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Abstract 

Thermogravimetric analysis (TG) is one of the most common instrumental techniques used for the 

characterization of pastes, mortars and concretes based on both calcium hydroxide or Portland cement. 

Important information about pozzolanic materials can be assessed concerning to calcium hydroxide 

consumption and the formation of new hydrated products. Nevertheless, in some cases, problems 

associated to the overlapped decomposition processes for hydrates difficult the analysis of obtained data. 

In this paper the use of high resolution thermogravimetric analysis (HRTG), a powerful technique that 

allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC 

catalyst -Portland cement pastes. These pastes were monitored for 1, 4, 8 hours and 1, 2, 3, 7 and 28 

curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland 

cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in 

blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and 

stratlingite. 
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1. Introduction 

Thermogravimetric analysis is an instrumental technique that relates mass change and temperature. In this 

technique, parameters such as mass loss, time and temperature are continuously monitored [1]. For 

mortars or pastes based on Portland cement, the decomposition/dehydration associated to mass loss of 

hydrated products can be measured [2]. Several papers reported the use of thermogravimetric analysis 

(TG) to assess the formation of hydrates in Portland cement pastes [3-5]. 

 

For thermogravimetric analysis, some parameters may be selected in order to carry out the test according 

to the required conditions: a rapid test or a slow test can be performed. For both conditions, the heating 

rate parameter is very important. When a rapid heating rate is carried out, short testing time is required 

and the main disadvantage is a poor separation (low resolution in the derivative thermogravimetric curve, 

DTG) of different dehydration processes. On the other hand, when a slow heating rate is used, and 

consequently large testing time is spent, a better separation of peaks in DTG curve related to the mass loss 

processes could be yielded. Nevertheless, even an increased testing time do not guarantee a complete 

separation of dehydration processes. 

 

In order to solve this problem, high resolution thermogravimetric analysis (HRTG) should be carried out. 

HRTG is based on a dynamic process that controls the heating rate, proportioning an “quasi” isothermal 

condition during the reaction proceeds (decomposition, dehydration,…), fact that does not affect the 

nature of reaction. In the same way, HRTG can be considered a short testing time experiment and can 

also be used as an useful tool for some  topics in thermal analysis such as: overlapped reactions, 

decomposition process poorly resolved when the signal between peaks in DTG curve does not return to 

baseline, noticeable shoulders appeared in the DTG curve for the decomposition process, complex 

reactions, separation of volatile substances in plastic and elastomers and also for water evaporation in 

hydrated compounds. 

 

For HRTG technique, when the mass loss rate (W) is lower than the lowest predefined mass loss 

threshold (Wmin), the heating rate (Vint) is increased progressively until to the maximum heating rate 

(Vmax). The factor of increasing the heating rate may be also predefined. Hence, the testing time is 

reduced in this part of experiment. On the other hand, when the mass loss rate (W) is higher than the 



highest mass loss threshold (Wmax), the heating rate (Vint) is reduced progressively until the minimum 

heating rate (Vmin). On this way, the obtained peaks on the thermogravimetric DTG curves are narrower 

and the overlapping of peaks decreases. In these conditions, the temperature range decomposition is 

reduced if compared to conventional TG experiment. Figure 1 shows a schematic representation of high 

resolution thermogravimetric method. 

 

Figure 1.  Schematic representation of high resolution thermogravimetric method (HRTG). 

 

The use of HRTG have commonly been applied in the decomposition of minerals (hydrotalcite, 

organoclays, peisleyite, montmorillonite), polymers and oil shales [6-13]. In the field of civil 

construction, only few studies have been reported using HRTG technique [14-18]. Payá et al. [14] applied 

this technique in the study of dehydration of gypsum, yielding the total separation of the two 

decomposition processes for CaSO4.2H2O. The use of HRTG was performed by Tobón et al. [18] in order 

to assess the effect of SiO2 nanoparticles blended in Portland cement pastes in the range 100-300 ºC, 

related to the dehydration of calcium silicate hydrate (C-S-H gel), C-A-S-H and C-A-H. For HRTG, the 

hydrated phases were successfully separated in the DTG curve.  

 

The aim of this paper is to assess the behavior of spent FCC catalyst-Portland cement pastes using HRTG. 

