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Abstract. Computer Assisted Transcription of Text Images (CATTI)
and Key-Word Spotting (KWS) applications aim at transcribing and in-
dexing handwritten documents respectively. They both are approached
by means of Word Graphs (WG) obtained using segmentation-free hand-
written text recognition technology based on N -gram Language Models
and Hidden Markov Models. A large WG contains most of the relevant
information of the original text (line) image needed for CATTI and KWS
but, if it is too large, the computational cost of generating and using it
can become unaffordable. Conversely, if it is too small, relevant informa-
tion may be lost, leading to a reduction of CATTI/KWS in performance
accuracy. We study the trade-off between WG size and CATTI & KWS
performance in terms of effectiveness and efficiency. Results show that
small, computationally cheap WGs can be used without loosing the ex-
cellent CATTI/KWS performance achieved with huge WGs.

1 Introduction

In recent years, large quantities of historical handwritten documents are being
scanned into digital images, which are then made available through web sites
of libraries and archives all over the world. Despite this, the wealth of informa-
tion conveyed by the text captured in these images remains largely inaccessible
(no plain text, difficult to read even for researchers). Given the amount of text,
automated methods are needed to allow the users to transcribe and/or search,
and also to add value to mass-digitisation and preservation efforts of Culture
Heritage institutions. To this end, the tranScriptorium1 project aims at fulfil
these requirements with the development of two different applications: the Com-
puter Assisted Transcription for Test Images (CATTI) [1], intended to speed up
transcription process, and the KeyWord Spotting [2] for automatic indexing of
untranscribed handwritten material under the so called Precision-Recall trade-
off model. Actually, both applications rely on what is called word lattice or Word
Graph (WG), which are previouly produced by a standard HMM-based hand-
written text recognition system. It is worth noting that in their own conception,

1 http://www.transcriptorium.eu
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CATTI and KWS approaches do not require the use of WGs for performing cor-
responding tasks. However, usually large response times due to running CATTI
and KWS without WGs would rather affect their usabilities.

A WG is a data structure proposed by several authors some decades ago
during the development of Automatic Speech Recognition (ASR) technology [3].
They are generated through a natural extension of the standard dynamic pro-
gramming Viterbi decoding algorithm, which determines the single best HTR
hypothesis. An important shortcoming of WGs is the large computing cost en-
tailed by their generation, often very much larger than the cost of the basic
Viterbi decoding process itself. WG generation cost depends on many factors,
including the input sequence length and decoding vocabulary size. But a ma-
jor factor is, by far, a parameter known as maximum node input degree (Idg),
which specifies the amount of information retained at each node during the WG
generation process. In addition to reducing Idg, other pruning techniques, such
as beam-search, histogram pruning, etc. can also be used to accelerate the WG
generation process at the expense some loss of the information retained in the
resulting WGs [3].

This paper studies how different sizes of WGs pruned by different Idg values
impact on the effectiveness/efficiency performance of both CATTI and KWS
applications. This study will serve as a reference for making good enough es-
timations of required space-time resources for tasks entailing the processing of
massive handwritten material using CATTI and WG-based KWS.

2 Overview of HTR and WGs Technology

This section is devoted to introduce the basics of the handwritten text recognition
system (HTR) used to generate WGs required by both CATTI and WG-based
KWS.

2.1 HTR based on HMMs and N-Grams

The employed HTR technology is based on Hidden Markov Models (HMMs) and
N -grams, and follows the fundamentals presented in [4]. This recognizer accepts
a handwritten text line image, represented as a sequence of feature vectors x, and
find a most likely word sequence ŵ according to: ŵ = arg maxw p(x | w) ·P (w).
The conditional density p(x | w) is approximated by morphological word models,
built by concatenating character HMMs [5],and the prior P (w) is approximated
by an N -gram language model [5].

The search (or decoding) of ŵ is optimally carried out by using the Viterbi
algorithm [5]. Moreover, rather than obtaining just a single best solution (i.e. ŵ)
a huge set of best solutions can be obtained in the form of a WG as a byproduct
of this decoding process. For a more detailed description of this HTR system,
including text line processing, model training and decoding, refers to [1].
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2.2 Word-Graphs

A WG represents very efficiently a huge number word sequence hypotheses whose
posterior probabilities are large enough, according to morphological character
likelihood and prior (language) models, used to decode a text line image, rep-
resented as a sequence of feature vectors. WGs also store additional important
data about these hypotheses; namely, alternative word segmentations and word
decoding likelihoods.

