

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7371966&tag=1

http://hdl.handle.net/10251/65596

IEEE Computer Society - Conference Publishing Services (CPS)

Espinosa Garcia, J.; Gil, P.; Andrés Martínez, DD. (2015). Increasing the Dependability of
VLSI Systems Through Early Detection of Fugacious Faults. 11th European Dependable
Computing Conference (EDCC 2015). IEEE Computer Society - Conference Publishing
Services (CPS). doi:10.1109/EDCC.2015.13.

Increasing the Dependability of VLSI Systems
Through Early Detection of Fugacious Faults

Jaime Espinosa, David de Andrés, and Pedro Gil
Fault-Tolerant Systems Group (GSTF), Instituto de Aplicaciones de las TIC Avanzadas (ITACA)

Universitat Politècnica de València (UPV), Campus de Vera s/n, 46022, Valencia, Spain
Phone: +34 96 3877007 Ext {75774, 75752, 79707}, Fax: +34 96 3877579

Email: {jaiesgar, ddandres, pgil}@disca.upv.es

Abstract—Technology advances provide a myriad of advan-
tages for VLSI systems, but also increase the sensitivity of the
combinational logic to different fault profiles. Shorter and shorter
faults which up to date had been filtered, named as fugacious
faults, require new attention as they are considered a feasible sign
of warning prior to potential failures. Despite their increasing
impact on modern VLSI systems, such faults are not largely
considered today by the safety industry. Their early detection
is however critical to enable an early evaluation of potential
risks for the system and the subsequent deployment of suitable
failure avoidance mechanisms. For instance, the early detection
of fugacious faults will provide the necessary means to extend
the mission time of a system thanks to the temporal avoidance
of aging effects. Because classical detection mechanisms are not
suited to cope with such fugacious faults, this paper proposes
a method specifically designed to detect and diagnose them.
Reported experiments will show the feasibility and interest of
the proposal.

Keywords: Fugacious faults; Fault detection; Fault diagno-
sis

I. INTRODUCTION

In recent years, manufacturing capabilities have been
evolving at a fast pace, bringing a new breadth of improve-
ments to embedded systems in terms of logic density, pro-
cessing speed and power consumption. However, those same
benefits also become threats to the dependability of systems by
causing higher temperatures, shorter timing budgets and lower
noise margins, decreasing the probability of manufacturing
defect-free devices, and increasing the likelihood of failures
originated by wear-out.

Examples of such threats include, among others, i) the
growing susceptibility to α-particles and neutrons arriving
from outer space or radioactive materials, yielding a non-
negligible degree of so called soft errors [1], ii) the noise
affecting power supply lines which creates unexpected delays
in critical paths [2], and iii) the Electromagnetic Interference
(EMI), which can be inserted in the system over the air or
through wires [3]. With increasing miniaturisation scales, a
lesser amount of energy is required for an upset to reach the
voltage threshold of the technology and generate a transient
fault and, for the same amount of energy, those faults are
shorter in duration [4]. New fabrication techniques such as
silicon-on-insulator (SOI) follow this trend, with pulse widths
decreasing from 250ps for 250nm feature sizes to 110ps for
100nm [5]. In the same way, the steady shrinking of voltage
thresholds and the dramatic increase of speed have allowed

for the propagation of shorter and shorter transient faults. For
instance, the minimum pulse width required for propagating a
transient fault in SOI has been reduced from 105ps for 350nm
to a 40ps for 100nm sizes [5]. Finally, in high frequency
systems the occurrence of transient upsets increases linearly
with the frequency [6]. Altogether, these facts raise concern
on the growing numbers and variety of faults next generation
systems must face effectively.

Research in the field has focused mainly on fault tolerance
[7], i.e. preventing the system from failing via error detection
(identifying the presence of an error) and system recovery
(transforming the system state into one without errors and
without faults that can be activated again). In order to be
effective, existing techniques usually require errors to manifest
in the state of the system, commonly represented by the
contents of its sequential logic. However, deep integration
scales are causing an increasing number of transient faults
with shorter and shorter activation times (with regards to the
clock period), known as fugacious faults [8], to be missed
as they are not affecting the state of the system (they are
not captured by the sequential logic). Although this is the
expected behaviour of common fault tolerance mechanisms,
the occurrence of fugacious faults is an excellent indicator
of harsh environments, wear-out conditions, ageing, extreme
temperatures, etc., which may finally lead to a system failure.
If such faults are properly detected and diagnosed it could
be possible for the system to face new operating conditions,
effectively adapting its hardware and software towards new
intrinsic or extrinsic demands, even enabling a forecast on
future fault impact rates.

