a semi-physical discrete event model

based on the heat release calculation but considering only one zone as the main contributor to the

NOx formation; the process is supposed adiabatic, approaching T f with the adiabatic tempera-

ture of the process. This approach requires specific corrections, especially when the combustion

temperature is low. Other examples are Westlund and Åmströng [22] who present a fast physical

model for NOx and soot, or Arsie et al. [23] who present a hierarchical model structure for en-

gine control design with different models and layers, ranging from physical based to mean value

approaches. The latter examples might be named as semi-control oriented models.

2.1. Control-oriented models

For the sake of simplicity, control-oriented models might be divided into black box and grey

box models. Black box models rely on system identification [24] and their quality is linked to the

quality of the data used for training the model: the Design of Experiments (DoE) is not an easy

task. Some examples are: Hirsch et al. [25] who present a gray box model for NOx and PM,

Takagi-Sugeno fuzzy models [26, 27], Hammerstein-Wiener (HW) [28], or Neural Networks

(NN) [29, 30, 31, 32].

In commercial ECUs, the prevailing approach is to use look-up tables and curves to model

non-linear and operating point dependent behaviours because of the simple programming: this

structure gives the advantage to the engineer of linking the calibration of a certain parameter with

a certain operating point or variations around it [33, 34]. Furthermore, OEMs have developed

automatic procedures for filling the maps, curves and parameters from the ECU. However, this

does not liberate from an intensive tuning effort in terms of number of parameters and required

tests. These approaches might be described as grey-box approaches as they use first principle

equations and calibratable parameters to get the outputs.

If comparing black and grey box structures, both approaches get similar predictive accuracies

since they are dependent from the training data used for fitted the parameters. In this work, a

grey box structure based on maps and first principle equations is preferred since it is consistent

with the standard models in the ECUs and it permits the direct application of adaptive strategies

for updating the parameters and the drift correction, as discussed in the part 2 of this paper. The
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validity of this quasi-static representation for engine transients is an important factor to consider

and it is assessed in the next subsection.

2.2. Validity of a quasi-static model definition
As commented before, the ECU-oriented models rely on static maps depending on the oper-

ating point conditions. This subsection discusses the validity of such definition for reproducing 
engine transients. For that, it is necessary to make reference to the engine control.

The engine works in closed loop by mainly controlling set-point references for air mass flow 
(ṁ∗a) and boost pressure (p∗boost), which are controlled by modifying the actuators for EGR (uegr) 
and waste-gate (uwg) -or variable geometry turbine alternatively-. Other variables such as the 
coolant temperature (Tcool) are also measured and taken into account in the ECU controller. 
Speed (n) and injection (m f ) are used as scheduling variables in order to build the references 
for the controllers by means of look-up tables. Since fuel path control representative times are 
in the order of μs, they can be considered as instantaneous if compared with air path dynamics. 
However, the major influence of the air path over the fuel path is with the smoke limiter, which 
limits the injected fuel rate until ṁ a or pboost (depending on the manufacturer) reach a certain 
limit in order to bound λ−1. Therefore, the engine states (X) might be modelled with the dynamic 
equation

Ẋ = f (X, n,mf , uegr, uwg, Tcool) (3)

The set-point references for air and boost pressure (ṁ∗a and p∗boost) are modelled by look-up tables

scheduled by n and mf

ṁ∗a = f (n,mf ) (4a)

p∗boost = f (n,mf ) (4b)

The variables ṁ a and pboost are measured by sensors in diesel production engines, and if consid-

ering them as fast signals and neglecting mass storage effects (MAF sensor for measuring m˙ a is 
usually installed upstream of the low pressure compressor), uegr and uwg are represented by their 
effects on m˙ a and pboost

Ẋ = f (X, n,mf , ṁa, pboost, Tcool) (5)

If the engine air path states are modelled by quasi-static representations (dynamics do not have

influence on the output) or by adding filters and delays function only of the scheduling inputs n
and mf , then the dependency with ṁa and pboost might also be modelled as function of n and mf .

The influence of the thermal effects over the engine is quite more complicated. On one hand, 
Tcool is the coolant temperature and it estimates the engine block temperature. This measurement 
is used in the engine in order to select the cold or warm engine strategies. The ECU usually has 
different maps for the injection settings depending on Tcool, e.g. when the engine is warm, the 
start of injection is forwarded or the number of injections might be different with respect to the 
warm strategies. The smart solution for modelling the engine states is maintaining this strategy 
and fit different maps at different temperatures: at cold start when Tcool < 30◦C, at warm-up phase 
when 30◦C< Tcool < 60◦C, and at normal operation when Tcool is around 90◦C, values that depend 
on the considered engine. In addition, small variations of Tcool, even though when not affecting a 
change of mode, i.e. when Tcool varies between 75 and 90 ◦C, will also affect the engine 
operation, especially the combustion and should be considered in a model as well.

However, Tcool only measures the coolant temperature, but its resolution is not sufficient to 
represent the in-cylinder conditions. The temperature of the cylinder walls deserves a specific 
consideration, and its influence over the NOx emissions is discussed latter in this work.
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Based upon this reasoning, the state X might be represented as

˙X= f (X, n, mf , Tcool) (6)

where the Tcool should be used in order to select the mode operation (the proper selection of 
operating point dependent maps) and also for considering its influence around the selected mode.

Putting aside the thermal dynamic effects and considering that the engine runs already warm, 
further simplifications could be made if the engine variations are slow enough that ˙ma and pboost 
are able to track ˙m∗a and p∗boost fast. In that case, the engine modelling could be further 
simplified to

X = f (n, mf )
(7)

Figure 1 shows examples of the set-point references and responses for the air and fuel path and 
for three different cycles (see Section 5 for a description of the engine and Appendix D for a 
description of the cycles NEDC, CADC and SDMP), including also in the bottom plots the 
variables uegr and uwg corresponding to the actuation signals for EGR and WG respectively. The 
cycles correspond in that order from the slowest to the fastest transients. In the NEDC test, the air 
path controllers track with a minimum error both m˙ ∗a and p∗boost, especially for the case of ˙ma 
which is logical due to the slower dynamics associated to the turbo inertia. The response for the 
CADC is also good but transients are a little bit more aggressive than for NEDC, and the errors 
are slightly higher. For these two cycles, the quasi-static representation defined by (7) gives good 
results if the engine is already warmed up (Tcool is stable). However, for the case of SDMP cycle, 
the transients are much more aggressive and errors on the m˙ a and pboost tracking are appreciable 
as well as the fact that the EGR valve is mostly closed during the cycle and the bi-turbo mode of 
the considered engine is indeed working at some points (see Figure 1). For this cycle, the engine is 
running at conditions different to the base calibration ( ˙ m∗a and p∗boost are different from the other 
cycles) and the effect of the thermal loading due to the fast transients is critical.

