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Extracting frequency-derived parameters allows for the identification and characterization of acous-

tic events, such as those obtained in passive acoustic monitoring applications. Situations where it is

difficult to achieve the desired frequency resolution to distinguish between similar events occur, for

example, in short time oscillating events. One feasible approach to make discrimination among

such events is by measuring the complexity or the presence of non-linearities in a time series.

Available techniques include the delay vector variance (DVV) and recurrence plot (RP) analysis,

which have been used independently for statistical testing, however, the similarities between these

two techniques have so far been overlooked. This work suggests a method that combines the DVV

method with the recurrence quantification analysis parameters of the RP graphs for the characteri-

zation of short oscillating events. In order to establish the confidence intervals, a variant of the

pseudo-periodic surrogate algorithm is proposed. This allows one to eliminate the fine details that

may indicate the presence of non-linear dynamics, without having to add a large amount of noise,

while preserving more efficiently the phase-space shape. The algorithm is verified on both synthetic

and real world time series. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4929694]

[JFL] Pages: 1595–1603

I. INTRODUCTION

The power spectrum has been widely used in passive

acoustic monitoring (PAM) to distinguish among different

cetacean species as well as other anthropogenic noises.

Although this approach has provided very good results in a

large number of applications, there are many challenging sit-

uations where we still have not managed to achieve the

desired discriminating percentages. Dealing with these situa-

tions may require using larger temporal series to obtain the

appropriate frequency resolution.1 Unfortunately, either

because some PAM events have a limited duration or

because short time windows have to be employed to deal

with non-stationary regimes, increasing the temporal length

is not always a feasible alternative. A clear example of this

can be found in the short non-stationary explosive PAM

events such as those produced by seismic airgun surveys.

The ability to accurately detect these detonation sounds and

to be able to distinguish them from other sounds created by

marine mammals has been a problem of great concern for

biologists and for the preservation of marine life. These non-

stationary detonations occupy the frequency spectrum,

which can partially (or in some cases completely) mask the

vocal communication of many cetacean species [humpback

whales (Megaptera novaeangliae) communicate at

400�900 Hz, fin whales (B. physalus) at around 20 Hz and

minke whales (Balaenoptera acutorostrata) from

30�450 Hz]. Some authors have strongly suggested that

these anthropogenic noises can be clearly audible2 and have

both short- and long-term effects on cetacean communica-

tion and behaviour.2,3 Additionally, these airgun survey

sounds can be transmitted over 200 km away.3 Achieving an

accurate characterization of the PAM seismic airgun detona-

tions could therefore help in distinguishing maritime mam-

mal calls from airgun detonations. This is important in

regions where seismic airgun surveys are taking place so

that this activity could be temporally stopped when maritime

mammals are detected. The non-stationary behaviour of seis-

mic airgun acoustic events, along with the presence of other

noises, makes it even more difficult to distinguish between

marine mammals sounds and airgun detonations when using

only frequency derived parameters. Thus, further research

on alternative parameters that allow knowledge extraction in

PAM may become an interesting area of research. Among

the many possible techniques and parameters that could be

used for this purpose are signal modality related parameters

(non-linearity detection, presence of chaos, etc.). This alter-

native perspective has provided good results in areas ranging

from magnetic resonance imaging to condition monitoring

of wind turbines, but it has hardly ever been applied to

PAM. The complex nature of the explosions appearing in

seismic surveys are reflected in the acoustic event and, in

some situations, these events exhibit a non-linear chaotic

behaviour.4 The characterization of this chaotic behaviour

could also be performed in the frequency domain. However,

as previously mentioned, the non-stationarity and the pres-

ence of noise make this difficult. The characterization of the

possible chaotic (or non-linear) behaviour in time series can

be achieved using a range of techniques such as surrogate
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data bootstrapping methods,5 the delay vector variance

