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Abstract 

The catalytic behavior of metal–organic frameworks of different structures (Fe(BTC), MIL-100 

(Fe), MIL-100(Cr) and Cu3(BTC)2) was investigated in annulation reaction between 2-methyl-3-

buten-2-ol and phenols differing in size (phenol, 2-naphthol). The highest conversions of 

phenols(45 and 75 % after 1300 min of TOS for phenol and 2-naphthol, respectively) and 

selectivity (45 and 65 % at 16 % of phenol and 2-naphthol conversion, respectively) to target 

benzopyran were achieved over MIL-100 (Fe) possessing intermediate Lewis acidity, perfect 

crystalline structure, and the highest SBET surface area. The increasing strength of Lewis acid 

centers for MIL-100(Cr) was found to result in the dramatically decreased activity of the 

catalyst, while negligible conversion of phenols (2 and 7 %  after 1300 min of TOS for phenol 

and 2-naphthol, respectively) was found over Fe(BTC), characterized by a less ordered 

framework. 
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1. Introduction 

The 2,2-dimethylbenzopyran unit is frequently present in many natural compounds exhibiting 

anti-HIV[1, 2], antihypertensive [3, 4] or antifeedant [5] activity. Antimycobacterial 

benzofurochroman [6], HIV inhibitory benzotripyrans [1] are typical examples. Several 

pharmaceuticals such as antioxidant vitamin E [7], antitumour clusifoliol [8] and anti-diabetic 

troglitazone [9] also possess the benzopyran moiety.  

Both homogeneous and heterogeneous catalysts (H3PO4 [10], HCOOH [11], H2SO4 [12], 

HCl/AlCl3 [13], BF3·OEt [14], Montmorillonite KSF clay [15], Bi(OTf)3 [16-18], Amberlyst 15 
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[19], zeolite HSZ-360 [20]) possessing Lewis and/or Brønsted acid centers were shown to 

produce 2,2-dimethylchromans through subsequent C-isoprenylation of phenols with isoprene or 

2-methyl-3-buten-2-ol (MBO) resulting in formation of 2- and 4-isoprenylphenols followed by 

intramolecular cyclization of prenylated product (Scheme 1) with the formation of target 

derivatives of 3,4-dihydro-2H-1-benzopyran (chromane) [21]. Formation of the more stabilized 

carbocation of the 2-prenylphenol and attack by the oxygen of the phenolic OH group result in 

the formation of the six- and not the five-membered ring [21]. 

OH

R

+ HO

OH O

RR  
 

Scheme 1. Annulation of phenols with isoprene or 2-methyl-3-buten-2-ol. 

  

MOFs represent crystalline hybrid organic–inorganic nanoporous materials with a quite high 

thermal stability [22, 23], adjustable chemical functionality [24], and extra-high porosity [25]. 

They are considered as one of the most fascinating classes of porous materials due to their 

potential in optoelectronic devices [26] and sensors [27], storage and separation of gases [28], 

medical imaging and drug delivery [29-34] and more recently emerging as highly interesting 

catalytic materials [35-37]. The presence of coordinatively unsaturated metalsites in some MOFs 

allows their application in catalysis as Lewis acids. MOFs can efficiently catalyze e.g. 

Friedländer condensation [38], Knoevenagel condensation [39-43], Huisgen cycloaddition [44], 

selective oxidation of cycloalkanes [45], and Friedel‐Crafts benzylation [46].  

Recently, we reported the catalytic benefits of Cu3(BTC)2 and Fe(BTC) (BTC=1,3,5‐

benzenetricarboxylate) over large‐pore aluminosilicate zeolites Beta and USY in Pechmann 

condensation of 1-naphthol [47], Beckmann rearrangement of bulky camphor oxime [48], Prins 

reaction of paraformaldehyde and β-pinene [49] originating from mild acidity, the regularity in 

the arrangement of active sites within the framework and preferences in pore size of 

corresponding MOFs. 