Thus, the selection of the model structure for a given precision would not depend only on the 
engine characteristics but on the use cases. In all these cases and examples, it should be 
considered not only the thermal transient effects but the sensor dynamics. Therefore, (7) should 
consider the sensor model if the output is compared with a sensor output. The model structure 
proposed in this paper, aimed to be representative of the engine performance under different 
conditions, is built on the basis of (5) as a quasi-static model representation and a dynamic 
equation for representing sensor dynamics:

X = f (n, mf , ˙ma, pboost, Tcool) (8a)

˙X = f (X, t − τ) (8b)

where t is the time and τ the sensor delay. Furthermore, the model is calibrated and validated for 
an engine running in warm condition, provided that a multi-mode fitting could be made if aimed 
to get accurate results when the engine is cold.

3. Intake oxygen estimation

To the interest of developing a RT model for NOx, the Arrhenius equation (2) can be arranged

with two operating point dependent factors C1 and C2

dNOx

dt
= C1e−C2/T (9)
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Figure 1: Air and fuel path response to variations in driver’s command uα for different cycles. First and second row plots:

is set-point ṁ∗a and p∗boost , and is measured value of ṁa and pboost . Last row plots: uwg [%], uegr

[%] is the smoke limit for injection. Note that 100% in uegr corresponds to EGR valve fully closed and around 25% fully

opened. For the case of uwg, 100% corresponds to WG fully closed.

where C1 includes gas intake concentrations (nitrogen and oxygen) while C2 is the exponential

factor. According to [7], oxygen rate in the cylinder and operating conditions (n and mf as

discussed above) seem to be suitable variables for predicting NOx emissions. Hence it is possible

to find a new generic expression whose structure is equivalent to 9:

xNOx
= f ([O2]int, x1, ..., xn) (10)

where xNOx
is the model output. This expression relates NOx with [O2]int and different parameters

(x1, ..., xn) including temperature and time reactions effects.

Figure 2 shows NOx versus [CO2]int in the intake manifold when varying EGR valve posi-

tion for different speed n and injected fuel rate mf . NOx is normalised by NOx,EGR=0, which

corresponds to maximum value at every operating point (equivalent to EGR valve fully closed

uegr = 0). The exponential fit in Figure 2 is clear, in spite of operating point dependency of the

exponential factor is not modelled yet.

In the following, the use of sensors and a simple model is discussed in order to estimate the

intake oxygen.
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Figure 2: Normalised NOx emissions as function of [CO2]int for 37 operating points. Engine calibration is the standard

given by the manufacturer.

3.1. Sensor approach

Due to the strong dependency of NOx emissions on [O2]int, its measurement is of major impor-

tance. However, the lack homogeneity of the intake mix stands a major problem in some engines.

In this work the methodology presented in [35] has been used for analysing the homogeneity of

the mix. The method is based on feeding the gas analyser from different probes, as sketched in

Figure 3:

• Measurement of the [CO2]int just before the separation of the manifolds at the intake by the

gas analyser,

• extractions in the four individual cylinder intake runners and measurement by the gas anal-

yser (cylinder 1 to 4 [CO2]int independent measurements),

• measurement of a sample result of the mix of the 4 extractions and made by the gas analyser

(1 measurement, from a rail where gas coming from all the probes is mixed).

When using the gas analyser, the [CO2]int [%] is measured with a non-dispersive infra-red

method (NDIR). As the intake gas is a mix of ambient air and the results of the combustion of

this air with fuel, the [O2]int is linearly correlated with the [CO2]int (the higher the [CO2]int, the

lower the [O2]int).

Additionally, and as a real time alternative, the measurement of the intake λ by means of

the UEGO sensor located in the intake manifold has been implemented. The sensor has been

located with a certain distance upstream of the separation between individual cylinder runners

for avoiding separation effects (1 measurement).
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Figure 3: Engine layout showing the main sensors used for measuring [O2]int or equivalently [CO2]int .

Operating point [n, mf ] [2500, 35] [2500, 7] [1500, 20] [1500, 7]

[CO2]int intake [%] 1.37 1.07 1.27 2.30

[CO2]int man.1 [%] 1.14 0.98 2.38 2.62

[CO2]int man.2 [%] 1.65 1.09 2.46 2.92

[CO2]int man.3 [%] 2.07 1.11 1.89 2.64

[CO2]int man.4 [%] 1.89 1.10 1.79 2.55

[CO2]int man. 1-4 [%] 1.62 1.07 2.27 2.73

[CO2]int mean 1-4 [%] 1.69 1.07 2.13 2.68

std 1-4 [%] 0.40 0.06 0.34 0.16

[CO2]int lambda [%] from Ip 1.99 0.95 2.10 2.80

Table 1: Comparison of different sensor outputs for determining the effective intake [CO2]int (and thus [O2]int and λ−1) in 
the cylinder. The first row represents the measurement of [CO2]int by a gas analyser just upstream of the manifolds at the 
intake junction; the rows 2-5 represent the gas analyser measurements of [CO2]int by means of the 4 individual 
extractions of gas at the intake manifolds of the engine; the row 6 is the gas analyser measurement of the sample result of 
a mix of 4 equal extractions of the intake manifolds of each cylinder; rows 7-8 represents the mean and standard 
deviation of the 4 individual extractions of the gas measured in rows 2-5; while the last row represents the measurement 
of the intake lambda sensor after converting the Ip output to actual [CO2]int (see Figure 4).

UEGO sensor provides the ion pump current Ip [mA]. The Ip signal is previously corrected

with the effect of pboost which affects to the oxygen partial pressure measurement. Furthermore,

Ip is related with λ−1 (and thus [O2]int and [CO2]int) by a curve given by the manufacturer.

A set of measurements is made in order to evaluate the different alternatives and to determine

the best method to estimate intake gas concentration. In total 4 operating points [n mf ] are

studied: [2500,35], [2500,7], [1500,20] and [1500,7] (units are rpm and mg/str respectively)

with the rest of inputs fixed by the standard engine calibrations.

The results of the study are summarised in Table 1 for the 4 operating points. Even though

there exists important dispersion among cylinder samples (due to not utilizing a mixer that guar-

antees the homogeneity of the fluid at intake), the comparison of the mean value for the 4 cylin-

ders with the measurement from the rail (Cyl 1-4 probe) is satisfactory. Nevertheless, the [CO2]int

measured just before the cylinder manifolds is highly affected by the lack of homogeneity in the

mix and the signal presents a significant error when compared with the rest of alternatives. The
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Figure 4: Equivalency between [CO2]int and Ip corrected by pressure. The saturation of the intake probe is evident in

both plots when Ip reaches around 2.3, i.e. equivalent to low [CO2]int values

results obtained by the UEGO sensor are acceptable, despite of a slight deviation lower than that

of the gas analyser intake extraction. However, the resolution of the intake lambda probe presents

a saturation when Ip > 2.3 mA (low [CO2]int and high [O2]int) as shown in Figure 4.