method (DVV),6 and recurrence plots (RP).1 Surrogate data

bootstrapping methods are very powerful, but are hardly

ever used when the data oscillates; also, very little is known

about the choice of the discriminating statistics.7 On the

other hand, the DVV technique depends only on a small

number of parameters and it has been successfully applied in

a large number of situations8,9 [electroencephalogram

(EEG), financial data, etc.]. Nevertheless, it is not the most

appropriate technique for the characterization of non-

linearities in short length oscillatory signals as shown in the

sequel. On the other hand, despite its great potential to char-

acterize a large number of signals (including oscillatory sig-

nals1), RP depends on a crucial parameter for which a

systematic study has yet to be done.10

In this work, we are going to show that by combining

two different surrogate generation techniques it is possible to

introduce a test for the characterization of complexity of os-

cillatory signals. We also present an algorithm that combines

some of the ideas from the DVV method to produce a less

parameter-dependent recurrence quantification analysis

(RQA). The potential of the proposed technique is demon-

strated on the differentiation of quasi-periodic oscillations

from chaotic ones in short time series.

This work is structured as follows. Section II, we study

the particularities of the PAM signals and propose a surro-

gate generation algorithm to establish the confidence inter-

vals of signals of this kind when using RQA. Section III,

we establish some relationships between the DVV method

and the quantification of the RP that allow us to design a ro-

bust and less parameter-dependent technique in order to

characterize time series and look for chaos and quasi-

periodicity. Section IV presents an application of the pro-

posed technique to characterize airgun detonations. Finally,

we present our conclusions and future lines of research in

Sec. V.

II. A SURROGATE DATA GENERATION ALGORITHM
FOR THE CHARACTERIZATION OF CHAOTIC AND
QUASI-PERIODIC SIGNALS

PAM events are oscillatory signals that often contain

complex patterns of amplitude and frequency modulation.

Similar complex patterns, or chaotic behaviour, have also

been studied in human voice11 and have been reported to be

related to voice disorders or some pathologies in some situa-

tions.12 Because traditional PAM methods are limited, com-

plimentary objective measures that are able to characterize

and distinguish between chaotic and quasi-periodic acoustic

events are desirable. Surrogate underpin many such meas-

ures, and are based on bootstrapping to generate ensembles

of data used to estimate the confidence intervals of the

measurements.

In the literature, there are two methods that preserve the

higher order moments for the surrogate generation of oscilla-

tory signals.13,14 The first method, called pseudoperiodic sur-

rogates (PPS), was proposed in Ref. 13 by Small et al. It

mimics the phase space of the original data, by adding some

dynamic noise in such a way that any existing fine dynamics

(which are closely related to chaos) are destroyed. This

method was first proposed to test the null hypothesis that an

observed time series is consistent with an (uncorrelated)

noise-driven periodic orbit. However, this method does not

provide good results when applied to the problem of charac-

terizing/differentiating complex patterns of amplitude modu-

lation (chaos) from quasi-periodic signals obtained as the

sum of sinusoids with incommensurate frequencies. The

amount of dynamic noise that needs to be added to remove

the fine patterns in an oscillatory signal strongly depends on

the complexity of the signal (more complex signals need

more dynamic noise to remove details). Thus, the method

cannot be applied to compare two low-noise oscillatory

orbits that have a different degree of complexity. The second

method, called twin surrogates (TS), was proposed in Ref.

14 by Thiel et al. It reproduces the trajectory of the underly-

ing system by visiting the attractor in a different way. These

surrogates were devised to test for complex synchronization

problems. Importantly, this algorithm can also be used to

distinguish chaos from quasi-periodicity using RQA. To this

end, we have to deal with some practical implementation

problems when generating surrogates with the TS algorithm

for short time series (such as the limited number of twins15).