Although MOFs appear to be promising solid catalysts for the liquid-phase annulation 

reaction, to the best of our knowledge, there are no reports on the catalytic performance of MOFs 

in this reaction. In this contribution, we investigate the catalytic behavior of Fe-containing MOFs 

of different structures, namely Fe(BTC), MIL-100 (Fe), and compare it with MIL-100(Cr), and 
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Cu3(BTC)2 in annulation reaction between 2-methyl-3-buten-2-ol and phenols differing in size 

(phenol, 2-naphthol).  

 

2. Experimental 

Materials 

Cu3(BTC)2 (Basolite C300) and Fe(BTC) (Basolite F300) were purchased from Sigma 

Aldrich. 

Iron(III) trimesate MIL-100(Fe) and chromium(III) trimesate MIL-100(Cr) were synthesized  

according to the literature [50, 51]. MIL-100(Fe) was prepared by mixing metallic iron (8.0 

mmol, 0.45g), 1,3,5-benzenetricarboxylic acid (5.4 mmol, 1.13 g), 5 M HF (16 mmol, 3.2 ml), 

and 1 M HNO3 (4.8 mmol, 4.8 ml) in deionized water (2.22 mol, 40ml). The mixture was heated 

at 160 °C for 24 h. The solid product was recovered by filtration and washed out with deionized 

water.  

For the synthesis of MIL-100(Cr), metallic chromium (10 mmol, 0.52 g) was dispersed into 

an aqueous solution of 5 M HF (20 mmol, 4 ml). Then, trimesic acid (6.7 mmol, 1.41 mg) and 

H2O (2.67 mol, 48 mL) were added and the mixture was heated at 220 °C for 48 h. The resulting 

green powder was washed out with deionized water and acetone and dried in air. 

2-Methyl-3-buten-2-ol (≥ 98 %), phenol (≥ 99 %), 1- (≥ 99 %), and 2-naphthol (98 %) were 

used as substrates, mesitylene (≥ 99 %) as internal standard, 1,2-dichloroethane (≥ 99 %) as 

solvent in catalytic experiments. All reactants and solvents were obtained from Sigma Aldrich 

and used as received without any further treatment. 

 

Characterization 

The crystallinity of samples under study was determined by X-ray powder diffraction on a 

Bruker AXS D8 Advance diffractometer with a Vantec-1 detector in the Bragg-Brentano 

geometry using CuKα radiation. A gentle grinding of the samples was performed before 

measurements. 

The shape and size of crystals were determined by scanning electron microscopy (SEM; Jeol, 

JSM-5500LV). 

Adsorption isotherms of nitrogen at –196 °C were recorded using an ASAP 2020 

(Micromeritics) static volumetric apparatus. Before adsorption experiments, the samples were 

degassed under turbomolecular pump vacuum at the temperature of 150 °C. This temperature 

was maintained for 8 h. 

Determination of Lewis acid sites in MOFs is discussed in detail in our recent paper [52]. 
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Catalysis 

Annulation reaction between 2-methyl-3-buten-2-ol (MBO) and phenols (phenol,  2-naphthol) 

was performed in a liquid phase under atmospheric pressure and at reaction temperature 80 °C in 

a multi-experiment work station StarFish. Before catalytic experiments, 200 mg of the catalyst 

was activated at 150 °C for 90 min with a temperature heating rate 10 °C/min. Typically, 3 mmol 

of phenol, 0.4 g of mesitylene (internal standard), 200 mg of catalyst and 10 ml of 1,2-

dichloroethane (solvent) were added to the three-necked vessel, equipped with condenser and 

thermometer, stirred and heated. When the desired reaction temperature was reached, 4.5 mmol 

of MBO was added into the reaction vessel through. 0.2 ml of the reaction mixture was sampled 

using syringe with needle after 20, 60, 120, 180, 300 and 1300 min.  

To evaluate a potential influence of leaching of active species from the heterogeneous 

catalysts, a part of the reaction mixture was filtered at the reaction temperature and the obtained 

liquid phase was further investigated in condensation reaction under the same reaction 

conditions. 

The reaction products were analyzed by gas chromatography (GC) using an Agilent 6850 with 

FID detector equipped with a nonpolar HP1 column (diameter 0.25 mm, thickness 0.2 μm and 

length 30 m). The reaction products were identified using GC-MS analysis (ThermoFinnigan, 

FOCUS DSQ II Single Quadrupole GC/MS). 