Intake lambda sensors could be installed for estimating intake oxygen, but a model based

estimation is proposed here. Anyway, if an intake lambda probe is installed, an observer may be

designed for improving the estimation.

3.2. Model approach
[O2]int can be measured, but intake lambda probes are not always available in diesel engine

production cars, and measurements errors related with the gas non-homogeneity may appear

[35, 4]. As commented before, UEGO sensors could also be used for measuring intake oxygen.

However, important problems linked with the pressure effects over the output signal, which drive

to saturation and the need of compensation, can distort the signal. In those cases and if the sensor

is presented, estimation theory is a good solution.

Alternatively, [O2]int can be modelled by relating [O2]int, EGR and λ−1

[O2]air(1 − λ−1) = [O2]exh (11)

By the oxygen balance at the intake junction

[O2]int = [O2]air(1 − EGR) + [O2]exhEGR (12)

and substituting the former in the latter

[O2]int = [O2]air(1 − EGRλ−1) (13)
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Figure 5: Left plot shows normalised NOx emissions as function of EGRλ−1 for 37 operating points in the diesel engine.

Right plot shows the fitting of [CO2]int and EGRλ−1 with a good agreement.

that shows a direct relationship between [O2]int and EGRλ−1. The product EGRλ−1 is often

called the inert gas rate and represents the actual portion of exhaust gas that has reacted with

the injected fuel and then contains no available oxygen; e.g Andersson et al. [36] use EGRλ−1

for designing a fast NOx model. Figure 5 shows the NOx fitting with EGRλ−1 and the fitting

between EGRλ−1 and [CO2]int, where the expression (13) is proved.

On the other hand, Figure 6 shows the fitting of NOx by using EGR. Results with EGR are

much worse than with EGRλ−1 and is difficult finding a tendency, which proves that EGRλ−1

seems a good alternative for estimating [O2]int (or [CO2]int) when an intake lambda probe is not

installed, although uncertainty propagation from the different involved measurements is to be

checked [4]. Afterwards, Table 3 shows the results of using the different possibilities (sensors

and models) for estimating the [O2]int. Based on the discussions of this section, the NOx model

is presented in the next.

4. Real Time NOx model

An ECU-oriented NOx model is designed by a set-point relative structure, where maps are used

for reproducing nominal NOx emissions, while the effect of the intake oxygen is captured by an 
exponential variation. Other effects, including the thermal loading, the humidity or the intake 
mass flow dependency, are modelled by tabulated factors. By using this modelling approach, it is 
assumed that there are no interactions between the inputs and each act independently on the NOx 
formation process.

The following hypotheses are assumed:

• Model is programmed and calibrated in discrete form and frequency used for simulation is

50 Hz.

10



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

EGR [%]

N
O

x/N
O

x,
eg

r=
0 [−

]

Figure 6: Normalised NOx emissions as function of EGR for 37 nominal operating points for the DW12B engine

• Model is based on a set of static look-up tables, curves and parameters with the addition of

discrete filters and lag blocks in order to consider system dynamics.

• Intake conditions (ṁint and Tint) are calculated on the basis of the volumetric efficiency and

an EGR flow model by assuming constant pressures upstream and downstream of the intake

junction and a mixing model for the temperature.

• Engine combustion is tabulated by using look-up tables related to nominal conditions and

variations of the intake conditions.

• EGR path is modelled with a cooler model and a filter for accounting manifold dynamics.

• Turbocharger effects are bypassed by directly using sensor signals from ṁa and pboost. The

former located upstream of the compressor and the latter downstream of the intercooler.

• The model results and validation are considered for warm engine operation, i.e. the coolant

temperature (or engine block temperature) measured by the ECU is around 80-90 ◦C. How-

ever, small variations around this value are taken into account, considering that higher varia-

tions could lead to the engine to change the injection settings. For those cases, a multi-mode

map programming is advisable. This is not considered in this work.

The model scheme is outlined in Figure 7. In the top right and for clarifying the reader, engine

positions subscripts are shown: boost is downstream the intercooler, int the intake manifold, egr
the EGR manifold at the intake junction and exh the exhaust. The main RT NOx model requires

two additional blocks: a mean value engine calculation of the EGR flow for obtaining EGR and

the calculation of the fuel-to-air ratio λ−1. The model design is flexible and other structures for
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the EGR flow and λ−1 model or measurement might be utilised just replacing the corresponding

blocks.
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The state vector X for the model is built as

X =
[
xNOx

yNOx
Cdyn

]T
(14)

where xNOx
is the NOx model output (actual NOx), yNOx

is the filtered and delayed NOx output

(for comparing with NOx sensor) and Cdyn is a dynamic factor for coping with in-cylinder tem-

perature and explained bellow. The input signals contained in the vector U are available in the

ECU and are shown in squares in the Figure 7

T
U = 
[
n m f pboost m˙ a Tboost Tcool H

]                                                     
(15) 

where H is the humidity and the rest of variables have already been defined. Model output vector 
Y is the modelled sensor response

Y = yNOx
(16)

in order to have a comparable signal with NOx sensor output during dynamic tests. xNOx
indicates

the raw or actual NOx, which must be filtered and delayed. A delayed first order discrete model

is used

yNOx
= z−τNOx

1 − aNOx

1 − aNOx
z−1

xNOx
(17)

where aNOx
is the sensor time response and τNOx

is the total sensor delay; see [37] for a full

method on NOx sensor output characterisation.
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4.1. NOx calculation
The exhaust NOx emissions are calculated in (18) and consists in a single function refer-enced 

to conditions with nominal EGR for calculating xNOx , which is affected by an exponential EGRλ
−1 correction and additional factors CNOx and Cdyn. This structure guarantees that nominal test 
corrections are eliminated minimising the nominal error and subscript 0 goes with nominal 
conditions. Then, the model xNOx output is calculated as follows

xNOx
= NOx,0 · e−kNOx ·(EGRλ−1−EGR0λ

−1
0

) ·CNOx
·Cdyn (18a)

CNOx
= Cṁint ·CTint ·CTcool ·Ch (18b)

where CNOx
and Cdyn are used as correction factors to the model structure, and are explained in

subsequent paragraphs.