Some illustrative examples of the usefulness of an early
detection and diagnosis of such fugacious faults include i) a
satellite suddenly crossing a high radiation level area, which
may trigger a reconfiguration process to increase the system
redundancy before the radiation level is high enough to cause
a failure, ii) an intentional EMI attack to break secrecy in
an encryption core, allowing to change data codification or
deploy any other countermeasures, or iii) an ageing problem
in a braking control system of a train, which could well
raise service alarms before total loss of control. Accordingly,
the proper detection and diagnosis of fugacious faults may
provide valuable information when taking decisions for the
reconfiguration/evolution of the system to keep or improve its
safety. If faults are missed, or even detected too late, they could
well cause safety hazards, financial losses, or profit drop.

Previous studies devoted specifically to detect and diagnose

inputs

internal1

internal2

internal3

outputs_r

 T

t << T t << T t << T

t << T

t > T

A B

Fugacious_intermittent

AoutPrev

Fugacious transient

Non-fugacious

clk

Fig. 1. Characterisation of fugacious faults

fugacious faults are scarce or non-existent. Some works have
mainly focused on characterising transient faults caused by
radiation along different technologies [9]. However, they do not
deal with their detection and diagnosis in working circuits. To
this end, certain known detection techniques could be applied
to fugacious faults with limited success [10], since only a
reduced period of time (with respect to the clock period) is
monitored. Hence, new detection capabilities are key to tackle
the ever-changing profile of faults as technology advances.

A first step towards this goal was presented at [11], but
this paper greatly extends that work by presenting a novel
architecture and methodology for the detection and diagnosis
of fugacious faults, which may be later used to trigger the
system reconfiguration, to keep or improve its dependability,
based on fault forecasting.

The rest of the paper is structured as follows. Section
II defines the proposed fault models for characterising fu-
gacious faults. Section III introduces the novel architecture
and methodology to provide early detection and diagnosis of
fugacious faults. The selected case study to show the feasibility
of the proposed approach is detailed in Section V, whereas the
obtained results are commented in Section VI. Finally, Section
VII concludes the paper and presents some ideas for future
research.

II. FUGACIOUS FAULT MODELS

Faults are commonly classified according to their persis-
tence [7] divided then into permanent faults, whose presence
is continuous in time, and transient faults, whose presence is
bounded in time. With new integration scales, the classification
of transient faults was refined to characterise the particular
behaviour of a new kind of faults, the so called intermittent
faults. They account for transient faults that are repeated in
the same area in a short period of time and due to the same
cause [12]. Whether the final nature of a fault is transient or
intermittent will depend on several factors, namely wear-out
condition, ageing, extreme temperatures, etc.

This classical categorisation of faults required a further
specialisation to account for the particular behaviour of more

frequent and shorter faults induced by increasing integration
scales. Accordingly, we propose a refinement of that classifi-
cation for the characterisation of fugacious faults. It must be
noted that the prime characteristic of a fugacious fault is its
short duration, that may prevent the fault from being captured
by sequential elements. That is why, the system clock cycle is
taken as a reference for defining the models of fugacious faults.
As such, faults with the same duration could be considered as
fugacious or not depending on the system operation frequency.
Figure 1 illustrates the proposed fugacious fault models.

Transient fugacious faults are those with a duration shorter
than a system clock cycle and that occur just once during that
clock cycle. Likewise, intermittent fugacious faults also had a
duration shorter than a system clock cycle but, on the other
hand, they appear more than once within the same clock cycle.
As there could exist different activation patterns (number of
pulses in a burst, duration of each pulse, and interval between
pairs of pulses), this definition enables the characterisation of
all the different possibilities under a common term.

Finally, those faults with a duration longer than a clock
cycle are considered as non-fugacious from the perspective of
fugacious faults. Being the scope of fugacious faults limited
to the current clock cycle, it is not possible to determine
the exact nature of the fault within that clock cycle, but it
is necessary to observe the behaviour of the signal along
consecutive clock cycles. That is why, from the perspective
of fugacious faults, a very long pulse will be considered as a
non-fugacious fault, which could be classified as a transient,
intermittent or permanent fault from a higher level perspective.

