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Abstract The rejection of citrus fruit caused by infestations of the California red scale (CRS), Aonidiella aurantii 11 

(Maskell) (Hemiptera: Diaspididae), raises concerns about its management. This fact has led to the introduction of 12 

new integrated control methods in citrus orchards, including the implementation of techniques based on pheromones. 13 

Previous works described efficient mating disruption pheromone dispensers to control A. aurantii in the 14 

Mediterranean region. The main aims of the present study were to adjust the timing of dispenser applications and 15 

study the importance of controlling the early first generation of A. aurantii by testing two different application dates: 16 

before and after the first CRS male flight. The efficacy of the different mating disruption strategies was tested during 17 

2010 in an experimental orchard and these results were confirmed during 2011 in a commercial citrus farm. Results 18 

showed that every mating disruption strategy achieved significantly lower male captures in monitoring pheromone 19 

traps compared with untreated plots, as well as mean fruit infestation reductions of about 80%. The control of the 20 

first CRS generation is not essential for achieving a good efficacy as demonstrated in two locations with different 21 

pest pressure. The late application of MD dispensers before the second CRS male flight has proven to be effective, 22 

suggesting a new advantageous way to apply mating disruption.  23 

 24 

Keywords California Red Scale, Hemiptera: Diaspididae, pheromone, semiochemical, mesoporous dispenser, 25 

integrated pest management 26 

 27 
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Key Message 28 

Mating disruption (MD) of Aonidiella aurantii proved successful in citrus orchards. The importance of controlling 29 

the first generation of A. aurantii has been investigated by checking the efficacy of MD applied before and after the 30 

first generation. We concluded that the control of the first generation is not essential and the application of MD 31 

before the second male flight has proven to effectively reduce fruit infestation. This late deployment allows a 32 

reduction in the required quantity of pheromone, thus increasing the economic viability of MD in citrus crops. 33 

 34 
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Introduction 39 

Infestations of California red scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), pose a serious 40 

problem for citrus growers, as CRS may lead to a reduction in tree vigor and the downgrading or commercial 41 

rejection of fruits. The economic importance of this armored scale is due to its presence on the surface of the fruits, 42 

as a cosmetic damage, and the cost of the strategies needed to control it, even more intense in fresh citrus market.  43 

Since CRS control has been affected by the development of resistances to insecticides (Yust et al. 1943; Collins et al. 44 

1994; Grafton-Cardwell and Vehrs 1995; Levitin and Cohen 1998), the development and introduction of new 45 

integrated and biological control programs was essential for citrus crops. The use of mineral and vegetable oils 46 

(University of California 1991; Grafton-Cardwell and Reagan 1995; Rongai et al. 2008) and insect growth regulators 47 

(Yarom et al. 1988; Grout and Richards 1991a; Grafton-Cardwell et al. 2006; Eliahu et al. 2007; Rill et al. 2007) 48 

appeared as good alternatives to conventional pesticides. These products have provided good control results but they 49 

can be harmful to beneficial arthropods (Grafton-Cardwell and Gu 2003; Grafton-Cardwell et al. 2006; Desneux et 50 

al. 2007; Vanaclocha et al. 2013). The main enemies of CRS are species of the Aphytis parasitoids (Hymenoptera: 51 

Aphelinidae) (DeBach 1959; DeBach and Argyriou 1967). Specifically, Aphytis melinus (DeBach) is the most 52 

successful agent but the control of CRS by augmentative releases of this parasitoid is still under study in Spain 53 

(Sorribas et al. 2008; Pekas et al. 2010; Sorribas et al. 2012; Tena et al. 2013). Although in some regions the 54 

augmentative biocontrol of CRS through A. melinus has achieved good results (Avidov et al. 1970; McLaren and 55 

Buchanan 1973; Furness et al. 1983; Moreno and Luck 1992; Bedford 1996), the current cosmetic thresholds in 56 

citrus fresh fruit market makes the A. melinus success quite improbable in the short term. 57 