The proposed algorithm combines ideas of the PPS and

the TS methods to generate surrogates that preserve the

shape of the phase space orbit while at the same time remov-

ing the fine dynamics of the original signal in order to over-

come the problem of surrogate generation in short time

series. The algorithm, which has been named PPTS (pseudo-

periodic twin surrogate) allows sufficient detail to be

removed independently of the signal complexity. To achieve

this, the proposed algorithm embarks upon the idea of jump-

ing among twin points as proposed in the TS algorithm. The

definition of twin points is based on the recurrence plot (RP)

of the signal (Eckmann et al.16), which allows the recurrence

of states in phase space to be to visualized in a simple way.

For an N-point time series the RP is calculated as shown in

Eqs. (1) and (2),

Di;j ¼ kxðiÞ � xðjÞk; i; j ¼ m � s;…;N � 1 ; (1)

Ri;j ¼ Hðe� Di;jÞ; (2)

where k � k is the Euclidean norm, N is the length of the

temporal signal, and xðiÞ ¼ ½xi�m�s; xi�ðm�1Þ � s;…; xi�s� are

the delay vectors (DVs) obtained for a given embedding

dimension ðmÞ and time lag ðsÞ. Every DV xðiÞ has a corre-

sponding target, namely, the following sample xðiÞ ¼ xi.

Equation (1) defines the so called distance plot (or unthre-

sholded recurrence plot), whereas Eq. (2) defines the RP.

The parameter e is a threshold distance (or recurrence thresh-

old), and Hð�Þ is the Heaviside step function.

Twin points are points that are not only neighbours

kxðiÞ � xðjÞk < e; they also share the same neighbourhood

Ri;l ¼ Rj;l 8l. Twin points are indistinguishable regarding

their neighbourhoods, but, in general, they have different

pasts and, more importantly, different futures. We can gener-

ate surrogates by changing the structures in the RP consis-

tently with those produced by the underlying dynamical
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system. This can be performed by looking in the RP for twin

points and then jumping randomly among them. It is easy to

see that this is equivalent to a block-wise random shuffling

of the columns of the RP matrix in order to break the RP in

the position where twin points appear fði; jÞjRi;l ¼ Rj;l; 8lg.
As a result of this shuffle, we obtain very similar RPs repre-

sentations of the surrogates (and thus very similar surro-

gates) if the time signal is periodic or quasi-periodic (see

Fig. 1). In contrast, RP representations of the surrogates for a

chaotic signal are quite different.

The second idea for generating the surrogates is to move

from point to point in the phase space in accordance with a

probability that is inversely proportional to the distance

between the two points (following the equation in the PPS

algorithm13). As a result, the proposed PPTS algorithm is

summarized as follows:

(i) Compute the RP of the original signal using Eq. (2),

with an appropriate choice of e, denoted by eTP, and

identify the twin points ðRi;l ¼ Rj;l8lÞ. The choice of

eTP is not crucial for the PPTS; it has been shown in

Ref. 14 that a choice of eTP corresponding to

5%�10% of black points in the RP is appropriate.

(ii) Randomly choose an initial condition i0 and make

i ¼ i0. Initialize n ¼ 1.

(iii) If there is a twin point for xðiÞ, make the next point of

the surrogate xsðnÞ ¼ xðjÞ, where j is randomly cho-

sen among the twin points with the probability 1/T

[T is the number of twin points for the state xðiÞ]. Let

i ¼ j and n ¼ nþ 1.

(iv) For xðiÞ, choose a neighbour xðjÞ from all of the

elements of the phase space representation

ðj ¼ m � s;…;N � 1Þ with probability

Prob x jð Þ½ � / exp
�jjx ið Þ � x jð Þjj

q
; (3)

where q is the noise radius studied in Ref. 13. Make

the next point of the surrogate xsðnÞ ¼ xðjÞ. Let i ¼ j
and n ¼ nþ 1.

(v) Repeat from step (iii) until n ¼ N.