Such differentiated activation patterns require tailored fault
detection and diagnosis strategies for fugacious faults, as
commonly used mechanisms rely on faults being captured by
sequential logic to be detected. Due to the quickly ’evanescent’
nature of fugacious faults, the latency of proposed mechanisms
should be really low and, what is more, they should be able
to detect two or more faults per clock cycle in order to
discriminate intermittent from transient activations.

out out

in in

start

end Logic Logic

Parity

predictor

b l

ɸstart

ɸend

parity
upset

1

upset

2+
ɸend

ɸhalf

l

b

Line equaliser

Bus equaliser

Original circuit

Detection block

ɸpar

F(ɸhalf,ɸstart,ɸend)

Parity

error

Diagnosis block

ɸ

ɸ

ɸ

ɸend

ɸstart

ɸhalf

c Clock equaliser

Error

encoder

c
ɸparity

F (ɸhalf,ɸstart,ɸend)

Fig. 2. Low level schematic implementation of the proposed detection and diagnosis architecture

III. NOVEL ARCHITECTURE FOR DETECTING AND
DIAGNOSING FUGACIOUS FAULTS

Many commercial systems make use of hardware replica-
tion and comparison, at the expense of greatly increasing the
area taken by the circuit and reducing its clock frequency, to
mitigate the effect of faults in the system [13]. Nevertheless,
for detection and diagnosis, lighter and cheaper techniques
would enable the deployment of detection schemes to a larger
number of partitions spread around the system, while relying
on failure suspectors to trigger reconfiguration strategies to
prevent further faults from affecting the circuit. Next sections
will show a high- and low-level view of the proposed archi-
tecture.

A high-level perspective of the architecture could be
roughly described as an error detection code system, which
runs in a timing controlled framework to provide inputs to
tailored diagnosis infrastructure. Careful selection of such code
can provide a number of advantages and literature on the field
has been analysed. Systematic codes, like Berger codes and
parity groups, are very interesting as the original bits are not
altered, which alleviates the decoding of outputs in the original
datapath. Equally important, conditions for fault security in
parity predictors (outputs are either correct or form an invalid
code word) were derived in [14], and a generic optimisation
technique for parity prediction functions to achieve fast and
small circuits was presented in [15].

Accordingly, a detailed low level view of the proposed
architecture is depicted in Figure 2. The original circuit, com-
prising input and output registers and combinational logic, is
highlighted in a diagonal patterned background. The detection
block, comprising the encoder or parity predictor, the decoder
or parity error, the detection auxiliary registers and the timing
processing elements (for bus, line and clock), is shown in
plain white background. Finally, the diagnosis block which
consists of a fault tolerant encoder is depicted in vertical
lines background. Interconnection double lines represent dual
rail encoding to detect the occurrence of single faults in the
detection block, as valid data should be either (‘0’, ‘1’) or (‘1’,
‘0’).

The detection block receives its inputs directly from par-
tition input registers and from computed outputs just prior to
registering. In first place, a parity predictor is in charge of gen-
erating the expected output parity code from registered inputs.
This parity code is then stored in the parity auxiliary register
on the φparity clock edge. Particularly tailored codifications
could reduce block area and optimise speed, on a case per
case basis.

In order to detect both transient (one pulse within one clock
cycle) and intermittent (more than one pulse within one clock
cycle) fugacious faults, it is necessary to continuously monitor
computed outputs prior registering. However, it is not possible
to monitor those outputs during the whole clock cycle, since
they intermittently switch as the inputs are propagated through
logic elements. The monitoring process can take place once
computed outputs are stable. Accordingly, just a small fraction
of the whole clock cycle could be monitored for fault detection
by using this approach.

To overcome those shortcomings, our proposal relies on
including a novel element into this architecture, a Timing Con-
trol Unit (TCU), represented by the clock equaliser depicted
in Figure 2. Its function is simple: adjusting the timings of
detection elements (φparity, φstart, φend, φhalf) to stretch as
much as possible the stability period of the signals (observation
window), and thus maximise the probability of detecting any
fault occurring during the clock cycle. Likewise, line and bus
equalisers are also used to selectively delay the required signals
with the same purpose.

The parity error decoder receives both the expected parity
code and equalised circuit outputs to generate a dual-rail code
which is then fed to the diagnosis block.

This code is then captured by different dual registers at
different specific times. Start registers capture at the beginning
of the stability period (within the observation window) using
clock φstart. End registers capture at the end of the stability
period (within the observation window) using clock φend.

