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Atomistic models are a very valuable simulation tool related with material engineering. This
is the case of the Continuous Cellular Automata (CCA), that can simulate accurately the pro-
cess of chemical etching used in Micro-Electro-Mechanical-Systems (MEMS) micromachining,
which can create a wide range of three-dimensional structures. Due to CCA atomistic nature,
simulation results are represented as a cloud of points, so data visualization has been usu-
ally problematic. When using these models as part of a CAD tool, good data visualization
is very important. In this paper, a minimum energy model implemented with the Level Set
(LS) method for improve the visual representation related to MEMS engineering is presented.
In addition, the Sparse Field Method (SFM) has been applied to reduce the high computa-
tional cost of the original LS. Finally, some reconstructed surfaces with completely different
topologies are presented, proving the effectiveness of our implementation and how is capable
of produce any surface, flats and smooth ones.
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1. Introduction

Anisotropic wet chemical etching is one of the most popular bulk micromachining
methods for the fabrication of Micro-Electro-Mechanical Systems (MEMS). By
using this process it is possible to get suspended microstructures with both flats and
smooth surfaces. Another interesting point of this process is its low cost. However,
the final result of a particular etching process depends on many factors so it is hard
to predict the resulting structure. Some of these factors are: the crystal orientation
of the surface, the applied etchant (e.g., potassium hydroxide (KOH) or tetra-
methylammonium hydroxide (TMAH)), etchant concentration, temperature or the
inclusion of additives, such as Triton X-100 [33] or isopropyl alcohol [41, 45, 46].

In order to ease the MEMS design, an important effort has been made through
last years in order to accurately model and simulate the process for microengi-
neering applications. First simulators of the wet etching process were based on
geometrical models [8] which understand the etching process as a set of moving
flats.

On the other hand, Cellular Automata (CA) models the moving surface as a
collection of points that represent the substrate. The etching process is simulated
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by making surface atoms to disappear according to some microscopic rules, letting
the neighbouring sites to emerge into the surface. The first CA models used to
simulate the wet etching process are based on stochastic models [39], but many
models based on deterministic CA have been presented in recent years [9, 10, 18,
24]. Specially, the Continuous CA (CCA) [44] has demonstrated to be the most
accurate. This model takes into account several physical phenomena, such as the
step flow process [17, 19], in order to accurately simulate wet etching process. Also,
some accelerations of simulations have been presented [14, 15] and the CCA based
simulator IntelliEtch [25] has the capability of execute the algorithm on Graphics
Processing Units (GPU) reducing drastically the simulation times. The CA models
are currently accepted as the most adequate models for simulating this process in
terms of performance and accuracy.

Despite the accurate results obtained with CCA, the final result is a cloud of
unconnected points, so it is hard to visualize correctly some details of the surface,
specially at complicated topologies. In addition, the CCA approach introduces
noise due to the calibration process required for obtaining the atomistic etch rates
from the experimental macroscopic measurements [20]. The method currently used
in [25] for improving the result visualization is to shade the points depending on
its normal vector, but in complex morphologies of some structures the shading
accuracy of the method is not good enough and adds too much noise, so the visu-
alization quality decreases greatly. Thus, in order to improve the final visualization
it is necessary to obtain a continuous surface from the information of unconnected
points. Also, it is important to consider all the different kinds of topologies that can
be obtained due to anisotropic wet etching. There are many methods for surface
reconstruction [5, 11, 23, 30, 31]. Specially, triangulation methods such as Delaunay
triangulations and Voronoi diagrams are very popular [6, 7, 13]. Although these
techniques can provide suitable results in many applications, they are not adequate
when the data is noisy. Furthermore, they generally require a constant density of
points, and in some CCA results of a wet etching process there are complex parts
that only are formed by a few atoms, decreasing the accuracy at those sensitive
structures. On the other hand, the LS method has proven to be robust even when
the data is noisy and is formed by different densities [42, 43]. Accordingly, in this
study an implementation of the Level Set (LS) method is presented.

