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Giant magnetoimpedance (GMI) effect has been studied in amorphous glass-coated microwires 
of composition (Fe6Co94)72.5Si12.5B15. The impedance of a 1.5cm length sample has been 
characterized by using constant AC currents in the range of 400µA to 4mA at frequencies from 
7 to 15MHz and DC magnetic fields from -900 to 900A/m. Double peak responses have been 
obtained, showing GMI ratios up to 107%. A linear magnetic field sensor for DC and AC field 
has been designed, using two microwires connected in series with a magnetic bias of 400A/m 
with opposite direction in each microwire in order to obtain a linear response from ±70 
(A/m)rms for AC magnetic field, and ±100 A/m for DC magnetic field. A closed loop feedback 
circuit has been implemented to extend the linear range to ±1 kA/m for DC magnetic field. 
  
Keywords: Giant Magnetoimpedance, Amorphous Microwire, Magnetic Field Sensor. 

 
 
1. Introduction 
 

Glass coated amorphous microwires have attracted 
much attention and they have been intensively studied 
during the last two decades. Since the Giant 
Magnetoimpedance (GMI) was discovered in 1994 
[1,2], many theoretical models have been developed to 
explain this phenomenon [3-6]. The magnetization 
processes in microwires showing the GMI effect have 
been studied [7,8] and many works dealing with 
technological applications were reported because of the 
outstanding magnetic properties [9-15] which makes 
them useful as high sensitivity magnetic sensors [16-
20], biosensors [17,19,21,22], current sensors [23] and 
magnetometers [24]. It is remarkable the contribution 
of Mohri et al. in the development of electronic circuits 
for GMI sensors [16,20]. These previous works 
reported GMI sensors including signal conditioning. 
Such sensors were excited with a pulsed voltage, 
leading to changes in the current amplitude which 
modifies de characterized GMI response which is done 
at constant current amplitude (note that the GMI ratio 
and the peak of the GMI response depend on the 
current). Here we present a different approach where 
the GMI sensor is excited with constant current 
amplitude. We also apply a bias field in order to work 

on the field over the GMI peak, where the hysteresis is 
negligible. GMI in amorphous microwires has been 
also studied at microwave frequencies [15,25], and also 
the absorptive properties due to the phenomenon of 
Ferromagnetic Resonance (FMR) [26-29], or the 
recently experimental demonstration of its behavior as 
a metamaterial due to the coexistence of negative 
permittivity and permeability in the frequency region 
between FMR and Ferromagnetic Antiresonance 
(FMAR) [30]. This structure allows the possibility of 
modifying a pass band between FMR and FMAR 
through an external magnetic field [30] or with a 
current though the microwire [31], even modulating a 
microwave signal with an AC current.  

GMI has been studied in several structures like 
magnetic ribbons, wires and microwires [32-33]. The 
GMI phenomenon is due to the skin effect in magnetic 
conductors. When an external magnetic field interacts 
with the conductor, the permeability is highly 
increased in such a manner that the skin depth is 
reduced. The impedance of a magnetic conductor with 
radius r and an AC driving current is given by [4]: 

ܼ ൌ ܴௗ௖ሺ݇ݎሻ
ሻݎ௢ሺ݇ܬ

ሻݎଵሺ݇ܬ	2
, 

where ܴௗ௖ is the DC resistance and ܬ௢and ܬଵare the 
Bessel functions of zeroth and first order, respectively. 
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examine the maximum GMI in more detail, a cubic 
spline interpolation has been included for the curve of 
GMI ratio at 15MHz. It is found that the maximum 
occurs at 1.16mAp where a GMI ratio of 109% is 
achieved. 

An important feature of any sensor consists of 
having a low hysteresis behavior in its measurement 
range. Therefore, the hysteresis of the sample has been 
characterized through a measure where the field is 
increased from -1000A/m to 1000A/m (increasing 
branch) and then it is decreased to -1000A/m 
(decreasing branch). The impedance obtained along 
these two branches is represented in Fig. 8(a). It is 
worth to note that the hysteresis has a negligible effect 
for magnetic fields higher than the position of the GMI 
peaks, which corresponds to the range where the 
microwires of the developed sensor will work. To 
emphasize this fact, a zoomed view is presented in Fig. 
8(b). Here, the increasing and decreasing branches 
differ in less than 3Ω at fields beyond -300A/m. Note 
that these curves correspond to a test between 
±1000A/m and in practice the dynamic range of the 
sensor will be lower. In any case, it is possible to 
generate a reset magnetic pulse to avoid the hysteresis 
(it could be performed with the bias coils that will be 
introduced later).  