Meanwhile, two sets of dual registers, upset1 and upset2+,
are devoted to capture upsets occurred during the whole
stability period. To do so, φhalf which is half the clock

TABLE I. DIAGNOSIS OF FUGACIOUS FAULTS*

Fault Start End Upset1 Upset2+
Non-fugacious ‘1’ ‘1’ ‘1’ ‘1’

Transient fugacious Any ‘0’ ‘1’ ‘0’
‘0’ ‘1’ ‘1’ ‘0’

Intermittent fugacious ‘1’ ‘0’ ‘1’ ‘1’
‘0’ Any ‘1’ ‘1’

None ‘0’ ‘0’ ‘0’ ‘0’
Diagnosis error Any other combination
* For simplicity, ‘1’ here means “00” or “11”, and ‘0’ means “10” or “01”.

frequency keeps those registers switching each period. In the
case of the upset1 registers, each register of the pair is fed by
φhalf and not(φhalf), respectively, using the φend clock edge.
Accordingly, their state alternates between (‘0’, ‘1’) and (‘1’,
‘0’) each clock cycle, ensuring they store a valid data code.
The output of the parity error decoder is connected to the set
input of both upset1 registers, thus causing an invalid (‘1’, ‘1’)
data code whenever an upset is detected. The initialisation of
the upset2+ registers is performed through a combinational
function that takes into account φhalf , φstart, and φend. This
function and its inverse are respectively connected to the set
and reset inputs of one of the registers, and to the reset and
set inputs of the other register. This function will only activate
those signals outside the observation window. It will also
ensure that the registers will store a valid data word alternating
between (‘0’, ‘1’) and (‘1’, ‘0’) each clock cycle. Upon the
occurrence of an upset, the output of the parity error decoder
will cause these registers to capture the current state of the
upset1 registers. In case of being the first upset during the
clock cycle, they will receive a valid data code. When further
upsets are detected, they will store (‘1’, ‘1’), an invalid data
code signalling that two or more upsets have been detected.

All these data (the parity error at the beginning and end
of the observation window, and the state of the upset1 and
upset2+ registers) will be passed to the encoder in charge of
diagnosing the kind of fault, if any, that have been detected.
Table I lists the different results of the diagnosis process
according to the received inputs. The encoder output is a 3-bit
signal that guarantees fault security, as only 4 different codes
are required out of the 8 available. The result of the diagnosis
process will be passed to a failure suspector that may trigger
any corrective measures if required (like reconfiguring the
affected component to increase its fault tolerance capabilities
or relocating it to another fault free area of the device).

IV. PROPOSED IMPLEMENTATION FLOW

The typical semi-custom design flow for VLSI products
should be adapted in order to automate the process of deploy-
ing the proposed detection and diagnosis infrastructure. The
left hand side of Figure 3 depicts the common implementation
flow, where Technology files can represent a silicon foundry
design kit or an FPGA manufacturer primitives library. Like-
wise, Physical element can be a layout file or a programming
bitstream for an FPGA. The right side of the figure details the
required addition to that flow to support this novel detection
and diagnosis strategy.

The first intervention consists in introducing all the re-
quired infrastructure, as previously presented in section III, to
support the desired detection and diagnosis. This is performed
just before Synthesis and after Design Entry. Entry files are

Specifications

Synthesis

Original design Addition of
infrastructur

e

Modified design

Technolog
y files

Implementation

Gate Level

Physical

Check
against

constraint
s &

refine

Physical

A
B

Design Entry

Implementation

Fig. 3. Proposed implementation flow

modified as required and new timing constraints are generated
for the Timing Control Unit (TCU).

A second and more complex intervention takes place in
a loop between Gate-level and Physical stages of the design.
Its purpose is to stretch the observation window by checking
timings against new constraints, mainly affecting the TCU,
and successively refining the implementation by tweaking in
one of the 2 possible re-entry points. Path B leads to a
faster, more precise process, but requires a deep knowledge
of the underlying technology and reduces the portability of
the approach. A more general solution will be obtained using
path A at the cost of increasing the implementation time. This
second intervention follows the flow shown in Figure 4.

The initial step tries to adjust the datapath to stretch the
observation window by selectively delaying the output and
input lines. First, a bus delay equaliser is used to reduce
the dispersion of output paths delays reaching the detection
infrastructure (see Figure 5). This is an iterative process in
which the slowest output will be preserved as reference, and
the fastest output will be delayed by inserting delay elements
in its path. This process ends whenever the fastest output is
also the slowest one. Once bus outputs have been equalised,
a further compaction can be possibly achieved by applying a
similar process to the inputs. This time a line equaliser delay
is applied to those inputs which appear quicker at the first
logic level (see Figure 5), provided they do not violate the
same conditions of the bus equaliser. This guarantees that the
maximum clock frequency attainable is not affected.