4.1.1. Correction factors
CNOx is calculated on the basis of previous experience and tests made in the engine (see [38] for 

a sensitivity study of NOx to relevant engine inputs). For that, 4 important effects are included 
in CNOx : (19a) C ˙mint indicates variations of intake mass flow ˙mint [35]; (19b) CTint copes with 
intake temperature Tint; (19c) CTcool relates engine temperature (especially for coping with small 
variations around the nominal engine coolant temperature [39]); (19d) Ch considers Humidity H 
(if a humidity sensor is available). Expected NOx sensitivity for the different parameters is 
depicted at the right side of (19). kṁ int , kTint , kTcool , kh are calibrated by [n,m f ] dependent maps. If 
engine is operating at nominal conditions then C ̇mint , CTint , CTcool = 1. Equations are shown in the 
following.

Cṁint = 1 + kṁint (ṁint/ṁint,0 − 1) ↑ ṁint ↓ NOx
1 (19a)

CTint = 1 + kTint (Tint/Tint,0 − 1) ↑ Tint ↑ NOx (19b)

CTcool = 1 + kTcool (Tcool/Tcool,0 − 1) ↓ Tcool ↓ NOx (19c)

Ch = 1 + kh H/0.03 ↑ H ↓ NOx
2 (19d)

4.1.2. Thermal loading model
Tcool is usually measured on-board and is the engine coolant temperature. This temperature is 

the only indirect reference to the temperature of the engine block. Tcool is used on-board in order 
to define engine modes, i.e. the models in the ECU can have maps or parameters calibrated at 
different engine temperatures. According to the Tcool measurement, the ECU is able to select the 
appropriate mode at every moment. For instance, when the engine is cold, the injection is 
forwarded in order to warm-up the engine.

In series diesel engines, neither the engine block temperature nor the in-cylinder temperature 
(Tcyl) are measured on-board (and rarely in test benches) and they are factors of great importance

1If p∗boost set-point is increased for a constant air mass flow (ṁa) set-point, then uegr will be opened and more ṁegr
will enter the cylinder (consequently ṁint will be higher), producing that NOx should be lower. This effect can be shifted

if uegr is already opened, especially at low load and regime areas, or engine is running out of EGR area.
2Moisture increases air specific heat cp, diminishing in-cylinder temperature Tcyl.
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for NOx formation in diesel engines. However, the reproducibility of these temperatures by only 
using Tcool is not clear at all conditions.

For example, if the engine is in steady-state operation, Tcyl might be approximated as function 
only of the operating point conditions, and then Tcool is used in order to select the appropriate 
mode (Tcool permits to switch among the different mode dependent maps)

Tcyl = f (Tcool, n, mf ) (20)

but if the engine is in transient operation, e.g. a tip-in from idle or low loads, it is necessary to 
consider an extra degree-of-freedom since Tcyl will be related with the history of the engine load. 
For this case, the measurement by Tcool itself is not capable of representing the actual value of 
Tcyl. Furthermore, Tcool is also controlled by the ECU in closed loop to keep a constant value 
between 80-90◦C. Therefore and for those cases

Tcyl �  f (Tcool, n, mf ) (21)

There exists the possibility of installing a temperature sensor at the exhaust but even though 
this option should be interesting for improving the model accuracy, these sensors are not usually 
available on-board. Alternatively, a 0-Dimensional approach may consider the heat conductive 
problem between the cylinder temperature and the coolant. According to that, the released heat 
power (Q˙) might be linked with the in-cylinder temperature variation (ΔTcyl)

Q̇ ∝ ΔTcyl (22)

The total heat dissipation (Q) between the cylinder and the coolant depends on ΔTcyl and the 
considered time, which is inversely proportional to n. At the same time, the heat dissipation will 
also be linked to the combustion efficiency and thus λ−1

λ−1 = Δ Tcyl
1

n
(23a)

ΔTcyl ∝ λ−1n (23b)

which shows that λ−1n is related with the thermal load in the cylinder and could be used as an 
estimator for the problem.

A multiplicative factor Cdyn to the NOx model output is proposed. This factor augments the 
state vector X and gives some correction regarding the Tcyl variation. The correction factor is 
designed for correcting the NOx output only during transient, since steady state effects due to 
changes in Tcool are yet corrected through CTcool . The main equation is presented in (24) and the 
Figure 8 shows the scheme of the function. Cdyn is built with the filtered difference of λ−1n, 
which represents the engine thermal load variation (other options have also been checked, but 
this has given the best results for the model, which is in line with the discussion above), and a 
calibrated gain kdyn. When the engine runs in steady-state operation, so λ−1n is, Cdyn = 1. In 
addition, this factor is set to one for steady-state simulations.

Cdyn = 1 + kdyn · (λ−1 n)

(
1 − z−τdyn

1 − adyn

1 − adynz−1

)
(24)

Figure 9 shows relevant signals during a sharp engine transient in n and mf . Texh is measured

with a sensor and compared with Tcool showing two effects: First, Tcool is much more filtered and
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delayed than Texh, and second, the sensitivity of Tcool is not sufficient for representing the actual

thermal transient occurring on-engine, i.e. Tcool hardly varies from 82 to 92 ◦C while Texh goes

from 200 to 700 ◦C. Bottom plot shows the value Cdyn tuned for the NOx model, being lower

than 1 during the transient but finally converging to 1. This is for representing that engine comes

from a colder state. In that plot, NOx sensor (zNOx
) is compared with yNOx

model output (see

(17)) without Cdyn (it overestimates NOx) and with Cdyn.

4.2. EGR flow model

The EGR rate

EGR =
ṁegr

ṁint
(25)

is calculated on the basis of a mean value model of the volumetric efficiency (ηv) using boost

pressure (pboost) and air mass flow (ṁa) inputs coming from commercial sensors. The model

block diagram is shown in Figure 10.

The intake manifold mass flow (ṁint) is obtained from ηv (mapped with the steady-state tests).

pboost is assumed constant in the manifolds that confluence at the intake (egr,boost,int) while

Tboost is measured and Tint calculated by means of a combustion model based on maps and

corrections over Tcool and ṁint.

ṁint =
ηv ncyl Vd n pboost

2 R Tint
(26a)

n, mf , Tboost and ṁa are measured by sensors, the unit displaced volume (Vd) and the number of

cylinders (ncyl) are known beforehand and a model is proposed for Tint. For instance, Wahlström

et al. [40] propose an isothermal model (Tint = Tboost); for the current work a mixing model

based on energy conservation at the intake junction is utilised, i.e. intake volume is small and

mixing is so fast that no heat is transferred to the walls. Therefore and assuming that the specific

heat capacities are equal for all gases,

ṁintTint = ṁaTboost + ṁegrTegr (27)

and from (26), the product ṁintTint, which defines the intake enthalpy flow, can be inferred as

ṁintTint =
ηv ncyl Vd n pboost

2R
(28)
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and rewriting the mass equilibrium at the intake junction

ṁegr =
ηv ncyl Vd n pboost

2RTint
− ṁa (29)

and finally substituting in (27), Tint can be solved

Tint =
ηv ncyl Vd n pboost Tegr

ηv ncyl Vd n pboost + 2 R mboost

(
Tegr − Tboost

) (30)

Two additional models (see Figure 10) are needed in order to calculate Tegr (not usually mea-

sured on commercial engines): a Texh model and an EGR cooler efficiency model.