The surrogate is formed from the first scalar component of

xsðnÞ.
The proposed PPTS algorithm generates surrogates that

are very similar to the original signal as long as the original

signal is periodic or quasi-periodic. When the original signal

deviates from a periodic or quasi-periodic oscillation the

PPTS generates surrogates that have quite a different RP ma-

trix while still preserving the approximate phase space shape

of the original signal. Thus, these surrogates are appropriate

for testing the null hypothesis that the observed time series is

consistent with a quasi-periodic orbit. The following exam-

ples illustrate this idea (all the PPTS examples in this work

were computed using a eTP corresponding to 10% of black

points in the RP).

FIG. 1. (Top left panel): RP of a quasi-

periodic time series. (Bottom left

panel): RP of a R€ossler time series.

(Top right panel): RP example of a sur-

rogate computed using the TS from the

quasi-periodic time series. (Bottom

right panel): RP example of a surrogate

computed using the TS from the

R€ossler time series. The twin points in

the TS algorithm were obtained using

a recurrence threshold eTP correspond-

ing to 10% of black points in the RP.

For details regarding the generation of

the time series, we refer to Sec. II A.
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A. Examples

Consider the R€ossler equations of a chaotic time series,

given by

_x ¼ �y� z

_y ¼ xþ ay

_z ¼ bþ zðx� cÞ

8><
>:

(4)

with the initial conditions xð0Þ ¼ yð0Þ ¼ zð0Þ ¼ 0:1,

a ¼ 0:2, b ¼ 0:2, c ¼ 5:7 (chaotic state) and a sampling time

of Dts ¼ 0:2. The system was integrated 1400 times using

the Matlab ODE solver ODE45 and the time series xðnÞ was

obtained from the x component after discarding the first

1000 data points to avoid transient states (only 400 data

points were employed).

Figure 2 illustrates the phase space reconstruction (with

m ¼ 3 and s ¼ 6) of the following: (a) original time series,

(b) and (c) the PPS, and (d) the PPTS. When comparing the

(b) and (d) panels, it can be observed that for the same noise

radius (q ¼ 0:25), the proposed PPTS algorithm achieves a

phase-space representation that removes most of the details

which evidence chaos (the large number of trajectories that run

arbitrarily close together) while at the same time preserving the

shape of the original time series. The PPS algorithm would need

a higher noise radius (q ¼ 0:55) to produce similar detail re-

moval [panel (c)]. However, using such a high noise radius will

produce noisy surrogates, and this lowering of the signal to noise

ratio is always inherent in the null test hypothesis of the PPS.

The operation of the proposed method is next illustrated

on a quasi-periodic time series composed of the sum of two

sinusoids with incommensurate frequencies:17

xðtÞ ¼ 8 � sinð2 � p � f1 � tÞ þ 4 � sinð2 � p � f2 � tÞ; (5)

where f1 ¼
ffiffiffi
3
p

Hz, f2 ¼
ffiffiffi
5
p

Hz. The discrete time series ver-

sion is obtained using a sample period of Dt ¼ 0:02 s. We

also generate 400 samples of this signal and employ the PPS

and the proposed PPTS to obtain the surrogates. The phase

space representation is shown in Fig. 3, showing that for

quasi-periodic signals, both of the algorithms achieved simi-

lar phase space reconstruction.

These two examples also show one of the weak points

of the PPS algorithm when it is used to compare the com-

plexity between orbits: the selection of the noise radius ðqÞ.
The selection of the noise radius in the PPS is strongly

related to the amount of detail that has to be removed. Thus,

signals that have a chaotic structure require higher values of

q than signals that do not have that structure. This makes the

PPS algorithm unsuitable for distinguishing between chaotic

and quasi-periodic time series with comparable noise levels.

The proposed PPTS algorithm overcomes this weakness and

achieves enough detail removal regardless of whether the

signal is chaotic or quasi-periodic; therefore, it can be used

as a feasible alternative to establish the confidence intervals

when testing for quasi-periodic deviation.