The next step dephases φend so that the clock edge is in
close vicinity to end of the stability period (the beginning of
the switching period due to the quickest line of the datapath in
the fast process corner). By forcing this condition iteratively
the end of the observation window is pushed as late in time
as possible.

Input involved in Max
datapath hasn’t changed and ≠ involved

in Min datapath ?

Compact switching by
delaying fastest output

Bus equaler

Compact switching by
delaying fastest input

Line equaler

Output involved in Max
datapath hasn’t changed and ≠ involved

in Min datapath ?

N

Y

Y

N

Min tend tick
close enough to
 min datapath?

Delay min tend tick
 until meeting target

Delay parity register tick
 until meeting target

FINISHED!

Delay max tbeg tick
until meeting target

Max datapath
Slower than

max parity reg. path?

N Y

Datapath
adj.

Tend adj.
► min
datapath is
quickest output
in fast process

Parity
regist. adj.

Tbeg adj.

N

Y

Parity reg. captures
Slowest parity

prediction path?

N

Y

Tbeg tick captures max
Datapath?

N

Y

Delay max tbeg tick
until meeting target

Tbeg tick captures max
Parity reg path?

N

Y

Fig. 4. Control flow for stretching the observation window

The registers devoted to capture the predicted parity are
tweaked in the third step. The φparity clock is delayed as
necessary to capture the slowest parity prediction signal path.
This is done iteratively to adjust the capture tick to the earliest
possible moment.

Finally the fourth step focuses on dephasing φstart so that
the clock edge is located at the beginning of the stability
period (observation window). First, it is necessary to determine
whether the maximum propagation time of data feeding φstart
is longer than that of parity registers outputs feeding φstart.
This clock tick will be iteratively delayed to ensure that both
data and parity registers outputs are correctly captured.

In this way the switching period has been shrunk as much

as possible, thus enlarging the stability period, and the capture
clock edge of all registers has been carefully dephased to
observe this whole period.

V. FIRST PROTOTYPE AND CASE STUDY

In order to test the functionality of the proposed architec-
ture, a standard 4-bit adder has been selected as a suitable
candidate. This is a state of the art combinational circuit, used
in multitude of designs, which can suffer from undetected
fugacious faults. Furthermore its simplicity eases the task of
performing controlled experiments (only a small amount of
eligible fault injection points for the placed and routed design)
within a reasonable time frame.

As this circuit is modelled in Verilog, the required infras-
tructure to deploy the proposed architecture is also described
in this HDL language. This infrastructure and the associated
new timing constraints are manually inserted into the design
before synthesis, although the automation of this process is
currently under development. For its implementation, a Virtex-
6 FPGA platform has been chosen due to the ease and
speed of deployment, the availability of information related
to its internal structure (XDL plain text files), and its partial
dynamic reconfiguration capabilities that could be exploited
after detecting and diagnosing the occurrence of faults. For the
first prototype of a tool supporting this methodology, a publicly
available toolset named TORC [16] has been used to interface
with the manufacturer tools, which present certain limitations
in the routing side hindering the required equalisation and
dephasing. As the goal of this first implementation is just
showing the feasibility of the proposed approach, it does
not tune inserted delays in the finest possible way, so the
observation window is not stretched to its physical limits.

The procedure for inserting delays in a target path is
based on selecting an intermediate point between origin and
destination, for the path to pass through. The location of that
intermediate point is determined according to the algorithm
shown in Figure 6. This algorithm, based on geometrical
principles takes into account different possible cases. Initially,
if the delay to be introduced is very small, a position next to the
origin or destination points is selected. For small and medium
delays, the position is selected somewhere midway between
origin and destination, modifying the total path distance ac-
cording to the required delay. For bigger delays and also when
origin and destination points are too close, the intermediate
point is placed around a circumference, which includes both
origin and destination, whose radius is modulated by the
required delay.

This pass-through element can be a simple buffer in ASIC,
or a Look-Up Table (LUT) implementing the identity function
in an FPGA platform. In the latter case, when the chosen LUT
is busy a spiral shaped search for a free close-by LUT is
initiated until one is found or a new intermediate position
is recalculated. Future work will focus on improving this
implementation.