 

3. Results and Discussion 

Structure and textural properties of MOFs 

The frameworks of MOFs under investigation are schematically depicted in Fig 1. In 

Cu3(BTC)2 the Cu
2
-clusters are coordinated via carboxylate groups of benzene-1,3,5-

tricarboxylate to form a paddlewheel unit in a three-dimensional porous cubic network (Fig. 1). 

Cu3(BTC)2 is a rigid MOF with a zeolite-like structure and with free coordination sites on the 

Cu
II 

ion. It contains three types of pores, of which the larger two penetrate the structure in all 

three dimensions and are connected with pore windows of ca. 6 Å in diameter. The free 

coordination sites are oriented towards the center of one of the larger pore types [53]. MIL-

100(Fe) and MIL-100(Cr) are built up from trimers of µ3-oxo bridged iron(III)/chromium(III) 

oxide octahedra and 1,3,5-benzenetricarboxylate linkers resulting in hybrid supertetrahedra that 

further assemble into zeotypic mesoporous material with mesoporous cages [51] (Fig. 1). The 

crystal structure of Fe(BTC) still remains unknown.  
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Figure 1. Frameworks of Cu3(BTC)2, MIL-100(Fe/Cr). 

XRD patterns of studied MOFs showed characteristic diffraction lines well-corresponding to 

the literature data (Fig. 2). No diffraction lines, attributable to additional phases, were observed. 

While Cu3(BTC)2, MIL-100(Fe), and MIL-100(Cr) were found to be highly crystalline, Fe(BTC) 

represents less ordered material. 

5 10 15 20 25 30 35 40

Cu
3
(BTC)

2

MIL-100(Cr)

MIL-100(Fe)

2, CuK

Fe(BTC)

 

Figure 2.XRD patterns of MOFs. 

 

The crystals of Cu3(BTC)2 are rectangular prisms with the length of the edges of about 7 μm 

while the size of the crystals of Fe(BTC) is about 3μm (Fig. SI1, Table 1). MIL-100(Fe) and 

MIL-100(Cr) showed rectangular crystals of 0.5 and 1 μm in size. 
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FigureSI1. SEM images of MOFs: Cu3(BTC)2 (A), Fe(BTC) (B), MIL-100(Fe) (C), MIL-

100(Cr) (D). 

 

All MOFs under investigation show a type I isotherm, which is typical for materials 

possessing micropores (Fig. 3). However, as the porosity of MIL-100 originates from both 25 Å 

and 29 Å mesopores, which are accessible via 5.5 Å and 8.6 Å windows [54], two secondary 

uptakes at ca. P/P0 = 0.06 and 0.12 can be distinguished from the isotherms of MIL-100(Fe) and 

MIL-100(Cr). Textural properties of all catalysts are summarized in Table 1. While all MOFs 

under investigation possess micropores of close size, the micropore volume increases in the 

sequence Fe(BTC) < Cu3(BTC)2 < MIL-100(Cr) ≈ MIL-100(Fe). The textural properties of the 

MIL-100 (Fe) and MIL-100 (Cr) materials do not differ substantially while less ordered Fe(BTC) 

is characterized by lower micropore volume and SBET surface area in comparison with 

Cu3(BTC)2. 
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Figure 3. N2 adsorption isotherms of the catalysts: Fe(BTC) (– –), Cu3(BTC)2  (– –), MIL-100 

(Cr) (– –), MIL-100 (Fe) (– –). Open points represent adsorption, full points - desorption. 

Table 1. Structural properties of used catalysts. 

Catalyst Crystal size
[a]

, 
μm 

SBET
[b]

, m
2
/g Dmicro

[b]
, nm Vmicro

[b]
, cm

3
/g Lewis acid centers

[c]
 [mmol 

g
-1

] 

Cu3(BTC)2 7 1500 0.90 0.64 2.3 

Fe(BTC) 3 1060 0.86 0.33 1.6 

MIL-100(Fe) 0.5 2250 0.86 0.90 n.d.
[d]

 

MIL-100(Cr) 1.05 2030 0.86 0.83 n.d. 