III. FROM DVV TO DELAY VECTOR RECURRENCE
QUANTIFICATION ANALYSIS (DVRQA)

RQA is a powerful non-linear data analysis tool that can

be used to measure complexity and chaos (among other char-

acteristics) in any temporal series. This process involves

FIG. 2. (Color online) Phase space reconstruction of R€ossler attractor. (a)

R€ossler chaotic time series. (b) Surrogates obtained with the PPS algorithm

(q ¼ 0:25). (c) Surrogates obtained with the PPS algorithm (q ¼ 0:55). (d)

Surrogates obtained with the proposed PPTS algorithm (q ¼ 0:25).

FIG. 3. (Color online) Phase space reconstruction of a sum of sine waves. (a) Quasi-periodic time series. (b) Surrogates obtained with the PPS algorithm

(q ¼ 0:25). (c) Surrogates obtained with the proposed PPTS algorithm (q ¼ 0:25).
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computing the RP with a given recurrence threshold, Eq. (2),

and measuring any of the RQA metrics. Table I presents some

of the typical measures for the quantification of RP.

Unfortunately, choosing the appropriate recurrence threshold

is not an easy task and to date there is no systematic study that

could help in choosing the right threshold.10 Only a few “rules

of the thumb” are given: depending on whether or not the sig-

nal is a quasi-periodic process, depending on the amount of

noise, etc. The problem of choosing the most appropriate

threshold in an unknown situation can be overcome using an

alternative approach, similar to that employed by Gautama and

Mandic in the delay vector variance method (DVV).18 Briefly

summarized, the evolution of the normalized target variance

compared to that of an artificially generated set of surrogates

allows the DVV plots to be obtained. The evolution curves are

computed for a sufficiently representative random set of DVs

as the standardized distance among them increases (check Ref.

6 for a detailed description of the method).

The RQA metrics can also be computed for a range of

standardized recurrence thresholds and plotted as a function

of these thresholds. The thresholds play the same role in the

RQA as the distances in the DVV. In fact, it can be demon-

strated that the DVV can be computed from the RP using the

variance of the targets instead of an RQA measurement. We

next elaborate this idea in detail, as it is a key concept in the

proposed algorithm.

Assume that we have a discrete temporal signal xðiÞ and

its corresponding set of delay vectors xðiÞ, obtained with the

appropriate delay embedding ðmÞ and time lag ðsÞ. The pro-

cess of obtaining the DVV involves choosing a random DV

and finding those that are within a given standardized

distance ðrdÞ.18 This information can be easily extracted

from the RP, which is computed using Eq. (2). It is important

to remember that the RP is a 2D plot showing (for a given

moment in time) the times at which a phase space trajectory

visits roughly the same area in the phase space. Thus, look-

ing for the “black dots” in the columns of the RP matrix that

is computed with a recurrence threshold ðeÞ is equivalent to

looking for the DVs that lie within a given distance rd in the

DVV. The metric used by the DVV to test for non-linearity

is the variance of the targets of those DVs which lie within a

given value rd (or e in the RP) to the original. Again, this in-

formation can be computed from the RP by indexing the

temporal signal in the positions where the black dots of the

RP appear for that particular column. Figure 4 [panel (a)]

illustrates this idea and shows how we can obtain the corre-

sponding targets for two DVs (red lines and green lines). For

a given DV xðikÞ and a threshold e, we obtain le � fjg
s.t. Rik ;j ¼ 1, and r2

ik
ðeÞ ¼ VAR½xðleÞ�, where VAR½ � � is a

variance estimator and xðleÞ are the corresponding targets.