4.2.1. Texh model
Temperature increase between the intake and the exhaust ΔTie is calculated from a map and

corrections

Texh = Tintz
−1 + ΔTie (31)

adding the delay z−1 for coping with causality.
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ΔTie can be calculated on the basis of heat release functions (e.g. Wiebe for Watson functions)

and solving the principle equations of the cylinder, or fitted to experimental values. Since the

results of such physical approach may be calculated beforehand, a map based model coherent

with the full RT NOx model is proposed with two corrections based on ṁint and Tcool

ΔTie = ΔTie,0 · kΔm + kT (32)

Maps depending on [n, mf ] are used for generating references for ΔTie,0 and ṁint,0. Then Δm is

calculated

Δm =
ṁintz−1

ṁint,0
− 1 (33)

and defining the calibrated map output

kΔm = f (Δm) (34)

The engine block temperature also affects the final NOx emissions, and in the context of the 
previous discussion about Cdyn, Tcool may be used here to get the effect of minor variations in 
Tcool, which represents variations in the engine block temperature. This factor is calculated from 
the curve

kT = f (Tcool)

Alternatively, the dynamic component of temperature rise due to combustion is considered with 
the aforementioned Cdyn factor and is directly affecting the final NOx emissions.
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The effect of injection parameters. Injection duration (tmi), start of injection (SOI) and common 
rail pressure (prail) a ffects heavily the in-cylinder temperature and thus NOx emissions [41]; and 
so is the engine speed (n) that is coupled with the others, but here considered as an input for the 
model. In this work and as stated in the model hypotheses, the injection settings from the series 
calibration are maintained. Therefore, tmi, SOI and prail are completely defined by the operating 
point conditions, i.e. every pair [n, mf ] defines a nominal value for these variables.

However, extra maps for covering variations over the SOI or prail might be considered, mak-

ing possible the use of the model for the injection control. This correction might update the 
combustion model by including the parameters kS O I  and kprail , modifying (32) as follows

ΔTie = Δ Tie,0 · kΔm · kS O I  · kprail + kT (35)

These factors are advisable in such cases, but they have not been calibrated in the scope of this 
work, since the injection settings defined by the series calibration have been applied in all tests.

4.2.2. EGR cooler model
Tegr is calculated by a temperature drop and a first order discrete filter with time response aegr 

and a transport delay τegr

Tegr = z−τegr
1 − aegr (

Texh − kegr (Texh − Tcool)
)

(36)1 − aegrz−1 

where kegr is calculated by the curve

kegr = f ( ˙ megr) (37)

and τegr is function of the engine characteristic time

kτegr 
τegr = n

(38)

4.3. λ−1 model

Depending on the engine configuration, an air mass flow sensor (m˙ a) may be present (or mass 
flow can be estimated through the boost pressure), and the injected fuel mass flow ( ˙mf ) is 
usually estimated by the ECU. A simple model may be then proposed

x
λ
−1 = 14.5

˙mf

˙ma
(39)

where ˙mf and ˙ma quantities are expressed in the same units, i.e. mg/str or kg/s, and 14.5 stands 
for the stoichiometric air-to-fuel ratio. Note that the model neglects the mass accumulation in the 
intake and exhaust manifolds. Despite such effects should be considered for correcting ˙ma 
during the engine transients (for example, when boost pressure is increased or when shifting 
between boosting modes [42]), they will be neglected hereinafter for simplicity. The reader is 
referenced to [43] for a complete methodology to model λ−1 and other interesting topics.
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Stroke (S ) 96 mm

Bore ( D ) 85 mm

S/D 1.129

Number of cylinders (z) 4

Displacement 2179 cm3

Turbocharging system Sequential parallel [44]

Valves by cylinder 4

Maximum power 125 kW@4000 rpm

Compression ratio 17:1

Table 2: Engine technical data.

5. Experimental Facility

Experimental data is obtained from a turbocharged diesel engine. This engine is a 2.2-liter 
4-cylinder common rail whose specifications are shown in Table 2. The standard air cooler 
downstream the compressor is replaced by a water intercooler because of the lack of forced air 
flux. All after-treatment devices are removed, they are out of the scope of the paper.

This engine is installed on an engine test bench and coupled to a variable frequency eddy

current dynamometer that allows carrying out dynamic tests. A rapid prototyping system is

connected via ETK to a bypass-allowed ECU, permitting commanding and receiving signals by

means of coupling a real time system via CAN. Besides the commercial sensors, a full set of

sensors is installed in the engine measuring full operating conditions (pressure and temperature

in the manifolds, mass flows, speed, torque, fuel consumption, etc.), atmospheric conditions

(also humidity), emissions by a gas analyser [45] (NOx, CO, CO2, PM, etc.), and both NOx

and richness (λ−1) by an on-board NOx sensor. Some of them are measured twice, by software

connected to ECU and test bench software. All sensors installed have previously been tested and

calibrated with standard procedures, both in steady and transient-state.

Most of the variables are used for calibration but not necessary for model running. Figure 11

shows the recommended on-engine sensor set, i.e. the key sensors required online once the model

is calibrated. These are used for inputs to the model, removing the need to observe some of the

variables. The NOx sensor is not really necessary and the RT model can be used for online NOx

prediction. Appendix B shows main variables used throughout the paper.

6. Results

This section presents the tuning methodology and results of the NOx model.

6.1. Tuning methodology

The NOx model fitting is separated into the static tuning for filling up all the maps and model

parameters; and the dynamic tuning by fitting the dynamic factors, fine tuning and model valida-

tion.
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Figure 11: Engine commercial set recommended for the RT NOx model.

Static tuning. A full set of steady-state tests are performed in order to characterise the engine

and fit the tables and parameters of the model. This includes different pairs of [n,mf ] values

covering:

• nominal tests, defined by manufacturer ECU settings, with warm conditions and variables

stabilised,

• variations of EGR rate,

• variations of engine coolant temperature (Tcool),

• variations of water temperature of the intercooler (Twic) to influence Tint, and

• variations of pboost to influence on ṁint.

Ranges are selected in order to produce appreciable NOx variations but taking into account the

limits for engine operation. 363 steady measurements are made in total. Covered engine areas

are shown in Figure 12.