The controlled injection of fugacious hardware faults on
an FPGA is also quite difficult. That is why, to test the de-
tection and diagnosis capabilities of the proposed architecture,
fugacious faults will be injected in the post-place and route
model of the system following a model-based fault injection

clk

inputs

out0

out1

out2

out_initial

out_beq0

out_beq1

out_beq2

out_beq

out_leq0

out_leq1

out_leq3

out_leq

encoded_par

stability periodoutputs changing

stability period

BA

Aout

Aout_par

outputs changing

outputs changing stability period

t.end t.startt.parity

Fig. 5. Stretching the observation window step by step

If (Rdelay < 0.5) then

 (Xi,Yi) = (Xa, Ya-1)

else if (Rdelay < 1) then

 Xi = (Xa + dx(a,b)/2)

 Yi = (Ya + dy(a,b)/2)

else if (Rdelay < 2) and (d(a,b) > dmin) then

 α = Rdelay*π/2

 k = atan (dy(a,b)/dx(a,b))

Xi = Xa + d(a,b)/2 *cos(α + k)

Yi = Ya + d(a,b)/2 *sin(α + k)

else

 α = Rdelay*π/10

 k = atan (dy(a,b)/dx(a,b))

Xi = Xa + (d(a,b)/2 +Rdelay*10) *cos(α + k)

Yi = Ya + (d(a,b)/2 +Rdelay*10) *sin(α + k)

d

(a,b)

(X
b
,Y

b
)

b

a

(Xa,Ya)

(Xi,Yi)

i

X
 Y

d

(i,b)

d

(a,i)

Fig. 6. Strategy for locating delay pass-through elements (Xi, Yi), showing
physical distances inside device. Delays are expressed in relative units.

technique. A number of Tcl scripts have been developed to ease
the injection of different fugacious and non-fugacious faults
using the Modelsim simulator [17]. Next section reports on
the results obtained from experimentation.

TABLE II. MINIMUM WIDTH OF FUGACIOUS TRANSIENT FAULTS FOR
CORRECT DETECTION

Pulse width Detected in Fast Detected in Slow
T=10ns Process Corner Process Corner
0.5·T 3 3
0.1·T 3 3
0.05·T 3 3
0.01·T 7(a) 3
0.005·T 7(a) 3
0.001·T 7(a) 3

VI. RESULTS AND DISCUSSION

The first set of experiments is devoted to test the minimum
pulse width that could be correctly detected as a transient
fugacious fault. Table II lists whether detection is achieved
for shorter and shorter pulses in both fast and slow corners of
the technology.

The narrowest pulses present a pulse swallowing effect,
annotated as (a) in the table. In this cases, the physical
limitation of the technology applies, as pulses are not wide
enough to be propagated through the logic elements. This
prevents those faults from being detected. Curiously enough,
simulations do not feature this behaviour in the slow process
corner, but common sense dictates it will happen at a certain
moment. The proper characterisation of this behaviour requires
further research.

The second set of experiments aims at determining the
minimum separation (inactivity time) between consecutive
pulses within a burst to properly detect it as an intermittent
fugacious fault. In this case, two pulses with fixed width of
0.05 · T are injected with decreasing inactivity time. Table III
lists whether faults are correctly detected, for fast and slow
process corners, with decreasing inactivity time.

As focusing on detecting faults with very short duration,
in case that the total length of the burst is longer than one
clock cycle, then several transient faults could be reported
instead (not shown in the table). On the other hand, technology
limitations (pulse swallowing) appear again in those cases

TABLE III. MINIMUM INACTIVE TIME OF INTERMITTENT FUGACIOUS
FAULTS FOR CORRECT DETECTION

Inactivity time width Detected in Fast Detected in Slow
T=10ns Process Corner Process Corner
0.5·T 3 3
0.2·T 3 3
0.15·T 3 3
0.1·T 3 7(a)
0.05·T 3 7(a)
0.01·T 7(a) 7(a)
0.005·T 7(a) 7(a)

TABLE IV. CHECK ALL DIAGNOSIS CASES IN ALL ELIGIBLE FAULT
INJECTION POINTS

Fault type Injected Number of Correctly Incorrectly Error in Not
value injections detected detected diagnosis detected

Transient fugacious Low pulse 9 6 0 0 3 (b)
High pulse 9 2 0 0 7 (b)

Intermittent fugacious Low pulse 9 6 0 0 3 (b)
High pulse 9 2 0 0 7 (b)

Non-fugacious Low pulse 9 2 5 (b) 0 2 (b)
High pulse 9 0 6 (b) 0 3 (b)

marked with (a). It is remarkable that for a slow process corner
longer inactivity periods will be required as compared to fast
process corner, where correct detection can be achieved for
closer pulses within a burst.