Integrated pest management programs include the implementation of control methods based on pheromones. Tashiro 58 

and Chambers (1967) demonstrated the production of a sex pheromone in CRS, whose chemical structures were 59 

reported by Roelofs et al. (1977), as 3-methyl-6-isopropenyl-9-decen-1-yl acetate and (Z)-3-methyl-6-isopropenyl-60 

3,9-decadien-1-yl acetate. Since then, synthetic sex pheromone traps have been widely employed as a detection and 61 

monitoring tool for CRS populations (Kennett and Hoffmann 1985; Moreno and Kennett 1985; Grout et al. 1989; 62 

Grout and Richards 1991b). The efficacy of mating disruption (MD) technique against CRS was not clearly 63 

demonstrated in the first experiments using rubber pheromone dispensers (Barzakay et al. 1986; Hefetz et al. 1988). 64 

However, by studying different pheromone doses, Vacas et al. (2009) described a new mesoporous dispenser capable 65 
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of interfering with normal A. aurantii chemical communication. The efficacy of these mesoporous dispensers was 66 

further verified, when CRS male catches and fruit infestation were significantly reduced by applying doses of about 67 

40 g pheromone/ ha for six months (Vacas et al. 2010). Moreover, the pheromone environment in MD-treated 68 

orchards resulted harmless for the performance of A. melinus in field and laboratory trials (Vacas et al. 2011; 69 

Vanaclocha et al. 2012). By means of all these studies, it was found that CRS mating disruption achieved control at 70 

least equal to conventional oil sprays, providing growers with an advantageous control tool. It is commonly known 71 

that oil sprays need careful planning and application for a satisfactory control level. On the other hand, the 72 

deployment of MD dispensers does not need replacement or qualified hand-labor, and only a minimum flight 73 

monitoring is needed to determine the moment of application; all these are important advantages to take into account. 74 

However, research had shown the need for additional trials to adjust the timing of dispenser application to cover all 75 

the CRS generational cycles. In Spain CRS shows between three and four complete generations with four male 76 

flights; the first taking place from mid-April to mid-May, the second from mid-June to mid-July, the third from end-77 

August to September and a late fourth flight during October-beginning of November. Following this dynamic, if all 78 

the generations must be affected, mating disruption should be maintained for eight months what would mean a large 79 

amount of pheromone, making this control method unaffordable. However, several authors have stated that the first 80 

flight of A. aurantii males is not correlated with fruit infestation and abundance of the following flights (Moreno and 81 

Kennett 1985; Hernández-Penadés et al. 2002; Campos-Rivela et al. 2012). Thus, the importance of controlling the 82 

early first generation of A. aurantii has been investigated and the efficacy of MD applied before and after the 83 

development of the CRS first generation has been examined both in small plots and in a commercial large size 84 

orchard. 85 

 86 

Materials and Methods 87 

Mesoporous dispenser and device 88 

The pheromone dispensers applied in the mating disruption (MD) treatments are based on the technology of 89 

inorganic molecular sieves (Corma et al. 1999, 2000). Pheromone is impregnated in a natural clay mineral matrix 90 

called sepiolite. Its structure, with a high specific surface area, confers to the dispenser good properties for the 91 

adsorption and release of organic molecules. Besides the pheromone, formulations include different additives to give 92 
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consistency and protect the dispenser against humidity. The impregnated material is then compressed in a cylindrical 93 

mold by means of a hydraulic press. The manufacturing process has been licensed to Ecologia y Protección Agrícola 94 

S.L. (Valencia, Spain) who manufactured the dispensers for these trials. Currently, these MD dispensers are 95 

commercialized since 2013 by Syngenta Agro (Madrid, Spain) under the name Dardo
®
.  96 

Dispensers contained 70 mg (a.i.) of the CRS sex pheromone as the diastereomeric mixture (3S,6R and 3S,6S) of the 97 