The calibration sequence is the following:

• From all tests, ηv, ṁegr and temperatures differences are calculated and used for fitting the

maps as function of engine speed and fuel

• From nominal tests, maps are built for NOx,0, EGR0λ
−1
0 and Tcool,0 as function of engine

speed and fuel.

• From all tests, RT NOx model is simulated in order to estimate the results for ṁint and Tint.

The results are used for identifying ṁint,0 and Tint,0.

• The ratios ṁint/ṁint,0, Tint/Tint,0 and Tcool/Tcool,0 are calculated from all tests.

• Curves k, km, kTint , kTcool and kh are fitted by LS of the main equation (18). This adjustment

is made independently by using the steady-state data set. In addition to EGRλ−1 and in

order to compare results with other possibilities for estimating [O2]int, Ip from an intake

UEGO sensor and [CO2]int from the gas analyser are evaluated. The results are presented in

Table 3. The best fit is for [CO2]int but this is not available on-board, while it can be used for

tuning and validation. Therefore, the minimum error is achieved with the variable EGRλ−1,

which is calculated by modeling and sensor signals.
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Figure 12: [n, m f ] set of values run for testing the engine in steady-state. In each set, different variations of uegr, Tcool,
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characterization. Nominal EGR map EGR0 (white area corresponds to EGR valve closed, EGR = 0) and full load line

are also plotted.

EGRλ−1 Corrected Ip [CO2]int from gas analyser

g/h 9.31 9.78 8.54

% 8.09 8.96 7.58

Table 3: Mean errors when fitting the model with different input variables. [CO2]int from the gas analyser is the mean of

4 extractions of the intake manifolds. EGRλ−1 is calculated on the basis of the EGR mean value flow model and the λ−1

model. Signal from the intake lambda probe (Ip) is corrected by pressure and some data points with faulty measurements

have been removed because they present problems with the sensor saturation. NOx output is adjusted in g/h.
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Dynamic tuning. Dynamic tests are used for adjusting the Cdyn factor parameters and for fine

tuning of the maps and curves fitted with the steady-state tests. These dynamic tests cover the

cycles TRAN, NEDC and SDMP detailed in Appendix D. The sample time for acquisition

and bypassing is 20 ms. Furthermore, step tests are used for calibrating sensors and cycles for

validating the model in dynamic state. If results are not satisfactory, dynamic cycles can be

repeated and identifications checked. If the error persists, it could be advisable to come back to

the static calibration and re-tune the incorrect parameters.

In the next, the results are presented.

6.2. Steady-state results
Top plots of Figure 13 show xNOx and zNOx for both ppm and g/h units as well as histogram 

plots of relative and absolute errors. The mean absolute error is 9.31 g/h with a mean relative 
error about 7%, and the standard deviation is σ=14.74 g/h, with a relative deviation of 9%. The 
model exhibits a better performance at high NOx values, with maximum errors of 10%, while at 
low NOx values, the maximum errors are about 30 %. For example, [33] present a NOx model 
with maximum relative errors about 40% at high NOx and 20% at low NOx values. These results 
are in the line or indeed get better results than other approaches [46].

The results by evaluating ppm output present a mean error of 30.43 ppm and σ = 54.84 ppm, 
with relative mean error about 12% and a relative deviation of 11% respectively. As expected, 
the results are worse for the ppm output, but this is logical since the model has been calibrated 
for the ppm output. Alternatively, the part 2 of this paper introduces updating algorithms for the 
online correction of the model.

It is worth noting that errors of 1% in input variables can produce final NOx errors of 33%,

measured in a predictive and physics-based NOx model, according tp the NOx sensitivity study

published in [38]. The maximum error in a data driven model, such as the one presented here, is

bounded by the tables grid and only ageing and dispersion errors occurs, problems that exist also

in more complex models. This fact and the results presented in this subsection justify the validity

of a data-driven NOx model, as well as the efficient computation and simple programming.

Medium and bottom plots of Figure 13 show absolute and relative error metrics for both out-

puts in g/h and ppm. Again, only a minimum percentage of points (total are 363) are out of the

±σ boundary, also plotted in those plots. If a higher accuracy on ppm output is required, tuning

objective can be easily shifted to ppm.

Additional information from the model can be extracted to compare intermediate variables

(calculated by model) and the corresponding measurements, as for instance for the mean value

EGR flow model. A multi-objective optimisation could be programmed if other model states

should be important for control. However, here xNOx
output error has been minimised. Left plot

of Figure 14 compares EGR calculated by the model and by using [CO2]int averaged from the 4

extractions of the in-cylinder manifolds. The fitting is acceptable in the whole range. Results for

Tegr are shown in right plot of Figure 14, and the fitting in general is also acceptable, but there

exists a high dispersion around the centre line. This is mainly due to areas with low or null EGR,

where Tegr does not make any sense (ṁegr=0).

Model robustness. This section turns out the attention to the model robustness analysing the

model sensitivity to errors in the main parameters and inputs. 2% disturbances in the parameters

presented in Table 4 are applied and final variation in NOx model output is stored, e.g. a change

of 2% in n produce an error of 4.51% in NOx. Parameters with more influence on model output

are n, mf and ṁa. These signals basically represent the engine operating conditions, and define
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Figure 13: RT NOx model results with steady tests. Top plots: Model fitting with respect to NOx sensor output. Medium

plots: Absolute and relative error in percentage with respect to NOx sensor output and for g/h output (xg/h
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) of the model.

Bottom plots: Absolute and relative error in percentage with respect to NOx sensor output and for ppm output (xppm
NOx

) of

the model.
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Figure 14: Relevant results from the EGR flow model. Left plot: calculated EGR from measurements.

the EGR setting (jointly with pboost that presents a minor influence) and the trend was already

expected. pboost and ηv have the same influence as expected because both are multiplied for

calculating ṁint and consequently ṁegr.

An important conclusion of this study is that variables with more influence on NOx are directly

measured, and then having a reliable measurement is crucial for the model accuracy. In the

second group, NOx,0, ṁint and ηv steady maps denote the most relevant maps to calibrate. The

rest of variables have lower influence but not negligible.

Variable Variation Mean error STD error Max. error Min. error

[%] [%] [%] [g/h] [g/h]

n +2 4.51 3.27 15.23 -1.41

mf +2 3.67 2.53 13.42 -0.36

mboost +2 3.42 3.50 12.60 -1.12

NOx,0 MAP +2 2 0.00 2.00 2.00

ṁint MAP -2 1.79 0.74 3.16 0.06

ηv MAP -2 1.03 2.78 8.29 -2.93

pboost -2 1.03 2.78 8.29 -2.93

Tcool +2 0.97 0.39 1.81 0.08

EGR0λ
−1
0 +2 0.66 0.79 3.22 0.00

kegr MAP -2 0.16 0.31 1.39 -0.51

ΔTie MAP +2 0.06 0.14 0.97 -0.14

kNOx MAP +2 0.04 0.48 2.46 -2.42

Table 4: Result of applying variations of 2% to input variables over the final NOx model output.