The rest of the paper is organized as follows. The fundamentals of LS method as
well as numerical techniques needed are introduced in section 2. The optimization
implemented to reduce computation cost is also explained in this section. In sec-
tion 3 the algorithm developed to reconstruct surfaces is shown. This is followed
by the reconstructed surfaces of some examples shown in section 4. The improve-
ment obtained with our method is proved by comparing the results with the CCA
simulator results, and also performance data is presented. Finally, conclusions of
this study are shown.

2. Level Set method applied to surface reconstruction

LS method was introduced for capturing moving fronts [32], however this method
has been used in many fields, such as: image segmentation [34], inverse problems
[35], seismology [37] and also chemical etching [2-4]. The main idea of this method
consists in embed the front z(¢) in a signed distance function ¢ such as ¢ (z(t),0) =
0. Therefore, the movement is applied to the function ¢ instead of the front itself.
In the specific case where the movement is in the normal direction, the equation



movement is known as LS equation and turns out:
¢r+ R (x(t),t) [V =0 (1)

where R (x(t),t) is the velocity of the front in its normal direction. This velocity
at front points is determined by the physical laws of the process being simulated.
We assume that this velocity is defined on the whole domain. The LS equation can
also be written in Hamilton-Jacobi form:

¢t + H (Vo (2(t),1)) =0 (2)

where H = R(z(t),t) |V¢| is the Hamiltonian. A Hamiltonian is convex if the
following condition is satisfied:

0*H
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where ¢, and ¢, are the spatial derivatives of ¢ (x(t),t) respect of z and y dimen-
sions respectively. In the case of a convex Hamiltonian, Osher et al. [32] presented
an upwind difference scheme in order to choose appropriately spatial derivatives of
¢ to ensure the convergence of the front. On the other hand, when the Hamiltonian
depends on the geometry of the front, usually condition (3) is not satisfied and this
technique cannot be applied.

In the LS method, the zero-level of the ¢ function is the propagating front be-
tween both phases, and the main idea when LS is applied to surface reconstruction
is to build an initial surface exterior to the cloud of points, embed it in the ¢ func-
tion and move it to the cloud until it is close enough. Despite several models for
LS image reconstruction have been presented [28, 40], in this study the minimal
energy model presented in [43] has been chosen due to this model does not need
any additional information, only the data points (from now on referred as set S),
and also because CCA resulting data set can present very different topologies. This
energy model defines an energy function of a surface which is proportional to the
sum of the distance values of those points that form the surface.

This energy function is defined as:

B(T) = [ /F dz’stm(f)ds} v (4)

where I is a surface, ds the surface area, m € [1,4+00) variates the smoothness
of the surface and dist(Z) is the unsigned distance between surface points and
the S points. In this study, we have determined that m = 1 is a good choice to
obtain accurate results. In this model, a minimal energy surface is reached as a
final solution, so initial surface is evolved following the gradient descent of the
energy function. Thus, by extending this variation to the rest of the ¢ levels, the
movement equation turns out:

b = |Vdist(@) - N + disi(#)x] [Vl (5)

where N is the normal vector and & is the local curvature. The first term of
equation (5) needs to be solved with upwind differencing technique since it satis-
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fies the equation (3). In this study first order derivatives has been used as they have
demonstrated to be sufficiently accurate and they are the least expensive computa-
tionally. However, if more accuracy would be required, the order of these derivatives
could be increased, e.g. using Weighted Essential Non-Oscillatory scheme [26].

On the other hand, when ¢ is a signed distance function, the curvature can be
defined by k = ¢z + ¢yy + ¢... Upwind differencing scheme cannot be applied
to solve this term since it depends on local geometry of the surface, thus, due
to the second derivatives of k, we use central second order derivatives to ensure
convergence. Because of this derivatives, it is necessary to take a time step propor-
tional to grid resolution squared ((Ax)?). We use a first order forward Euler time
discretization since it is the least computationally expensive. Thus, equation (5)
results:

o™t = ¢ + At[VDV¢" 4+ DK"|V¢"|] (6)

where D is the distance matrix between grid points and S set points.