3-methyl-6-isopropenyl-9-decen-1-yl acetate with 75% chemical purity; the remaining 25% belongs to the by-98 

product 3-methyl-6-isopropylidene-9-decen-1-yl acetate, without pheromonal activity. Dispensers were attached to 99 

tree branches inside polypropylene baskets 50 mm wide and 90 mm long with a hanger at the top (Ecología y 100 

Protección Agrícola SL, Valencia, Spain). Pheromone is released through the 6 × 5 mm grid walls of the basket. 101 

 102 

Experimental design - Trial 2010 103 

The field trial was conducted in a 3 ha mandarin (Citrus reticulata × sinensis; var. Ortanique) experimental orchard 104 

located in Denia (Alicante, Spain; UTM: X243500 Y4303900) under Mediterranean climate conditions (mean 105 

temperature = 19.9ºC, mean relative humidity = 71.2%). Trees were 20 years-old and spaced 6 m by 4 m. The trial 106 

was designed with 11 plots: nine plots of 0.3 ha alternately arranged to test three different procedures for the 107 

application of mating disruption and two plots of 0.1 ha as reference untreated plots. Pheromone treated plots were at 108 

least 50 m apart, whereas untreated plots were separated 60 m from any MD plot. Pheromone dispensers were 109 

applied on 29
 
March 2010 in three plots before the appearance of the first CRS flight (MD-I treatment). Another 110 

three plots had dispenser application on 28 May 2010, before the CRS second flight (MD-II treatment). Timings of 111 

dispensers’ deployment were determined according to general population dynamics in the study area and degree-day 112 

accumulation (DD = [(Tmax + Tmin)/2] − Tcritical; being Tcritical = 11.7ºC) (Kennet and Hoffmann 1985). Finally, the 113 

combination of MD-II application with an oil treatment against nymphs of the first generation was tested in another 114 

three plots (MD-II + Oil), where dispensers were also placed on 28 May 2010 and oil treatments were applied on 28 115 

May in only these three plots. Pheromone dispensers in every plot were placed at a density of one per tree (420 116 

dispensers ha
-1

) and were not replaced during the experiment. 117 

 118 

Experimental design - Trial 2011 119 
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A new field trial was conducted in a commercial citrus farm, with larger plots, to confirm the result obtained in the 120 

previous trial 2010. MD timings were tested in a 10 ha orange (Citrus sinensis Osbeck, var. Navelina) orchard 121 

located in Nerva (Huelva, Spain; UTM: X717288 Y4177107) under semi-continental climate conditions (mean 122 

temperature = 21.6ºC, mean relative humidity = 56.6%). Trees were 25 years-old and spaced 7 m by 3.5 m. In this 123 

case, plots with the same MD timing were contiguous as mating disruption is more efficient when applied in large 124 

areas. Thus, pheromone dispensers were applied on 7 April 2011 in a whole 1 ha as MD-I treatment, while for MD-II 125 

treatment, 1.5 ha had dispenser application on 6 June 2011. Timings were determined according to population 126 

dynamics and degree-day accumulation. MD pheromone dispensers in both strategies were placed at a density of 410 127 

dispensers ha
-1

 and were not replaced during the experiment. A third 0.3 ha plot was left without treatments as 128 

untreated plot, which was 100 m apart from the pheromone treated areas. 129 

 130 

Oil sprays 131 

Given that fruit infestation was over 20% in the previous season, oil treatments in the corresponding plots were timed 132 

for the presence of crawlers, which were monitored according to the sampling method suggested by the Valencian 133 

regional IPM programme (DOCV 2008). A total of 25 infested branches (2–3 years old) were randomly sampled 134 

each week from the date of the first flight and taken to the laboratory. Leaves and twigs were removed from the 135 

branches and cut into 10 cm long pieces. Using a binocular scope, a total of 100 live scales were identified as first, 136 

second and third instars, adult females, and adult females with crawlers. The oil treatment was applied when first and 137 

second instars represented 70% of live scales and more than 90% of adult females had crawlers. Paraffinic oil (15 g l
-138 