Once the technological limitations imposed by the selected
Virtex-6 platform are known, a new set of experiments is
performed to check the different entries of the diagnosis table
(see Table I) on all the 9 eligible fault injection points of the
circuit selected as case study. Table IV details the results of
this experimentation, reporting the number of faults correctly
and incorrectly detected, or not detected at all. It must be noted
that, as pulses width has been carefully selected according to
the previous experiments, results are exactly the same for both
fast and slow process corners, so they are just reported once
on the table.

The first unexpected, but foreseeable result, is that non-
fugacious faults are first detected as transient fugacious faults.
This makes sense, as those faults last more than one clock cycle
and there occurrence will be reported as transient faults during
this first cycle. However, on the next clock cycle, they will
be correctly diagnosed as non-fugacious faults. Accordingly,
failure suspectors should take into account this phenomenon
to wait for the next clock cycle before taking any decision and
action.

Likewise, it can be noted that there exists a big number of
not detected faults, marked as (b) on the table. After carefully
analysing the simulations, we can conclude that this is the
result of logic filtering. For instance, injecting a logic ‘0’ in
a node holding this same value, or injecting a logic ‘1’ to the
input of an AND logic gate when some other input holds a ‘0’,
prevents the fault from being propagated and thus detected.
When this logic filtering is applied to non-fugacious faults,
they will be probably detected as transient fugacious faults
when the affected line should be switching along consecutive
clock cycles. Obviously, the erroneous value should appear
during two consecutive clock cycles at least to be correctly
diagnosed. As in this case non-fugacious faults have been
injected for 1.3 · T , they are mostly erroneously detected or
not detected at all.

Finally, the overhead induced by the required detection and
diagnosis infrastructure is shown in Table V.

TABLE V. OVERHEAD INDUCED IN TERMS OF AREA AND CLOCK
PERIOD

Design Area utilisation Clock period
Original with I/O registers 6 Slices 1.83 ns
Protected with infrastructure 36 Slices 3.49 ns

Although the extra area for the required infrastructure could
seem a bit too high in comparison with that required by the
original circuit (about six times more), it must be noted that
this is really a very small circuit. Furthermore, the Virtex-6
slice is huge in size (4 LUTs, 8 FFs, plus infrastructure) and
those 30 additional slices are mostly using a small fraction of
the available resources (< 30%), so there is plenty of room
for further circuit packing.

Finally, the attained clock period is not as close to that of
the original circuit as desired. This is due to the tools used for
the bus, line, and clock equalisation processes, which did not
allow a fine control of the extra delay to be inserted. For the
future it is intended to switch to a different more controlled
method to add finely measured delays, taking into account
manufacturing dispersions.

VII. CONCLUSIONS

This paper presents a novel methodology to detect and
diagnose a specific type of previously neglected faults, the
so called fugacious faults. They are described as faults whose
active period is smaller than the clock period of the system
and they are not usually captured by the sequential logic of
the system. Accordingly, they have been usually neglected,
but their proper detection and diagnosis could be of great
use to foresee the the proximity of harsh environments or the
occurrence of wear-out mechanisms. The proposed approach
appears as an effective method to quickly detect and diagnose
such faults.

From the set of experiments performed to shown the
feasibility of this approach, a number of lessons has been
learned. First and foremost is that technology limits set a
barrier against the quickest detectable upset in the circuit,
which applies to each single pulse or the separation between
pulses in the same burst. Another important fact is that logic
filtering limits the observability of faults, so it makes sense to
pay attention exclusively to output lines. Additionally, although
its implementation in a modern FPGA may seem costly in
terms of area penalty, if applied to large blocks or critical
circuits cost versus benefit ratio is greatly improved.

Future research will focus on improving the equalisation
tools to fine tune the insertion of controlled delays into the
system, thus increasing the observation window and reducing
the clock period penalty to the minimum possible. Likewise,
the inclusion of a failure suspector in conjunction with the
dynamic partial reconfiguration capabilities of FPGA will
greatly increase the safety of the target system through its
adaptation to face the unexpected events that may arise.

ACKNOWLEDGEMENTS

This work has been funded by the Spanish Ministry of
Economy ARENES project (TIN2012-38308-C02-01).