In order to obtain the DVV, this process has to be repeated

for several DVs and standardized distances ranging

from rd ¼ ½maxf0; ld � nd � rdg; ld þ nd � rd�, with a typical

nd ¼ 2 (as described in Ref. 18). This can be achieved by

averaging the estimated variance for a set of L different DVs

xðikÞ (different columns of the RP) and repeating the process

of computing the RP for different recurrence thresholds

ðe ¼ rdÞ ranging in the same interval of standarized distan-

ces. Figure 4 [panel (b)] shows the appearance of one of the

RPs that was computed for a larger e. The normalized var-

iance can be calculated by dividing by the variance of the

time series ðr2
xÞ as shown below in Eq. (6)

TABLE I. Some of the possible measures for the recurrence quantification analysis (RQA).

RQA parameter
Equation

Symbol Description

RR Recurrence rate: density of recurrence points.
1

N2

XN

i;j¼1

Ri;j

Ld Averaged diagonal line length.a

XN

l¼lmin

l � PðlÞ

XN

l¼lmin

PðlÞ
(7)

DET Determinism: Percentage of recurrence points that form diagonal lines.a

XN

l¼lmin

l � PðlÞ

XN

i;j¼1

Ri;j

ENTR Shannon entropy of the length of black diagonal lines.a �
XN

l¼lmin

PðlÞ � ln PðlÞ

ENTRWL Shannon entropy of the length of white vertical lines.b
�
XN

w¼wmin

PðwÞ � ln PðwÞ (8)

aPðlÞ is the histogram of the lengths l of the black diagonal lines and lmin is the minimal length of what should be considered to be a diagonal line (typically lmin ¼ 2).
bPðwÞ is the histogram of the lengths w of the white vertical lines and wmin is the minimal length of what should be considered to be a vertical line (typically wmin ¼ 2).
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r�2 eð Þ ¼

1

L

XL

k¼1

r2
ik

eð Þ

r2
x

: (6)

Note that the plot of this normalized variance r�2ðeÞ as a

function of e is the DVV plot.

Studying the DVV from this perspective helps to under-

stand why the DVV does not give the expected results when

applied to oscillatory short time series. The computation of

the DVV only takes into account the distance between ran-

dom DVs (vertical black dots) and misses important infor-

mation about the possible structures that can be used to

detect chaos-order19 and chaos-chaos20 transitions: diagonal

black lines and vertical white lines,1 respectively. Examples

of parameters derived from these structures are how much

time the trajectories run parallel paths in the phase space rep-

resentation (the DET parameter in Table I), complexity

measured as the entropy of the black diagonals or the en-

tropy of the vertical white lines (the ENTR or the ENTRWL

parameters in Table I), etc. These structures are a key factor

in differentiating chaos from quasi-periodicity; this is indi-

cated by the very characteristic diagonals distribution of the

oscillatory signals presented in Fig. 1. This new perspective

of the RP-DVV technique opens up a large number of possi-

bilities for signal modality analysis. The most straightfor-

ward idea is to replace the normalized variance metric of the

targets from the DVV plots with any of the multiple RQA

metrics that are typically employed in the RP (mean diago-

nal line, laminarity, entropy, etc.). With the appropriate sur-

rogate generation method, this allows the confidence

intervals to be established so that signal modality tests can

be devised for a large number of applications (in our case,

complexity in oscillatory signals). The proposed DVRQA

can be summarized as follows:

(i) Compute the unthresholded RP ðDi;jÞ using Eq. (1),

and obtain the mean ðldÞ and the s.d ðrdÞ from the

upper triangular matrix (avoiding the main diagonal).

(ii) Compute the RP from Di;j, Eq. (2), for a given thresh-

old ðeÞ.
(iii) Compute any of the RQA metrics given in Table I.

Repeat steps (ii) and (iii) for fe 2 esjes ¼ ½maxf0; ld

�nd � rdg; ld þ nd � rd�g. The parameter nd is a span

factor that works the same way as it does in the DVV

(nd ¼ 2 is used in this work).

(iv) The representation of the RQA parameter with respect

to the standardized recurrence threshold ðesÞ is the

DVRQA plot.