[a] according to SEM images. [b] according to adsorption / desorption isotherms of N2. [c] according to IR of 
adsorbed pyridine, [d] not determined 

 

 

The investigations of Lewis acidity of MOFs [55, 56] and demonstration of correlations 

between amount of Lewis acid sites and catalytic activity of MOFs [57] are rather limited. 

The absorption band at ν=1069 cm
–1

 assigned to C–C out-of-plane vibration in the pyridine 

molecule was chosen as the diagnostic band to evaluate the concentration of Lewis acid sites in 

Cu3(BTC)2 and Fe(BTC). The concentration of coordinatively bonded pyridine is equal to 2.30 

and 1.90 mmol/g for Cu3(BTC)2 and Fe(BTC) activated at 473 K, respectively.  

Rustad et al. [58] estimated the acid strength of Al(III), Cr(III), and Fe(III) μ3-hydroxo 

functional groups from ab initio electronic structure calculations. It was found that =Fe3OH and 

=Al3OH groups have nearly the same strength, while =Cr3OH groups appeared to be stronger 

ones. The ratio between metal charge and its ionic radius (e/r) can be used as an approximate 
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measure for evaluation of a hardness of metal cations as acid sites [59]. From this point of view 

the hardness of Lewis acid centers increases in the following sequence: Cu
2+

 (e/r = 2.73) < Fe
3+

 

(e/r = 4.65) < Cr
3+

 (e/r = 4.87). 

Catalytic behavior 

The conversion of investigated phenols in annulation reaction with MBO over MOF catalysts 

was found to increase in the following: MIL-100(Cr) < Fe(BTC) << Cu3(BTC)2 < MIL-100(Fe). 

It should be pointed out, that the highest conversions (45 and 75 % after 1300 min of TOS for 

phenol and 2-naphthol, respectively, Fig. 4) were achieved over MIL-100(Fe) possessing the 

highest Vmicro and SBET area (Table 1). At the same time, the increasing strength of Lewis acid 

centers for MIL-100(Cr) in comparison with MIL-100(Fe) [58, 60] results in the dramatic loss of 

the activity of the catalyst. This result is presumably caused by strong adsorption of phenol 

substrates on relatively strong Lewis acid centers of MIL-100(Cr). MIL-100(Fe) characterized 

by larger surface area and higher pore volume appeared to be more active in comparison with 

Cu3(BTC)2 (45 vs 20 and 75 vs 60 % after 1300 min of TOS for phenol and 2-naphthol, 

respectively). The last result may also be caused by the relative weakness of the Cu
2+ 

acid sites 

for the activation of substrates. If the metal cation is a weak Lewis acid, the intermediate 

catalyst–substrate complex is unstable. On the other hand, if the metal cation is very acidic, the 

formed complex is too stable to undergo further reaction. Therefore, MOFs having metal cations 

with intermediate Lewis acidity provide the highest catalytic activity. 

Surprisingly, the negligible conversion of phenols (2 and 7 %  after 1300 min of TOS for 

phenol and 2-naphthol, respectively) was found for Fe(BTC) possessing Fe Lewis acid centers.  
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Figure 4. TOS dependence of phenol (A) and 2-naphthol (b) conversion in annulation with 

MBO over MOFs. 

 

Limited confinement space for reactants in less ordered Fe(BTC) framework may be the reason 

of its poor catalytic behavior in annulation of phenols, involving bulky intermediate. 

The reactivity of 2-naphthol in annulation with MBO over Cu3(BTC)2 and MIL-100 (Fe) was 

found to be higher in comparison with phenol (Fig. 5), which is in agreement with Ref. [61]. 

Respective prenylphenols (PP, Fig. 5a,d) – the products of phenol and 2-naphthol prenylation 

with MBO, targeting 2,2-dimethylbenzopyranes (DMBP, Fig. 5b,e) and the products of their 

thermal rearrangement [62, 63] 2,2,3-trimethylbenzofuranes(TMBF, Fig. 5c,f) were detected in 

the reaction mixtures. The side-product of MBO oxidative dimerisation was found as well. 