Spent FCC catalyst is an aluminosilicate waste material from petrochemical industry with high pozzolanic 

reactivity, even for the first curing ages [19-23]. The hydration products formed due the pozzolanic 

reaction of FCC as well the Portland cement products formed during its hydration are well known and 

have been characterized by means conventional thermogravimetric techniques [24-30]. The main 



hydration products formed are C-S-H gel, ettringite (AFt), calcium aluminate and silicoaluminate 

hydrates (C-A-H and C-A-S-H). 

 

2. Experimental 

2.1. Materials 

Spanish Portland cement type I 52.5R supplied by Cemex (Buñol, Spain) and fluid catalytic cracking 

catalyst residue (FCC) supplied by BP OIL (Grao de Castellón, Spain) were used for the production of 

FCC blended pastes. Chemical compositions of these materials, determined by X ray fluorescence 

(Philips MAGIC PRO, PW2400 model), are shown in Table 1. 

 

Table 1. Chemical composition of Portland cement and spent FCC catalyst. 

 

Fluid catalytic cracking catalyst residue was dry milled during 20 minutes before its use, obtaining a 

powder material with mean particle size of 19.73 µm and d(0.1) of 1.34 µm, d(0.5) of 12.15 µm and 

d(0.9) of 49.89 µm [19]. This process improves the pozzolanic reactivity of FCC due the reduction on the 

particle size. To assess the hydration products formed during Portland cement hydration and the effect of 

FCC on the hydrates, different replacing percentages (5, 15 and 30 % of FCC) were tested using a 

water/binder ratio of 0.5 (being the binder as the sum of Portland cement and FCC). HRTG tests were 

performed for 1, 4, 8, 24, 48 hours and 3, 7 and 28 curing days. 

 

2.2. Experimental procedure 

Fresh paste samples were prepared and put into cylindrical plastic containers with hermetic closing to 

avoid carbonation and then, they were stored at room temperature with RH ~ 100 % until the testing age. 

To stop the hydration process of pastes, paste samples were milled in an agate mortar with acetone. The 

milled sample was filtered and dried off during one hour at 60 ºC. Finally, powder sample was sieved on 

80 µm sieve. Powdered and dried samples were stored into a desiccator before to thermogravimetric 

experiments. 

 



A TGA 850 Mettler-Toledo thermobalance, that allows the measurement of thermogravimetric curve and 

differential thermal analysis curve simultaneously, was used. The software used for this application is 

MaxRes from Mettler-Toledo and consist basically in the choice of selected main parameters. For this 

work the following values have been selected: 

 

- maximum heating rate (Vmax, 10 ºC.min-1); 

- minimum heating rate (Vmin, 0.5 ºC.min-1); 

- maximum mass loss threshold (Wmax, 3 µg.s-1); 

- minimum mass loss threshold (Wmin, 1 µg.s-1). 

 

 

The increase or decrease of heating rate between Vmax and Vmin was changed using factor = 2, this 

means that for changing the heating rate, the previous value was divided or multiplied by 2. 

The selected temperature range was 35-250 ºC and a 75 mL.min-1 of nitrogen gas flow was used. Sealed 

100 µL aluminum crucibles with a pin-holed lid were used for these experiments. For all experiments, the 

initial mass sample into the crucible was 40 ± 2 mg. 

 

 

3. Results and discussion 

The conventional TG experiment let to obtain the mass loss (typically in percentage, %) with the testing 

time (t) using a constant heating rate: in this case, the % vs. t curve is exactly equal to the % vs. 

temperature curve. Assessing a Portland cement paste using the conventional method between 35-600 ºC 

with a heating rate of 10 ºC.min-1, a DTG curve similar to the represented in Figure 2 should be obtained. 



 

Figure 2. Typical DTG curve for Portland cement paste cured at 28 curing days. 

 

In Figure 2, four main peaks can be noted. Peak 1 overlapped with peak 2 (100-180 ºC) belong to the 

dehydration of C-S-H gel and AFt. Peak 3, located in the range 180-240 ºC, correspond to the 

dehydration of C-A-H and C-A-S-H. Finally, the dehydroxilation of portlandite can be observed in the 

range of 500-550 ºC (see peak 4). 