6.3. Dynamic results
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Figure 9 already showed the ability of the NOx model to fit the sensor and the necessity of 
utilising the factor Cdyn. Figure 15 shows the model results with the SDMP test. This test is a 
good benchmark for testing the dynamic ability of the model as fast transients are performed. 
The influence of Cdyn is remarkable and can be seen in the left plot of the figure. The absolute 
mean error for the SDMP cycles when using Cdyn is about 50 ppm against 75 ppm when using 
Cdyn = 1, which shows that an improvement in the estimation of 33 % is achieved. The standard 
deviation in ppm when using the factor Cdyn is in the order of 75 ppm, against 67 ppm when 
using Cdyn = 1.

In the SDMP, the influence of Cdyn is critical since the engine is ranging from low to high

loads (thermal transients are critical). Right plot compares yNOx
with NOx sensor output with a

good agreement indeed using ppm as output. Finally, the errors might be minimised when using

online observers, as shown in part 2 of the paper.
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Figure 15: Left plot: yNOx calculated normally (thick gray) and cancelling thermal dynamic factor; i.e. Cdyn = 1 (thin

gray), and NOx sensor output zNOx (black) during a part of the SDMP B5. Right plot: yNOx against NOx sensor output

zNOx .

Figure 16 shows results on the TRAN A (Tcool = 75◦C, Δuegr = 5%, Δpboost = 0) cycle,

left plot compares yNOx
with zNOx

while right plot includes also the xNOx
estimation. The sensor

model fits well enough to have a reliable xNOx
, that is observed by cancelling sensor filtering and

lag. Even though the NOx model is based on quasi-static maps, system and physics dynamics

are contained in the model inputs, which are directly measured from sensors. As shown in the

Figure, the results are also promising.
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Figure 16: Left: yNOx (gray) and zNOx (black) in the TRAN A(Tcool = 75◦C,Δuegr = 5%,Δpboost = 0). Right: xNOx

(dashed black), yNOx (thin gray) and zNOx (black) in the same test for a zoom. xNOx is the actual NOx estimation, no

delay nor filtering is expected.

The absolute mean value for zNOx
and yNOx

is calculated for every TRAN cycle

mean(yNOx
) =

1

ltran

ltran

k=1

(abs(yNOx
(k))) (40a)

mean(zNOx
) =

1

ltran

ltran

k=1

(abs(zNOx
(k))) (40b)

where ltran is the total number of samples for every TRAN cycle. Results are plotted in Figure 17,

where the left plot shows mean(yNOx
) against mean(zNOx

) while the right plot shows the error

distributions in ppm. The results are quite good and the agreement is even better than for the

SDMP, demonstrating the model accuracy.

The Figure 18 shows the results in the NEDC, by running the engine in warm conditions. yNOx 

prediction is better during the first 800 s of the cycle (the urban part). However, during the 
highway part, there exists a clear bias. Since the model is optimised for a set of steady-state tests, 
dispersion effects or errors due to non-modelled variables (NOx is highly affected by the ambient 
conditions) can affect the model accuracy. Admittedly, the model dynamics are able to reproduce 
zNOx and then drift can be corrected by using observers.

7. Conclusions

An ECU oriented NOx model has been developed by considering that variations of [O2]int

cause exponential changes in nominal NOx, which is conveniently mapped. A study on different
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Figure 17: Left: Mean value of NOx for sensor zNOx against model yNOx by simulating the NOx model in all the TRAN

cycles. Right: Absolute error yNOx − zNOx bar distribution of the model against the sensor. The mean absolute error is

less than 10%.
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Figure 18: yNOx model output and zNOx measured by the sensor in the NEDC.
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alternatives for estimating [O2]int is presented in the paper, selecting the inert gas rate EGR. A set

of corrections and factors with respect to nominal operating points are included for considering

the most sensitive parameters. Furthermore, a thermal dynamic model for simulating cylinder

temperature Tcyl is proposed as function of the product λ−1 n, which indirectly defines the engine

thermal state. Two additional models are needed for the NOx model: an EGR gray box model

for estimating EGR and a Kalman filter for estimating fuel-to-air ratio λ−1 based on λ−1 signal

from the NOx sensor (alternatives are given if the sensor is not available).

A total of 363 steady-state tests are performed for calibrating all parameters and maps. Step-

like tests for system and sensors identifications are made and TRAN, NEDC and a SDMP test

are made in order to validate the model. The NOx prediction is successful and the simple pro-

gramming as well as the fact that all required signals are available in commercial ECUs makes

the model suitable for online engine control or diagnosis.
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Appendix A. Acronyms

CAN Controller area network

CO Carbon monoxide
29



CO2 Carbon dioxide

DI Direct injection

ECU Electronic control unit

EGR Exhaust gas recirculation

ETK Ethernet based ECU conection

FTP Federal test procedure

HW Hammertein-Wiener

LD Light duty

LNT Lean NOx trap

NEDC New European driving cycle

NN Neural network

NO Nitrogen monoxide

NO2 Nitrogen dioxide

NOx Nitrogen oxides (NO + NO2)

O2 Oxygen

OBD On-board diagnostics

OEM Original equipment manufacturer

PM Particulate matter

RT Real time

SCR Selective catalyst reduction

SI Spark ignition

SKF Simplified Kalman filter

SOI Start of injection

UEGO Universal exhaust gas oxygen

WG Waste-gate

Table A.5: Relevant acronyms used in the paper.

Appendix B. Variables and abbreviations

uwg Waste-gate valve position command %

0-open, 100-closed

uegr EGR valve position command %

0-open, 100-closed

uα Pedal position command %

uvgt VGT position command %

ṁ Mass flows kg/h

m Mass per stroke mg/str

p Pressures bar

T Temperatures K (◦C)

ṁa Air mass flow kg/h

ṁ∗a ṁa set-point reference for controller kg/h

ṁ f Injected fuel mass flow kg/h
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mf Injected fuel mass mg/str

tmi Main injection duration μs
pboost Boost pressure bar

p∗boost pboost set-point reference for controller bar

Tcool Engine coolant temperature K (◦C)

Texh Exhaust temperature K (◦C)

Tint Intake temperature bar

pexh Exhaust pressure bar

pint Intake pressure bar

Twic Temperature of the water of the intercooler K (◦C)