Formally, a WG is represented as a weighted directed acyclic graph whose
edges are labelled with words and weighted with scores derived from the HMM
(likelihood) and N -gram (prior) probabilities. It is defined as a finite set of
nodes Q and edges E, including an initial node νI ∈ Q and a set of final nodes
F ⊆ (Q−νI). Each node ν is associated with a horizontal position of x, given by
t(ν)∈ [0, n], where n is the length of x. For an edge (ν′, ν)∈E (ν′ 6= ν, ν′ 6∈F, ν 6=
νI), v = ω(ν′, ν) is its associated word and s(ν′, ν) is its score, corresponding to
the likelihood that the word v appears in the image segment delimited by frames
t(ν′) + 1 and t(ν).

A complete path of a WG is a sequence of nodes starting with node νI and
ending with a node in F . Complete paths correspond to whole line decoding
hypotheses. WGs considered in this work are unambiguous; that is, no two com-
plete paths exist in a WG which correspond to the same sequence of words.

2.3 Complexity Cost

It is well known that the computational complexity of the Viterbi algorithm is
linear with the length of x and the cost can be made largely independent of
the lexicon size and the overall size of the models used by means of well known
pruning techniques such as beam-search [5]. However, when the decoding process
includes WG generation, the overall computing cost is observed to grow very fast
with the WG size (exponentially with the WG size, according to [6]).

On the other hand, error correcting parsing carried out by CATTI on a WG
(see [1]) as well as the WG normalization process required by KWS, entails an
extra computational cost which mainly depends on the total number of WG
edges. However, according to [7], as well as to our own observations, this cost is
negligible; typically less than 1% of the total cost required for generating a large
WG.

3 Outline of WG-based CATTI and KWS Applications

3.1 WG-based CATTI Application

The CATTI system is presented in detail in [1]. In the CATTI framework, the
human transcriber is directly involved in the transcription process since he/she
is responsible of validating and/or correcting the HTR output.

The interactive transcription process starts when the HTR system proposes a
full transcript of a feature vector sequence x, extracted from a handwritten text
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line image. In each interaction step the user validates a prefix of the transcript
which is error free and introduces some amendment to correct the erroneous text
that follows the validated prefix, producing a new prefix p. At this point, the
system takes into account the new prefix and tries to complete it by searching
for a most likely suffix, ŝ, according to:

ŝ = arg max
s

P (s | x,p) ≈ arg max
s

p(x | p, s) · P (s | p) (1)

As in conventional HTR, p(x | p, s) can be approximated by HMMs and P (s | p)
by and n-gram model conditioned by p. The main difference is that now p is
given. Therefore, the search must be performed over all possible suffixes s of
p. This search is carried out using the WGs obtained during the recognition
process, achieving a very efficient, linear cost search [1]. This process is repeated
until a complete and correct transcript of the input signal x is reached.

3.2 WG-based Handwritten Image KWS

The WG-based KWS approach presented here is line-based. The goal is to de-
termine whether a given keyword is or is not in each text line image, no matter
how many occurrences of the word may appear in the line. According to [2], an
adequate global line-level measure S(v,x) to score the degree of presence of a
keyword v in a text line (represented by its feature vector sequence x), without
considering any specific position within the line image, is given by:

S(v,x)
def
= max

i
P (v | i,x) (2)

where the frame-level word posterior, P (v | i,x), is the probability that the
word v is present in the line image at position i (the index of a feature vector x).
In [2] it is shown how this probability can be directly and efficiently computed
by using WGs. Specifically, it can be obtained by considering the contribution of
all the WG edges labelled with v, which correspond to segmentation hypotheses
that include the frame i; that is:

P (v | i,x) ≈
∑

(ν′,ν)∈E:
v=ω(ν′,ν),
t(ν′)<i≤t(ν)

α(ν′) · s(ν′, ν) · β(ν)

β(νI)
(3)

where α(.) is the forward and β(.) backward accumulated path scores which can
be efficiently computed on the WGs by dynamic programming [8, 2].