 

 
Figure 5: Impedance modulus of the sample at 7 and 15MHz 
for currents from 0.4mAp to 4mAp. 
 

 
Figure 6: Magnetic field where maximum impedance is 
found as a function of the AC current through the microwire 
and the frequency.  
 

 
Figure 7: GMI ratio as a function of the AC current exciting 
the microwire at several frequencies. The continuous line 
corresponds to a cubic spline interpolation of the GMI ratio 
at 15MHz. The impedance of the sample of the saturated 
zone was obtained with a field of 1200A/m. 
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magnitude below GMI sensors, and they have a 
significant hysteresis effect and a worse response for 
magnetic fields below 50 A/m. As a drawback, the 
GMI sensor has proved to work within a lower 
frequency range, although higher bandwidths can be 
achieved by improving the signal conditioning circuit.  
 
Sensor 
technology 

Sensitivity 
mV/(A/m) 

Properties 
Frequency 
range 

AMR 
bridge 

0.1 
Good linearity, 
low hysteresis 

1 MHz 

GMR 
bridge 

1 
High hysteresis, 
Hmin ≈ 50A/m 

1MHz 

GMI 10 

Negligible 
hysteresis, good 
linearity and 
accuracy in the 
range 0-100A/m 

50 KHz 

 
Table 1: Comparison of the main features of the designed 
sensor and other sensing technologies.   

 
 

7. High field measurement 
 

The circuit shown in Fig. 12 can be easily 
improved to extend the range of measurable fields. For 
this purpose it has been added a feedback coil which 
covers both microwires with their respective bias coils. 
This new compensation coil generates a magnetic field 
which counteracts the external field in such a manner 
that the net magnetic field is zero, and the microwires 
remains biased at their bias field of ±400A/m. 
 
The differential amplifier has been replaced by a 
current feedback amplifier (LT1210), the output of the 
envelope detectors feeding the inputs of this amplifier. 
The output of the amplifier is connected to a resistor in 
series with the compensation coil, thus providing a 
negative feedback to the circuit. The voltage drop in 
this resistor is proportional to the applied magnetic 
field by the feedback coil in order that the inputs of the 
operational amplifier are virtually short cut, which 
means that both microwires work at the point of null 
field in Fig. 10. In principle, the only limitation of this 
implementation concerning the maximum measurable 
field is the output current capability of the amplifier. 
Note that the additional coil could be obviated if the 
feedback is directly introduced through the bias coils, 
although in this case some circuitry would be required 
to mix the currents corresponding to the feedback and 
the bias fields. 
 
The schematic of this proposal is represented in Fig.18. 
This circuit has been build and tested for DC magnetic 

fields. AC fields have been not considered since the 
oscillating signal through the compensation coil 
induces a voltage on the bias coils, since it acts as a 
transformer. Fig.19 shows the DC response of the 
sensor. It is found a linear operation in the range 
±1kA/m, much higher than that reported in the 
previous section. In addition the linearity error is 
within 0.8%. At higher magnetic fields, the operational 
amplifier cannot provide enough current to feed the 
compensation coil. This fact suppresses the negative 
feedback of the circuit and the sensor no longer 
measure properly. 
 

 
Figure 18: Circuit with a feedback coil in order to extent the 
measurement range up to ±1kA/m. 
 

 
Figure 19: DC response of the sensor, with the feedback coil 
in the range ±1kA/m. The linearity error is within 0.8%. 
 
 
8. Conclusions 
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GMI effect has been studied in glass-coated 
amorphous microwires with composition 
(Fe6Co94)72.5Si12.5B15. An experimental setup intended 
to measure the impedance of the microwires under 
different AC currents and magnetic fields has been 
developed and employed to characterize the samples in 
the 7-15MHz frequency range and currents from 0.4 to 
4mAp. The GMI ratio has been obtained from the 
acquired data, showing that it reaches a maximum for a 
specific current. The maximum GMI ratio obtained 
during the tests was 107% for 1mAP and 15MHz.  

By using the information of the experimental 
characterization of the microwires, we have designed a 
magnetic field sensor. Despite the highly non-linear 
behavior of the microwire impedance, it is shown that 
a linear response can be achieved through the 
combination of two microwires with two opposite bias 
fields. In this manner, a highly sensitive magnetic field 
sensor has been built and tested. Experimental 
measures show a good linearity for DC and AC with 
amplitudes of 100A/m and frequencies up to 50kHz. 
The achieved sensitivity of 10mV/(A/m) is much 
higher than those of conventional magnetic field 
sensors. In addition, we have extended the linear range 
for DC fields up to 1kA/m by introducing a feedback 
coil which keeps the microwires at fields below the 
limit of their linear response. 
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