1
) (Argenfrut RV; GulfOil Argentina SA, Argentina) applications were made with an airblast sprayer calibrated to 139 

deliver 3500 l ha
-1

 at 150 psi with the tractor driven at 1.55 km h
-1

. 140 

 141 

Evaluation of treatment efficacy 142 

The efficacy of the different strategies was evaluated according to the CRS male flight inhibition and the fruit 143 

infestation assessment. Both parameters were studied in the center of each plot to avoid possible edge effects due to 144 

pheromone drift between contiguous treated areas, as buffer areas are considered to be 15 m from the plot borders 145 

(Vacas et al. 2009). One commercial white sticky pheromone trap (Pherocon® V Trap; Trécé Inc., Adair, OK) was 146 

placed in the center of each plot in Trial 2010 to compare male catches between the different control strategies. In the 147 
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case of Trial 2011, captures where also evaluated in triplicate, as in the center of three subplots within each above 148 

described area. All the monitoring traps were revised every 7 or 15 days, from April to November, and the recorded 149 

captures in each trap were divided by the corresponding number of days (7 or 15) to obtain the number of males 150 

captured per trap and day (MTD). Pherocon® monitoring lures (Trécé Inc., Adair, OK), loaded with 250 μg sex 151 

pheromone, were replaced every 42 days.  152 

To measure the inhibition of male catches that occurred in pheromone-treated plots, the mating disruption index 153 

(MDI) for each strategy was calculated as an indicator of the treatment efficacy using the following formula: MDI = 154 

(1-(x/y)) × 100, where x is the number of males captured in MD plots and y is the number of males captured in 155 

untreated plots. 156 

Fruit were evaluated for scale infestation of Ortanique mandarins on 21 September 2010 and 29 September 2011 in 157 

Navelina oranges. Forty fruit per tree (10 fruit per direction: north, east, south and west) were evaluated on trees 158 

located on the center of each plot (250-300 fruits/ha) in Trial 2010 and in the center of three subplots within each 159 

area in Trial 2011 (250-300 fruits/ha). A fruit was considered to be scale-infested when it had more than three scales 160 

on its surface, as suggested by the treatment threshold published in the Valencian regional IPM guidelines (DOCV 161 

2008). The percentage of fruit with more than 10 scales was also recorded to perform a sensitivity analysis. 162 

 163 

Field data analysis 164 

Generalized linear model (GLM) techniques assuming negative-binomial error variance were employed to compare 165 

the number of CRS males captured in the different treated plots. Models were constructed with MTD data as the 166 

dependent variable and treatment, time (week of the study period) and their interaction as the explanatory variables. 167 

Given that the MD-II application of dispensers was not carried out until 28 May in Trial 2010 and 6 June in Trial 168 

2011, we constructed different models for data from the first male flight and data from the rest of flights (second and 169 

third). In this way, we evaluate the initial disruption level in MD-I plots during the first flight when MD-II was not 170 

yet installed (from April to beginning of June), and also the significance of the male captures inhibition during the 171 

second and third flights (from mid-June to October) for both trials. 172 

The significance of the explanatory variables was assessed by backward elimination from the model. When 173 

significant effects were found, the glht function in the multcomp package (Hothorn et al. 2008) was used to perform 174 

Tukey HSD tests for post-hoc pairwise comparisons.  175 
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Likewise, we used GLM techniques assuming negative-binomial error variance to assess scale-infestation differences 176 

between the different treatments. For both trials, models were constructed with the percentages of scale-infested fruit 177 

in the trees inspected at the end of the trial as the dependent variable and treatment as the explanatory variable. 178 

All statistical analyses were conducted with R (R Development Core Team 2012). 179 

 180 

Pheromone release profile 181 

The pheromone release profile of the mesoporous dispensers was studied during the trials. Additional dispensers 182 

were aged under field conditions in a nearby area, 500 m away from trial orchard, in order to extract their residual 183 

pheromone content at different aging times (from 0 to 250 days of field exposure). Three dispensers were taken per 184 

aging time, to be extracted at 40ºC for 2 h, with magnetic agitation, in 15 ml of dichloromethane/methanol (2/3, v/v) 185 

as solvent. After 1 h of extraction, 0.5 ml of the internal standard 1-dodecanol (20 mg ml
-1