 

OH

OH O

O

O

O

A B C

D E F

 

Figure 5. Isomeric products observed during annulation of phenol (a, b, c,) and 2-naphthol (d, e, 

f). 

 

Figure 6 shows that the product distribution depends on the type of metal in MOF. The 

relative amount of intermediate PP (Fig. 5a,d) is higher for Cu3(BTC)2 (22 vs 6 % in the case of 

phenol annulation over Cu3(BTC)2 and MIL-100(Fe), respectively), while the products of 

consequent intramolecular cyclization DMBP (Fig. 5b,e) were mainly observed over MIL-100 

(Fe). This result may indicate a higher rate of consecutive annulation over MIL-100 (Fe) in 

comparison with Cu3(BTC)2 and may be connected with a higher acid strength of the former 

catalyst. Relatively higher amount of TMBF ( Fig. 5c,f) produced over Cu3(BTC)2 may also be 

caused by a lower rate of annulation producing substituted DMBP in comparison with the rate of 

thermally-induced rearrangement consuming it. 
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Figure 6.Selectivities to the products of annulation of phenol (A) and 2-naphthol (B) with MBO 

over MOFs at 16 % of substrate conversion. 

 

The preservation of the frameworks of the most active MIL-100(Fe) and Cu3(BTC)2 catalysts 

under the conditions of 2-naphthol annulation reaction was confirmed by means of XRD (Fig. 7). 

In particular, we observed neither the significant changes of the intensity of individual 

diffraction lines, attributed to the respective interplanar distances of MIL-100(Fe) and 

Cu3(BTC)2, nor their positions. 

10 20 30 40
 2, CuK

after catalytic run

before catalytic run

A

10 20 30 40
 2, CuK

after catalytic run

before catalytic run

B

 

Figure 7. XRD patterns of MIL-100(Fe) (A) and Cu3(BTC)2 (B) before and after annulation of 

2-naphthol with MBO (T = 80 °C, 1,2-dichloroethane as solvent). 

 

The heterogeneous character of the reaction was evidenced in special experiments for the 

most active samples, MIL-100(Fe) and Cu3(BTC)2. The respective catalysts were filtered off and 
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centrifugated after 120 min of reaction in 1,2-dichloroethane at 80 °C. At that time, MIL-100(Fe) 

and Cu3(BTC)2 achieved conversions of 2-naphthol about 30 and 25 %, respectively. Then, the 

filtrate without the catalyst was stirred at 80 °C for 1200 min. After removing the catalyst, 

further increase in the conversion of 2-naphthol (0.8 and 0.9 %, respectively) was negligible, 

providing evidence of heterogeneous catalysis (Fig. 8). 
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Figure 8. Leaching test of Fe
3+

 ions from MIL-100(Fe) (A) and Cu
2+

 ions from Cu3(BTC)2 

catalysts (B) under conditions of 2-naphthol annulation with MBO (T = 80 °C, 1,2-

dichloroethane as solvent, 3.0 mmol of 2-naphthol, 4.5 mmol of MBO, m (catalyst) = 0.2 g). 

Conclusions 

Catalytic behavior of Cu3(BTC)2, Fe(BTC), MIL-100(Fe), and MIL-100 (Cr) was investigated 

in annulation of phenol and 2-naphthol with 2-methyl-3-buten-2-ol and related with acidic and 

textural properties of the catalyst. The highest conversions of phenols (45 and 75 % after 1300 

min of TOS for phenol and 2-naphthol, respectively) and selectivity to target chromane (42 and 

56 % at 16 % conversion of phenol and 2-naphthol, respectively) were achieved over MIL-100 

(Fe) possessing intermediate Lewis acidity, perfect crystalline structure and highest SBET surface 

area. The highest acid strength of Lewis acid centers for MIL-100(Cr) was found to result in the 

dramatic decrease in the activity of the catalyst. While negligible conversion of phenols (2 and 7 

% after 1300 min of TOS for phenol and 2-naphthol, respectively) was found over Fe(BTC) 

characterized by low ordered framework with a limited confinement space for the formation of 

quite bulky intermediate. The highest activity as well as the preservation of the structure and the 

active centers of MIL-100(Fe) make this MOF a promising catalyst for annulation reaction. 
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