Tegr EGR temperature K (◦C)

n Engine speed rpm

prail Rail pressure bar

Ip Current output from the UEGO sensor mA

ηv Volummetric efficiency -

EGR EGR rate %

H Humidity %

z Sensor measurements -

X State-vector -

U Input vector -

Y Output vector -

τ Sensor delay s (or ms)

a Discrete response time parameter -

Ts Sample time ms

t time s

k Discrete instant -

z Z-transform variable -

aNOx
Discrete response time of the NOx output -

τNOx
Delay of the NOx output μs

zNOx
NOx output from the NOx sensor ppm

xNOx
Output from the NOx model g/h (or ppm)

yNOx
Filtered and delayed output from the NOx model g/h (or ppm)

xNOx f Filtered and delayed output from the NOx model g/h (or ppm)

in the state-space model

zλ−1 λ−1 output from the NOx sensor -

x−1
λ λ−1 model from the fuel-to-air ratio calculation -

y−1
λ Filtered and delayed output from the λ−1 model -

xλ−1 f Filtered and delayed output from the λ−1 model -

in the state-space model

CNOx
Correction factor for NOx model -

Cdyn Dynamic thermal loading factor for NOx model -

k With subscript: Correction to the NOx model -
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C With subscript: Correction to the NOx model -

Table B.6: Relevant symbols and variables used in the paper.

Appendix C. Selection of the units for the NOx model output

Sensor raw signal is measured in ppm, which indicates the relative molar concentration of

NOx, but the final NOx mass depends on the exhaust mass flow and time. The conversion from

ppm to g/h used in this work is

ẋg/h
NOx
= 0.001587xppm

NOx
· (ṁkg/h

a + ṁkg/h
f ) (C.1)

considering that molecular mass of NOx is 46.1 g/mol and exhaust mass flow density is 1.293 kg/

m3, measured at 273 K and 101.3 KPa. The conversion of mg/str to kg/h for a 4 cylinder 4-
strokes engine, provided that n is given in rpm, is as follows

˙mkg/h = 4 · n
2
· 60

106
· mmg/str (C.2)

The use of mass flow variables is appropriate for taking into account total emissions and cal-

culating the real impact on the environment. In addition, after-treatment devices such as LNT

require a count of cumulated NOx for trap regeneration. Then, mass flow seems also suitable for

OBD purposes.

For computing total NOx emissions, ẋg/h
NOx

can be integrated in the considered cycle

Mg
NOx
=

t2

t1
ẋg/h

NOx
dt (C.3)

where M stands for total mass.

Commercial NOx sensors measure the relative volume flow of NOx in parts per million (ppm)

and the conversion to g/h can induce some error, especially if ṁa presents some drift or filtering

effect. Anyway, the use of g/h for online NOx tracking is justified for two reasons: (1) dilution

effects are avoided as ppm is a relative measurement and (2) the use of g/h is coincident with the

actual emissions. Dilution effects can distort the ppm output and can lead to sign shifts in the

gradient when comparing ppm output and g/h at high load conditions (no EGR), i.e. an increase

of g/h could result in a decrease of ppm if ṁa increases. On the other hand, minimum variations

of g/h can lead to huge variations in ppm even though the relative gradient could be high in

both two, especially at low load conditions (related with low ṁa), leading to overestimate NOx

emissions when tracking ppm. In this work, the NOx model output is calibrated for minimising

the error on g/h, even though ppm output is also provided.

Appendix D. Engine cycles

The following cycles have been performed on the engine.
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Adapted Transient cycles (TRAN). A set of dynamic tests are designed on the basis of two dif-

ferent modifications of the FTP cycle for HD engines (named here as TRAN A and TRAN B), 
and are used for training and evaluating the NOx model in transient operation. These consist of a 
scaling of the central part of the standard FTP and are compared in Figure D.19. Test proposition 
is a full factorial design by performing modifications on set-points for uegr (by modification on 
the ṁa maps), pboost (by fixing ṁ a set-point and modifying pboost map) and Tcool (modifying the 
coolant reference temperature at the test cell controller). The sequence is presented in Table D.7, 
totalling 36 different tests (27 TRAN A and 9 TRAN B). For each test, three repetitions of the 
sequence shown in Figure D.19 are made.
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Figure D.19: TRAN nominal cycles designed for the model validation

NOx sensitivity to variations on inputs and parameters is considerably lower for transient than

static conditions. This fact is due to the systems and sensors dynamics which filter the effects.

For instance, the effect of varying 10◦C in Tcool and in the TRAN A cycle produces variations

around 10% in NOx. An increasing of 10% in pboost (100 mbar) in the TRAN A cycle leads

to an increase NOx around 10%, while in steady conditions produces an increase in the order

of 40% for the same conditions (while fixing ṁa set-point in the EGR area of the engine). The

EGR variations are made by ṁa set-point modifications. In all cases, the higher NOx sensitivity

is found for EGR variations, especially for TRAN B cycles, which have sharper EGR transients.

Figure D.20 shows the effect of modifying EGR rate (by plotting [CO2]int) over the final NOx

emissions measured by the sensor.
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Figure D.20: [CO2]int at intake and NOx emissions for TRAN B varying EGR

cycle Tcool [◦C] Δuegr[%] Δpboost [mbar]

TRAN A [75,85,95] [-5,0,+5] [-100,0,+100]

TRAN B nom [-10,0,+20] [-100,0,+100]

Table D.7: Experimental plan of modified TRAN cycles

New European Driving Cycle (NEDC). The NEDC is tested in warm-start conditions (at the 
beginning of the test). The cycle consists of a urban part with accelerations/decelerations and 
idling, and an extra-urban part that lasts 400 s. The urban part has 4 equal repetitions of a 
sequence that lasts 200 s; Figure D.21 shows last repetition of the urban part and extra-urban 
section.
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Figure D.21: NEDC cycle performed on the engine at warm conditions.

Common Artemis Driving Cycles (CADC). CADC are designed upon the basis of an statistical

analysis of European real world driving patterns, developed by the European Artemis project

(Assessment and Reliability of Transport Emission Models and Inventory Systems). The cycle

includes three different variants: urban, rural road and highway. These profiles are more realistic

than NEDC as they cover different real situations and then constitute a good source for experi-

mental testing. The urban version has been tested for the paper and it is shown in Figure D.22.
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Figure D.22: Urban CADC cycle performed on the engine.

Sportive driving mountain profile (SDMP). The SDMP is designed for covering a wide operating

range of the engine by sharp variations on n and mf . A zoom on 400 seconds (total is 1200) of

the SDMP is shown in Figure D.23 (Left plot indicates the whole cycle points). Since SDMP

presents sharp load transients, the EGR valve is mostly closed during the cycle, making that

EGR = 0 during the major part in spite of the engine might be run in the EGR area. This

circumstance distorts the closed loop nominal engine operation.
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Figure D.23: SDMP cycle performed on the engine.
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