4 Experiments

To compare the performance of both the CATTI and WG-based KWS ap-
proaches for different WG sizes, several experiments were carried out. The evalu-
ation measures, corpora, experimental setup and the results are presented next.
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4.1 Evaluation Measures

WG sizes effect on CATTI and KWS performances are assessed in terms of
effectiveness (accuracy) and efficiency (time and space requirements).

To asses the effectiveness of the CATTI system we use the word stroke ratio
(WSR). It can be defined as the number of word level user interactions necessary
to achieve the reference transcription of the text image considered, divided by
the total number of reference words. The WSR gives an estimation of the needed
human effort to produce correct transcriptions using the CATTI system.

For effectiveness assessment of the KWS approach, we employed the popu-
lar scalar measure called average precision (AP) [9]. The AP is based on the
standard recall and interpolated precision [10] measures, which are functions of
a threshold used to decide whether a score S(v,x) (see (2)) is high enough to
assume that a word v is in x. Actually, the AP is defined as the area under the
Recall-Precision curve.

On the other hand, computing times required for efficiency assessment are
reported in terms of total elapsed times needed using a dedicated single core of
a 64-bit Intel Core Quad computer running at 2.83GHz.

4.2 Corpora Description

Experiments were carried out on two different corpora: “Cristo-Salvador” (CS) [11]
and Parzival database (PAR) [12].2

CS is a XIX century Spanish manuscript which was kindly provided by the
Biblioteca Valenciana Digital (BiVaLDi). It is composed of 50 color images text
pages, written by a single writer and scanned at 300 dpi.

On the other hand, PAR is a medieval manuscript from the XIII century
refered to as St. Gall, collegiate library, cod. 857. It is composed by 45 pages,
written by multiple authors in the Middle High German language. Tab. 1 sum-
marizes statistical information of data partitioning used for each corpus.

Table 1. Basic statistics of the partition of the CS and PAR databases. OOV stands
for Out-Of-Vocabulary words.

CS

Training Test Total

Running Chars 35 863 26 353 62 216

Running Words 6 223 4 637 10 860

Running OOV(%) 0 29.03 –

# Lines 675 497 1 172

Char Lex. Size 78 78 78

Word Lex. Size 2 236 1 671 3 287

PAR

Training Valid Test Total

64 436 26 211 38 339 128 986

14 042 5 671 8 407 28 120

0 14.58 12.40 –

2 237 912 1 328 4 477

90 80 82 96

3 221 1 753 2 305 4 936

2 CS and PAR are publicly available for research purposes from
prhlt.iti.upv.es/page/data and www.iam.unibe.ch/fki/databases, respectively.
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4.3 System Setup

The line images of both the CS and PAR training partitions were used to train
corresponding character HMM models using the standard embedded Baum-
Welch training algorithm [5]. A left-to-right HMM was trained for each of the
elements appearing in the training text images (78 for CS and 82 for PAR),
such as lowercase and uppercase letters, symbols, special abbreviations, possible
spacing between words and characters, crossed-words, etc. Meta-parameters of
the HTR feature extraction modules for CS [1] and PAR [13], as well as cor-
responding HMM models, were optimized through cross-validation on the CS
training data and on the PAR validation data, respectively. The optimal num-
ber of states per HMM for CS was 14 with 16 Gaussian densities per state, and
8 states with 16 Gaussians per state for PAR.

The training set transcripts of both corpora were also used to train the respec-
tive 2-grams with Kneser-Ney back-off smoothing (for the PAR final evaluation,
the language model training includes also the validation data).

For each line image of the test partition, five WGs were obtained for the
following input degree values: 3, 5, 10, 20 and 40. All these WGs were generated
using the HTR system [1] with the previously trained models (HMMs and 2-
grams). Tab. 2 shows some statistics of the resulting WGs for different maximum
input degrees (Idg), along with the minimum word error rates (W (%)) [14] and
their average computing time generation (Tgen).

Table 2. Statistics of the CS and PAR WGs obtained for different Idg values. All the
figures are numbers of elements, averaged over all the generated WGs, with exception
of the minimum word error rates (W (%)) values. Tgen stands for the average WG
generation time (minutes). Standard deviation for Nodes, Edges and Words are below
±25% and ±35% of their average values for CS and PAR respectively.