(v) Repeat for a given number of surrogates Ns to estab-

lish the confidence interval, and plot both plots on the

same graph.

A. Examples

We next illuminate how the proposed DVRQA algo-

rithm can be used in conjunction with the PPTS, to distin-

guish quasi-periodicity from chaos in short time series.

To this end, we will use the signals previously presented in

FIG. 4. The RP can be used to obtain the nearest DVs and to compute the normalized variance of its targets for a given recurrence threshold e (or rd in the

DVV). The red and green vertical lines are two randomly chosen DVs ðxðikÞÞ. The red and green horizontal lines are their corresponding neighbours lying

within the distance e. The red and green circles on the left axis are their corresponding targets. Panel (a): e ¼ 0:45 � Px, panel (b): e ¼ 0:85 � Px.

FIG. 5. (Color online) DVV of a 400-point R€ossler chaotic time series (com-

puted using RP). The results were obtained using 50 surrogates.
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Sec. II A; note that only 400 samples were used. The PPTS

surrogates were obtained using a eTP that gives 10% of

black points and a q ¼ 0:25. The computation of the confi-

dence intervals was performed using 50 surrogates. First, we

applied the DVV to the R€ossler chaotic time series (Fig. 5).

Only a few points lie slightly outside the confidence interval

as can be observed in the magnified region of Fig. 5, illus-

trating the difficulties of devising tests that can distinguish

the complex dynamics of the R€ossler in short time series

using the DVV method. This behaviour exemplifies the lack

of analysis of the different RP structures performed with the

DVV method.

An appropriate selection of the RP structures through a

suitable RQA would allow such differentiation. We have

chosen two of parameters from Table I: the averaged diago-

nal length ðLdÞ, and the entropy of the white vertical lines

(ENTRWL). Jumping among twin points in the PPTS algo-

rithm may break the diagonals that characterize chaotic sig-

nals while preserving them in quasi-periodic ones. As a

result, chaotic time series should exhibit higher Ld [com-

puted using Eq. (7) in Table I] than that of its surrogates. On

the other hand, the vertical white lines in the RP represent a

rational approximation of the incommensurate frequencies

with a tolerance on the order of e.1 Thus, the length of the

vertical white lines are related to the return times, and

the presence of specific return times allows quasi-periodicity

and chaos to be detected. The Shannon entropy of the verti-

cal white lines, ENTRWL [computed using Eq. (8) in

Table I], captures this relationship and gives a different

value in chaotic signals compared to that of their surrogates.

Figure 6 (top) shows the proposed DVRQA algorithm using

the Ld metric when applied to the chaotic and the quasi-

periodic time series, whereas the bottom of Fig. 6 shows the

ENTRWL quantification parameter. The examples behave as

expected: for the R€ossler time series, there was higher aver-

age diagonal length and different white line length entropy;

for the quasi-periodic time series, both DVRQA graphs are

very similar to their surrogates.

IV. THE DVRQA METHOD FOR THE
CHARACTERIZATION OF COMPLEXITY IN SEISMIC
AIRGUN DETONATIONS

We next used the proposed DVRQA to investigate for

the presence of chaos in sounds produced by detonations dur-

ing a seismic airgun survey. The sounds used were from the

FIG. 6. (Color online) DVRQA of R€ossler and quasi-periodic time series. Top left: DVRQA using Ld of a R€ossler time series. Top right: DVRQA using Ld of

a quasi-periodic time series. Bottom left: DVRQA using ENTRWL of a R€ossler time series. Bottom right: DVRQA using ENTRWL of a quasi-periodic time

series. The results were obtained using 50 surrogates.
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NOAA database and correspond to an acoustic survey

recorded by the Pacific Marine Environmental Laboratory

(PMEL) autonomous hydrophone array deployed in central

Atlantic Ocean. The nature of these acoustic explosive events

strongly suggests the evidence of complex oscillations (chaos)

in the recordings. We analyzed a sound clip containing 46 air-

gun detonations recorded at fs ¼ 8000 Hz. From each one of

these 46 detonations, we selected a fragment of 400 samples

(50 ms) which were tested for the presence of complex oscil-

lations using the DVRQA algorithm. The 400-sample frag-

ments were chosen around the maximum of each one of the

detonation sounds and these fragments were carefully

reviewed to ensure the presence of quasi-oscillatory signals.