 

As it can be observed, the conventional thermogravimetric analysis is not able to separate the dehydration 

of C-S-H gel and AFt. Hence, authors propose the use of HRTG method in order to separate the different 

dehydration processes that occur in the Portland cement paste or in blended pastes. Figure 3 shows a 

comparative analysis of a conventional thermogravimetric analysis and a high resolution 

thermogravimetric analysis for a sample containing 15 % of FCC after 28 days of curing. 

  

(a) (b) 

 

Figure 3. TG and DTG curves for 15 % FCC blend after 28 days of curing: a) conventional 

thermogravimetric method; b) high resolution thermogravimetric method. 

Tabla con formato



 

For the conventional TG curve, a continuous mass loss observed from 100 to 250 ºC, and three different 

peaks (129, 149 and 214 ºC) are observed in the DTG curve. It is important to notice that the peak 

broadness is very important: e.g. for the third peak the beginning of the dehydration is at ca. 194 ºC and 

finishes at ca. 227 ºC, that is 33 ºC of peak broadness. Thus, the two first peaks (in the 100-175 ºC range) 

belong to the dehydration of C-S-H and AFt. Nevertheless, for this temperature range, the use of HRTG 

method allows separating mass loss processes in two clearly differentiated steps, with peaks at 128 ºC and 

140 ºC. And additionally, the peaks are sharper: e.g. for the third peak, the dehydration process begins at 

200 ºC and finishes at 207 ºC, that is only 7 ºC of peak broadness. 

 

The DTG curves for control (C) paste and FCC blended pastes (5, 15 and 30 %) cured at 1 and 4 hours 

and obtained under HRTG conditions are depicted in Figure 4. For all pastes, there is a peak in the range 

136-143 ºC that can be attributed to the decomposition of AFt phase (ettringite), which is one of the first 

hydrates formed during Portland cement hydration. In this case, because the low mass loss obtained (1-2 

%) a broad peak appeared: this behavior is attributed to the fact that the mass loss rate is low and then the 

heating rate was not reduced to Vmin. Besides it, two others peaks are also detected (163 ºC and 186 ºC) 

and they can be attributed to the presence of calcium sulfate dihydrate (CaSO4.2H2O) in the Portland 

cement. This compound is added to Portland clinker for controlling the setting time, and is rapidly 

dissolved in the first hours of hydration. The reaction between dissolved calcium sulfate and tricalcium 

aluminate (C3A) yields ettringite (AFt phase). So, the dehydration of calcium sulfate dihydrate is 

observed in two steps according to the following equations: 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂4. 2𝐻𝐻2𝑂𝑂 →  𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂4. 1
2

.𝐻𝐻2𝑂𝑂 + 3
2

.𝐻𝐻2𝑂𝑂      (eq. 1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂4. 1
2

.𝐻𝐻2𝑂𝑂 →  𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂4 + 1
2

.𝐻𝐻2𝑂𝑂      (eq. 2) 

 



  

a) b) 

 

Figure 4. DTG curves from HRTG experiment for pastes cured at 1 and 4 hours. 

 

In Figure 5, the DTG curves from HRTG experiments for all pastes at 8, 24 and 48 hours of curing are 

depicted. For pastes cured for 8 hours, only the peak corresponding to the dehydration of AFt phase can 

be noted. At this curing age, no evidence of the presence of calcium sulfate dihydrate was observed, 

meaning that most of this compound reacted towards C3A for form AFt phase. Probably, C-S-H gel is 

already formed after 8 hours of hydration, however the amount would be very low and the mass loss rate 

produced, when heating, was under Wmin. The peak related to the decomposition of AFt is also observed 

for all pastes cured at 24 and 48 hours, and it appeared in the range 137-142 ºC. 

 

  

a) b) 

 

Figure 5. DTG curves from HRTG experiments for pastes cured at 8, 24 and 48 hours. 

 

For control paste, an additional peak appears at 126 ºC for sample cured at 24 hours which is assigned to 

the dehydration of C-S-H gel. After 48 hour of curing, in the control paste a third peak centered at 150 ºC 

was observed, which was attributed to the dehydration of C-S-H gel formed with different Si/Ca ratio.  