) were added to the 186 

extracts. The extracts were centrifuged (3000 rpm for 8 min) and then filtered with syringe filters before 187 

chromatographic analysis. Pheromone was then quantified by gas chromatography with flame ionization detector 188 

(GC/FID; Clarus® 500 gas chromatograph; PerkinElmer Inc., Wellesley, MA). All injections were made onto a ZB-189 

5ms (30 × 0.25 mm × 0.25 μm) column (Phenomenex Inc., Torrance, CA), held at 160ºC for 5 min, and then 190 

programmed at 2ºC min
-1

 up to 180ºC, where it was held for 1 min, and then programmed at 45ºC min
-1

 up to 250ºC. 191 

The carrier gas was helium at 1.2 ml min
-1

. The pheromone amount was estimated by means of a calibration curve 192 

which was previously built by preparing standard solutions with the following concentrations: 10.0, 5.0, 2.0, 1.0 and 193 

0.4 mg ml
-1

 of pheromone and 1 mg ml
-1

 of the internal standard. Calibration curve was described by the equation y 194 

= a + bx, where y is the FID peak area ratio of the pheromone and the internal standard (areaph/areaIS) and x is the 195 

known amount of pheromone. 196 

Simple regression was used to determine the evolution of the residual pheromone load (mg) according to ageing time 197 

for the dispenser employed. The quantified residual pheromone contents were employed in a polynomial regression 198 

as the dependent variable, to study the significance of the linear and quadratic effect of time (days and days
2
) on 199 

pheromone emission and check whether the pheromone emission was constant during the time under study. In this 200 

case, the residual pheromone load decrease at a constant level and the mean emission rate is given by the slope of the 201 

fitted linear model. Statgraphics Centurion XVI v16.1 software (StatPoint Technologies Inc., Warrenton, VA) was 202 

used for these analyses. 203 
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 204 

Results 205 

Trial 2010 206 

Population dynamics of A. aurantii in the area of Denia can be observed by the data obtained with traps located in 207 

the untreated plots (Fig. 1). The first flight took place during May with a maximum of 6.93 CRS males per trap and 208 

day (MTD). The second flight began at the end of June with the maximum number of males captured in mid-July. 209 

Male captures of A. aurantii increased from the first week of August. They reached a maximum on 31 August and 210 

began to decrease slowly up to the beginning of November, when only 0.4 MTD were registered in the untreated 211 

plots. 212 

Male catches in plots treated with pheromone remained low throughout the entire season, and only slight peaks were 213 

registered according with the three described male flights (Fig. 1). The effect of time factor on male catches during 214 

the first flight was statistically significant (F1,16= 5.30, P = 0.035) according to the natural population dynamics. Yet 215 

more crucial, the treatment applied significantly affected male captures (F3,16= 6.67, P = 0.004) as follows. When 216 

first flight was taking place (April to beginning of June), MD was already installed on MD-I plots and captures were 217 

94.2% inhibited relative to the untreated plots (P < 0.001). Meanwhile, MD was not yet established in MD-II 218 

strategies but mean initial population levels were lower compared to the untreated plots although not significantly 219 

different (MD-II: P = 0.226; MD-II + Oil: P = 0.310) (Tukey test; adjusted P values with single step method). 220 

Considering, catches from the most abundant flights (mid-June to October), time factor resulted statistically 221 

significant (F7,75= 27.89, P < 0.001), as well as the effect of treatment (F3,75= 84.75, P < 0.001). Compared to the 222 

untreated, male catches were significantly lower in the MD-I, MD-II and MD-II + Oil plots (P < 0.001). Thus, 223 

communication disruption occurred during this period with the three tested mating disruption strategies, resulting in 224 

average male flight inhibitions of 81.5% with the MD-I timing, 87.7% in plots with MD-II and 88.9% with the 225 

combined strategy MD-II + Oil (without significant differences among them, P > 0.2). 226 