CS

Idg Nodes Edges Words W (%) Tgen

3 66 182 31 40.9 3.2

5 175 796 57 38.7 4.2

10 670 6 008 128 36.7 7.1

20 2 416 42 990 279 34.9 15.0

40 7 600 272 850 530 33.6 36.3

PAR

Nodes Edges Words W (%) Tgen

38 102 22 18.8 1.5

80 346 38 16.3 2.0

224 1 831 77 15.1 3.8

618 9 751 153 14.3 6.8

1 643 51 951 297 13.6 16.5

The W (%) is a goodness property of WGs. For each WG, it has been com-
puted measuring, by dynamic programming [14], the minimum edit distance
from the reference to a word sequence hypothesis in the WG.

For CATTI, once the WGs were generated, the system used them directly
to complete the prefixes accepted by the user. For each interaction, the decoder
parsed the validated prefix p over the WG and then continued searching for the
suffix s that maximizes the posterior probability according to Eq. (1).

For KWS, the WGs were normalized and the frame-level word posterior prob-
abilities P (v | i,x) were computed according to Eq. (3). Finally, word confidence
scores, S(v,x), were computed from these probabilities as described in Eq. (2).
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4.4 Results and Discussion

Experiments with the WG-based application approaches described in Sec.3 were
carried out for the increasingly large WGs described in Sec. 4.3. For CATTI
application, in each of these five trials, the respective word stroke ratio (WSR)
along with the average time required to load the WG in the system and the
average interaction time (Twld and Tint in seconds) are reported in Table 3. In
addition, for the KWS application are shown the Average Precision (AP) and
the average indexing time (Tind in seconds).

Table 3. Left: CATTI WSR for different Idg values along with the average WG load
time and word interaction times: Twld and Tint (seconds). Right: KWS figure AP along
with the average indexing time: Tind (seconds). 95% confidence intervals are below ±1%
in PAR and ±3% in CS for WSR, and below ±0.01 in PAR and ±0.03 in CS for AP.

CATTI CS CATTI PAR
Idg WSR Twld Tint WSR Twld Tint

3 44.3 2 10−3 4 10−4 20.05 2 10−3 3 10−4

5 43.7 0.007 10−3 19.7 0.005 8 10−4

10 43.4 0.046 10−2 19.3 0.02 0.005
20 43.3 0.338 0.067 18.9 0.104 0.029
40 43.3 2.228 0.459 18.9 0.565 0.169

KWS CS KWS PAR
AP Tind AP Tind

0.699 10−5 0.878 10−5

0.715 8.7 10−4 0.888 2.2 10−4

0.720 3.9 10−2 0.893 2.1 10−2

0.722 3.1 10−1 0.894 1.9 10−1

0.722 2.1 0.895 1.05

From the results, we observe that for WG input degree values larger than 10,
the WSR (43.4/19.3 CS/PAR) of CATTI and the AP (0.720/0.893 CS/PAR)
of KWS do not improve significantly. On the other hand, the WSR/AP only
rises/drops about less than 2% by using very much smaller WGs (corresponding
to an input degree of 5, with around less than 6 times the number of WG edges
on average. As a result, the overall WG generation costs required using these
WGs become orders of magnitude lower than the costs incurred using the WGs
with largest input degree (see Tables 2 and 3).

Therefore, we conclude that an Indeg of 5 constitutes a very good trade-off
between CATTI and KWS accuracy and computing cost.

5 Remarks and Conclusions

Performance of two applications, CATTI and KWS, for handwritten document
images based on word graphs is studied in this paper. In these applications re-
spectively, interaction process and confidence scores are driven/computed using
word graphs generated during a decoding process of text line images using optical
HMMs and N -Gram language models. The specific work presented in this paper
focuses on how the performance of both applications is affected by using WGs
of different sizes, where WG size is controlled by limiting the node maximum
input degree during WG generation.

From the reported WSR and AP figures, no significant differences are ob-
served for WG input degrees equal to or larger than 5. For this input degree,
the word graphs are really small, in the order of hundred of nodes and edges
on the average. Such word graphs not only allow extremely fast computing of
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the CATTI interactive process and the required line-level KWS word confidence
scores, but also can themselves be generated with low extra computing cost with
respect to the standard Viterbi decoding computing cost.

These estimates can be used to gauge the computational resources that will
be needed for performing CATTI and WG-based KWS on massive collections of
handwritten document images.
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