Figure 7 shows the waveforms of one of these 46 detonations.

As in the previous example, 50 surrogates were

employed in the statistical test, and the PPTS was computed

using 10% of black points in the RP to obtain the twin points

and q ¼ 0:25. Figure 8 shows the results of the DVRQA for

the acoustic detonation event # 27 using the Ld and the

ENTRWL parameter.

The analysis of the rest of the events with the DVRQA

using the ENTRWL parameter indicates that 38 out of the 46

detonations lie outside the range of one standard deviation

(similar results can be obtained with the DVRQA using the

Ld parameter). This indicates that 82% of the detonation

acoustic events exhibit high complexity that is typically

indicative of chaos or any nonlinear determinism. These

results were obtained by computing the standard deviation

of the white line entropy metric of the surrogate set

½rsurro
ENTRWLðeÞ� and by looking for the events that lie outside

this confidence interval. The bar graph in Fig. 9 shows the

maximum values exceeding maxe2es
½rsurro

ENTRWLðeÞ� of the sur-

rogates in the DVRQA plots. Using one standard deviation

may seem to be a weak test because only 68% of the values

lie within one standard deviation of the mean. If we increase

the standard deviation of the surrogates up to 2 � rsurro
ENTRWLðeÞ

so that nearly all (95%) of the values lie within this interval,

the number of detonation events that show a clear indication

of non-linearity are only 22% of the total number of ana-

lyzed detonation events.

FIG. 7. (Color online) Top: Seismic airgun detonation waveform. The arrow

indicates the starting point were the 400-sample fragment was extracted.

Bottom: Zoom-in of one of the 400-sample segments processed with the

DVRQA.

FIG. 8. (Color online) DVRQA of the detonation # 27. Left: computed using the Ld quantification parameter. Right: computed using the ENTRWL quantifica-

tion parameter. The results were obtained using 50 surrogates.

FIG. 9. (Color online) DVRQA test of the 46 seismic airgun detonation

events recorded in the central Atlantic Ocean. The figure shows the

ENTRWL metric exceeding one standard deviation of the surrogate set.
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V. CONCLUSIONS

When characterizing quasi-periodicity and chaos in oscil-

lating short time series, we have illuminated the importance

of taking into account the structures appearing in the RP. We

have introduced a solution for the generation of surrogates

which preserves some of these structures and also overcomes

some practical implementation issues in limited-length sig-

nals. The proposed surrogate generation algorithm (PPTS) has

been shown to allow for sufficient detail to be removed inde-

pendently of the signal complexity without adding noise. We

have established the utility of this method for testing the null

hypothesis that the signal deviates from a quasi-periodic orbit.

We have also demonstrated that the classical DVV method

can be reformulated using RP concepts. This new formulation

allows RQA-based tests to be designed without the need to

fine tune the crucial parameter in this kind of tests; the recur-

rence threshold. The proposed algorithm, referred to as the

DVRQA, has been shown to characterize short duration

acoustic events and to be able to distinguish quasi-periodicity

from chaos. We have chosen a RQA metric that captures the

complexity in the return times (a parameter that is clearly

related to chaos) and a parameter related to the mean diagonal

length in the RP. Finally, we have illustrated the benefits of

the proposed method on a practical application of characteriz-

ing seismic airgun detonations in the central Atlantic Ocean.

The results indicate a clear deviation from quasi-periodicity

in most of the detonations. Future work will focus on the

design of automatic detectors for passive acoustic surveillance

of air gun detonations in protected areas.
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