Regarding fruit damage assessment, 31% of fruit were scale-infested with more than three scales on the surface when 227 

no treatment was applied in the orchard (untreated plot in Fig. 2). Results of every MD treatment differed 228 

significantly from the absence of treatments for both infestation levels recorded (more than three scales: F3,76= 20.98, 229 

P < 0.001; more than 10 scales: F3,76= 22.97, P < 0.001). All of the mating disruption deployments achieved a 230 

reduction in scale-infested fruit compared to the untreated plot: 81% damage reduction for MD-I (P = 0.006); 95% 231 
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for MD-II; and 96% by the combination MD-II + Oil (P < 0.001). Although CRS fruit infestation was significantly 232 

reduced by MD-I application, it differed significantly from the MD-II timing (P = 0.003) and MD-II + Oil strategy (P 233 

< 0.001) (Fig. 2). Fruit infestation observed in MD-I plots did not exceed 6%, whereas less than 1.5% of fruit was 234 

found to be scale-infested in the MD-II plots. 235 

 236 

Trial 2011 237 

The male population level was significantly higher in Nerva regarding to level of captures obtained in Denia (F1,7= 238 

9.19, P = 0.02). In the area of Nerva, the first male flight peaked during April and the first weeks of May (Fig. 3) 239 

with a maximum of 16.57 MTD in the untreated plot. The first catches belonging to the second flight were obtained 240 

on 22 June, while the third flight peaked on 31 August. 241 

Male catches in plots treated with pheromone remained low throughout the entire season with statistical differences 242 

regarding to the untreated plot (Fig. 3). Time had a significant effect on catches during the entire period of study 243 

(first flight: F9,18= 21.78, P < 0.001; rest of flights: F18,36= 9.05, P < 0.001), according to natural population 244 

dynamics. The effect of treatment factor was significant (first flight: F2,18= 64.66, P < 0.001; rest of flights: F2,36= 245 

248.55, P < 0.001). Considering catches from the first flight, MD-I achieved a significant mean male flight reduction 246 

(P < 0.001) of 97.3% relative to the control. Given that MD-II was not yet installed when the first flight took place, 247 

mean male captures during April and May in MD-II plots were significantly higher compared to MD-I (P < 0.001). 248 

When multiple comparison was performed with data from the most abundant flights (July-October), CRS male 249 

captures were 96.2% and 99.1% reduced, relative to control, with MD-I and MD-II respectively (with significant 250 

differences between MD strategies, P < 0.001). 251 

Damage assessment revealed that pheromone treatments had a significant effect on CRS fruit infestation (more than 252 

three scales: F2,67= 27.16, P < 0.001; more than 10 scales: F2,67= 16.33, P < 0.001). Damage was significantly lower 253 

in both pheromone treated plots, regarding to the untreated which had 55% fruit with more than three scales (P < 254 

0.001). The percentage of fruit with more than three scales was 71.8% reduced with MD-I treatment, while this 255 

reduction achieved 82.7% with the MD-II application, although they were not significantly different (P = 0.145) 256 

(Fig. 4). 257 

 258 

Pheromone release profile 259 
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Pheromone release profile of mesoporous dispensers is depicted in Fig. 5. The complete model was fitted to an 260 

exponential model (solid line in Fig. 5, equation 1) resulting in R
2 
= 0.95. 261 

y = 71.322 × e
-0.008x

   (equation 1) 262 

However, statistical analysis showed that the curvature of this model was due to data from the last three months of 263 

the dispenser life-span. Polynomial regression of data from 0 to 154 days of aging (end March to August), evaluated 264 

the significance of the quadratic (days
2
) and linear (days) effects of time and confirmed the absence of curvature 265 