Tabla con formato



 

For paste with 5 % of FCC, the peak at 150 ºC is also observed for 24 and 48 hours. Nevertheless, when 

the percentage of FCC is increased to 15 %, the peak located at 150 ºC is not detected. For pastes with 30 

% of FCC, none of these peaks are detected for 8 and 24 hours. A peak at 124 ºC is observed only for 

paste cured at 48 hours. In this curing period, 8-48 hours, the identification of different hydrates is 

different depending on the replacing FCC percentage: this behavior could be due to the low amount of the 

hydrates which has an important effect on the changing of the heating rate. Additionally, the presence of 

FCC particles could promote the acceleration of the hydration of Portland cement grains and also the 

pozzolanic reaction take place, influencing in different way depending on the amount of the pozzolan.  

 

 Figure 6 shows the DTG curves from HRTG experiments for all pastes cured at 3, 7 and 28 curing days. 

For these curing ages, control paste present the peaks related to AFt (136-138 ºC) and the peak at lower  

temperature (120-122 ºC) associated to the dehydration of C-S-H gel. Peaks related to the dehydration of 

calcium aluminate and calcium silicoaluminate hydrates were not observed.  

 

For pastes with 5 % of FCC, the peak centered at ca. 120 ºC was observed for 3 and 7 days of curing, 

however, after 28 curing days this peak is displaced for higher temperatures and is overlapped with the 

corresponding to the AFt decomposition. 

 

For pastes with 15 % of FCC, after 7 curing days the presence of a new peak centered at 206 ºC is 

observed, that can be attributed to dehydration of C-A-S-H. In fact, the main product due to the 

pozzolanic reaction of FCC is stratlingite, that is a C-A-S-H compound [6].  

 

For paste with 30 % of FCC, different peaks are identified depending on the curing time. After 3 curing 

days, peaks associated to Aft and C-S-H can be observed. After 7 curing days, a peak centered at 126 ºC 

corresponding to the C-S-H gel and a broadband at 140-150 ºC (Aft and C-S-H overlapped) were 

observed. Finally, for 28 curing days, the peaks corresponding to C-S-H gel and C-A-S-H can be noted, 

moreover a broadband centered at 140-150 ºC. In this paste, an increasing in the peak attributed to C-A-S-

H (200 ºC) is larger than those found for 15 % FCC sample, and the amount of Aft for 30 % FCC paste 

was lower than those found for 15 % FCC paste.  



   

a) b) c) 

 

Figure 6. DTG curves from HRTG experiments for pastes cured at 3, 7 and 28 days. 

 

Total mass loss values in the range 35-250 ºC are shown in Table 2. These values were calculated for 

calcined mass basis, that is, the percentage of mass loss was the ratio between the mass loss measured and 

the corresponding mass remaining after calcination (Because the mass loss for anhydrous cement and 

FCC were negligible in the selected temperature range analysis, no corrections were made in this sense). 

In the first 4 hours of test, all FCC blended pastes presented a total mass loss higher than control paste.  It 

is due the presence of aluminates in the FCC that reacts to form ettringite. For the longest curing time (28 

days), FCC blended pastes presented similar mass loss than control paste, despite the lower amount of 

Portland cement: that is related to the enhanced formation of C-S-H gel and C-A-S-H compounds due to 

the pozzolanic reaction. This fact confirms that pozzolanic reaction compensate the dilution effect (less 

Portland cement when increasing the percentage of replacement) in terms of the amount of formed 

hydrates. 

 

Table 2. Total mass loss values in the range 35-250 °C. 

 

 

4. Conclusions 

Con formato: Sangría: Primera línea: 
1,25 cm



High resolution thermogravimetric (HRTG) technique is able to separate all the thermal dehydration 

processes in Portland cement pastes and also for spent FCC blended pastes in the 35-250 ºC temperature 

range. The addition of spent FCC catalyst produced different hydration products when compared to the 

control paste due the chemical composition of this pozzolanic material: an aluminosilicate material. On 

this way, the use of spent FCC increased the amount of ettringite formed during the Portland cement 

hydration and some new hydrated phases can also be identified such as stratlingite (C-A-S-H). Since the 

first hours of test, the mass loss of spent FCC blended pastes are similar to control paste, demonstrating 

that pozzolanic reaction compensate the dilution effect (less Portland cement present in FCC containing 

pastes). 
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