REFERENCES

[1] JEDEC, “Measurement and reporting of alpha particle and terrestrial
cosmic ray-induced soft errors in semiconductor devices,” in JEDEC
Standard JESD89A. JEDEC, 2006.

[2] J. Freijedo, L. Costas, S. J., J. J. Rodrı́guez-Andina, M. J. Moure,
F. Vargas, I. C. Teixeira, and J. P. Teixeira, “Impact of power supply
voltage variations on fpga-based digital systems performance,” Journal
of Low Power Electronics, vol. 6, no. 2, pp. 339–349, 2010.

[3] Y. Hayashi, S. Gomisawa, Y. Li, N. Homma, K. Sakiyama, T. Aoki,
and K. Ohta, “Intentional electromagnetic interference for fault analysis
on aes block cipher ic,” in Electromagnetic Compatibility of Integrated
Circuits (EMC Compo), 2011 8th Workshop on, Nov 2011, pp. 235–240.

[4] V. Ferlet-Cavrois, P. Paillet, D. McMorrow, A. Torres, M. Gaillardin,
J. S. Melinger, A. R. Knudson, A. Campbell, J. Schwank, G. Vizkelethy,
M. Shaneyfelt, K. Hirose, O. Faynot, C. Jahan, and L. Tosti, “Direct
measurement of transient pulses induced by laser and heavy ion irradi-
ation in deca-nanometer devices,” Nuclear Science, IEEE Transactions
on, vol. 52, no. 6, pp. 2104–2113, Dec 2005.

[5] P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank,
“Production and propagation of single-event transients in high-speed
digital logic ics,” IEEE Transactions on Nuclear Science, vol. 51, pp.
3278–3284, dec 2004.

[6] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger,
“Comparison of error rates in combinational and sequential logic,”
Nuclear Science, IEEE Transactions on, vol. 44, no. 6, pp. 2209–2216,
Dec 1997.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, pp. 11–33, January 2004.

[8] J. Espinosa, D. Andrés, J.-C. Ruiz, and P. Gil, “The challenge of
detection and diagnosis of fugacious hardware faults in vlsi designs,”
in Dependable Computing, ser. Lecture Notes in Computer Science,
M. Vieira and J. Cunha, Eds. Springer Berlin Heidelberg, 2013,
vol. 7869, pp. 76–87. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-38789-0 7

[9] V. Ferlet-Cavrois, L. Massengill, and P. Gouker, “Single event transients
in digital cmos -a review,” Nuclear Science, IEEE Transactions on,
vol. 60, no. 3, pp. 1767–1790, June 2013.

[10] S. D’Angelo, G. R. Sechi, and C. Metra, “Transient and permanent
fault diagnosis for fpga-based tmr systems,” in Proceedings of the
14th International Symposium on Defect and Fault-Tolerance in VLSI
Systems, ser. DFT ’99. Washington, DC, USA: IEEE Computer Society,
1999, pp. 330–338.

[11] J. Espinosa, D. de Andrs, J. C. Ruiz, and P. Gil, “Ideas towards early
detection of fugacious faults for increased safety of vlsi systems,” in
ITACA WIICT - Workshop on Innovation on Information and Commu-
nication Technologies, 2014, pp. 25–34.

[12] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” in Proceedings of the 2008 Annual Reliability and
Maintainability Symposium. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 370–374.

[13] F. de Lima Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance Tech-
niques for SRAM-based FPGAs, ser. Frontiers in Electronic Testing.
Springer, 2006, vol. 32.

[14] M. Nicolaidis, S. Manich, and J. Figueras, “Achieving fault secureness
in parity prediction arithmetic operators: General conditions and
implementations,” in Proceedings of the 1996 European conference
on Design and Test, ser. EDTC ’96. Washington, DC, USA:
IEEE Computer Society, 1996, pp. 186–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=787259.787620

[15] S.-B. Ko and J.-C. Lo, “Efficient realization of parity prediction
functions in fpgas,” J. Electron. Test., vol. 20, no. 5, pp.
489–499, oct 2004. [Online]. Available: http://dx.doi.org/10.1023/B:
JETT.0000042513.15382.e7

[16] University of South California, “Tools for Open Reconfigurable
Computing,” 2014. [Online]. Available: http://torc-isi.sourceforge.net

[17] Mentor Graphics, “Modelsim,” 2014. [Online]. Available: http:
//www.mentor.com/products/fpga/model