(quadratic effect not significant: P = 0.31; linear effect: P < 0.001). Thus, the release profile was fitted to the line 266 

given by equation 2 (discontinuous line in Fig. 5), resulting R
2 
= 0.99. This means that emission of mesoporous 267 

dispensers is assumed to be constant from 0 to 154 days (until August), and the mean release rate given by the slope 268 

of the linear model is 334 µg day
-1

. From this date on, emission level decreased below 100 µg day
-1

 during the last 269 

months of field exposure. 270 

y = 70.241 - 0.334x   (equation 2) 271 

 272 

Discussion 273 

The efficacy of the mating disruption technique against CRS infestations was previously demonstrated by Vacas and 274 

coworkers (Vacas et al. 2009; Vacas et al. 2010; Vacas et al. 2011); nevertheless, timing of dispensers’ deployment 275 

needed to be adjusted for an optimal practical application. In the present work, the efficacy of the late application of 276 

MD dispensers, before the second CRS male flight (MD-II), has been demonstrated in two trials carried out in 2010 277 

and 2011, in two different locations of Spain, with different climates, male population levels and citrus varieties.  278 

CRS is able to develop from three to five generations per year, mainly influenced by temperature (Kennett and 279 

Hoffmann 1985; Grout et al. 1989). Under the climatic conditions of Spanish citrus areas, CRS shows three complete 280 

generations and a possible fourth generation in some areas and during warmer autumns. Generally, the first male 281 

flight takes place between mid-April and mid-May, and is usually not too abundant. In the present work, the 282 

importance of controlling the first generation of A. aurantii was investigated in 2010 by the application of mating 283 

disruption at two different times of deployment: before (MD-I) and after (MD-II) the occurrence of the first male 284 

flight. According to CRS male flight monitoring in trial 2010, the first flight was significantly inhibited in MD-I 285 

plots. Once MD was also installed in MD-II and MD-II + Oil plots, catches were maintained at low levels throughout 286 

the study and both MD timings achieved more than 80% reduction of CRS male catches. This disorientation effect 287 
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was confirmed in trial 2011 in larger commercial plots with higher male population levels, where both MD strategies 288 

achieved mean flight inhibition of about 97%. 289 

In the trial carried out in 2010, the scale-infestation assessment revealed that the MD-II results were significantly 290 

better than the MD-I strategy, despite reducing damage by around 80%. This could be explained by the release 291 

profile and life-span of the pheromone dispensers. According to the results, flight inhibition in MD-I plots was not 292 

significantly different from MD-II plots during the third flight but MD-II achieved significantly greater reduction of 293 

fruit infestation. Extraction and quantification of the pheromone remaining in the aged dispensers showed that 294 

release rate was constant for five months and equal to 334 µg day
-1

, and thereafter it decreased. This reduction in 295 

release rate is not due to climate factors but to dispenser formulation itself. The release profile of this kind of 296 

dispensers is highly temperature independent (Domínguez-Ruiz et al. 2008) and release rate is lower as closer the 297 

pheromone load to the residual content that remains retained in the dispenser. If the mesoporous dispensers are 298 

applied in March (MD-I), this five month period with proper pheromone emission would protect the crop only until 299 

the end of August, without covering the entire third flight of CRS males. Mean pheromone emission during 300 

September in MD-I plots was 130 µg day
-1

, clearly under the optimum release level of 250 µg day
-1

 suggested by 301 

Vacas et al. (2009). We think that this lower emission rate could still have a disorientation effect of males towards 302 

traps, but could be insufficient to disrupt the short-range attraction and mating of males. It has been described for 303 

moth pests that the amount of pheromone needed to disrupt male orientation to traps is lower than the amount needed 304 

to disrupt mating (Ioratti et al. 2011). In this way, when dispensers are applied on May (MD-II), pheromone emission 305 

is maintained at suitable levels to protect the crop against the entire third flight. 306 

The present work confirms that the late deployment of dispensers is at least as efficient as the deployment before the 307 

first flight. Therefore, it has been observed with different infestation levels that the control of the CRS first 308 

generation is not crucial and damage can be controlled by establishing MD before the second flight with mesoporous 309 

dispensers releasing 334 µg day
-1

 constantly for at least five months. This could be related with the fact highlighted 310 

by several authors who stated that the first flight is not correlated with the abundance of the following flights 311 

(Moreno and Kennett 1985; Hernández-Penadés et al. 2002; Campos-Rivela et al. 2012). Thus, the first flight is not a 312 

good predictor of infestation later in the season, probably because survival and activity of the first generation is 313 

highly affected by more unstable weather conditions. However, mating disruption of the first emerging moths is 314 

crucial for the development of the subsequent generations throughout the season in Lepidoptera species. Several 315 
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authors demonstrated that early pheromone applications prevent mid-season increases in Lepidoptera populations 316 

(Staten et al. 1987; Kehat et al. 1995; Lykouressis et al. 2005); these populations being responsible for high yield 317 

losses. By contrast, we have observed that the control of the first CRS generation is not so essential for achieving a 318 

good efficacy. Moreover, this first generation does not usually colonize the fruit and the second annual crawler 319 

generation, which takes place in the summer, is generally considered to be mainly responsible for the infestation of 320 

fruit (Rodrigo et al. 2004). 321 

It has been demonstrated that the late application of dispensers allows a reduction in the required quantity of 322 

pheromone, thus increasing the economic viability of CRS mating disruption. Currently, available dispensers are not 323 

able to release pheromone at a suitable level during all the CRS male flights. The development of pheromone 324 

dispensers with higher load and longer lifespan would not be cost-effective, as the current cost of pheromone 325 

synthesis is a limiting factor for MD implementation. At the moment, pheromone represents about 90% of the value 326 

of the dispenser (Ecología y Protección Agrícola, pers. comm.) and this technique is already in the upper limit of the 327 

costs affordable by the growers (300 € ha
-1

 for the MD treatment vs. 200-250 € ha
-1

 for two oil sprays). Therefore, 328 

with the dispensers available in the market, the recommended strategy will be the application of mating disruption 329 

before the second CRS male flight. 330 
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Fig. 1 Population dynamics of Aonidiella aurantii in trial 2010 (Alicante, Spain), shown as males per trap per day 456 

(MTD) captured on the different plots: dispenser application before the first CRS male flight (MD-I), application 457 

before the second flight (MD-II), the combination of MD-II application with an oil treatment, and the untreated plots. 458 

Black arrow indicates dispenser application in MD-I strategy (29
 
March 2010).The grey arrow points out pheromone 459 

application in MD-II strategy (28 May 2010) and oil application in the May+Oil plots. 460 

 461 

 462 

 463 

Fig. 2 Mean percentage of scale-infested fruits observed in the different plots of trial 2010: untreated, MD-I, MD-II 464 

and the combination of MD-II with oil spray. Bars labeled with the same letter do not differ significantly (Tukey 465 

HSD tests, P > 0.05). 466 

 467 

 468 

 469 

Fig. 3 Population dynamics of Aonidiella aurantii in trial 2011 (Huelva, Spain), shown as males per trap per day 470 

(MTD) captured on the different plots: dispenser application before the first CRS male flight (MD-I), application 471 
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before the second flight (MD-II) and the untreated plot. Black arrow indicates dispenser application in MD-I strategy 472 

(7 April 2011) and the grey arrow points out pheromone application in MD-II strategy (6 June 2011). 473 

 474 

 475 

 476 

Fig. 4 Mean percentage of scale-infested fruits observed in the different plots of trial 2011: MD-I, MD-II and the 477 

untreated plot. Bars labeled with the same letter do not differ significantly (Tukey HSD tests, P > 0.05). 478 

 479 

 480 

 481 

Fig. 5 Evolution of the remaining load of pheromone (mg) on the mesoporous dispensers versus time (days in 482 

orchard). The complete release profile was fitted to an exponential model (equation 1, R
2 

= 0.95), although 483 

pheromone release rate was constant until 154 days of field exposure and fitted a linear model (equation 2, R
2 
= 484 

0.99). The x-axis represents the dates corresponding to ageing time. 485 
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