2.1 Sparse Field Method

The LS method has a high computational cost (O(N?)), where N is the number of
grid points in each dimension, since every point of the three-dimensional grid needs
to be updated by equation (6). In order to reduce this computational cost Adal-
steinsson et al. introduced the Narrow Band (NB) optimization [1]. This technique
consists of updating only those layers of points which are within a close region of
the front itself. Applying this technique, computational cost is reduced to O(kN?),
where k is the width of the close region. Despite advantages of NB method, it is
still not optimum as more points than the strictly necessary are computed. Fur-
thermore, a mechanism is necessary to build the signed distance function every
time the front reaches the boundary of the close region, introducing an additional
computational cost.

In order to solve these problems, the Sparse Field Method (SFM) was introduced
[40]. SFM reduces the active region near to the front to only those points strictly
necessary to update the front, resulting in a computational cost of only (O(N?)).
Furthermore, in each time step, a new signed distance function is built, thus, it is
not necessary to apply any reinitialization technique [16].

In this study, only 3 sets of points need to be stored as lists to be updated,
namely: the list containing the points of the front (L0), the list which has outer
points at Az distance from the front (Lpl), and another list with the inner points
at Az distance from the front (Ln1). Notice that in this study, the signed distance
function ¢ has been taken to be positive outside the surface and negative inside
it. The rest of the points of the lattice that are not included in any list are kept
with constant values and do not need to be updated. Depending on the list where
each point is stored, the active points are labelled with different states: 1,0, —1
for Lpl, L0, Ln1 respectively. Figure 1 shows a two-dimensional example of a front
and the necessary lists of active points.

For each time step, only the new values of ¢ for those points included in L0
are calculated with equation (6). On the other hand, for points of Lpl (Lnl) the
algorithm searches for the nearest point belonging to L0 and add (subtract) Az
to the distance value. Finally, for every point of the front, the neighbouring points
that are not included in any list are added to the corresponding list Lpl or Lnl
depending on if the value is positive or negative. Our LS implementation only needs
backward and forward first order derivatives, thus only three voxels lists must be
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Figure 1. Two-dimensional example of a front. Green voxels represent the Lnl list, blue voxels form the
Lpl, orange voxels represent the L0 list used in SFM. Grey voxels are kept with a constant value. Also,
respective distance value ranges of each list are shown.

maintained. In order to increase the accuracy, a higher order k of derivatives can
be chosen, thus, the points at distance < |+ (k)Ax| need to be maintained in their
corresponding lists.

3. Algorithm implementation

In this section the algorithm developed to reconstruct the surface from the S points
obtained with the CCA simulator is presented. The pseudocode of our implemen-
tation based on SFM is the following:

(1) Build a uniform grid over the whole space occupied by S. The resolution
of the grid is chosen to be proportional to the minimal distance between S
points: Ax = n - min_dist, where n > 0 depending on the desired accuracy
of the final result. The value of min_dist is already known since we know
the crystallographic structure from the CCA model.

(2) Calculate distance matrix D. The direct form to calculate this matrix has
a computational cost O(N? - Ng) being Ng the number of S points and
N is the number of grid points in one dimension, since for each grid point
it is necessary to calculate the distance value with every S point and get
the minimum one. In order to reduce the computational cost, a growing
algorithm has been developed, which consists in:

1) Discretize S points over the grid and obtain the closest grid points.
Calculate exact distance value between those pairs of points.

2) These grid points propagate the coordinates of its S closest point to
its neighbours grid points.

3) Those neighbouring points calculate the distance respect the S point
that have received. If more than one S point are received, the one
coming from the grid point with the smallest distance value is chosen.

4) Go to 2) until every grid point has calculated its own distance value.

With this growing algorithm, each grid point only needs to calculate a
single distance value and only accesses to its neighbouring points, thus,
the computational cost is reduced to O(N?3). Also, the mean relative error
respect of the exact distance matrix introduced by this algorithm is only
about 2%, and in our tests this approximation did not affect the final result.

(3) Find an initial surface exterior to S. An initial surface far from the S set
requires more steps to reach the final solution. We have found that a suitable
initial surface is formed by those exterior grid points that have a distance



value 2Ax. In order to find this initial surface the simple algorithm shown
in [42] has been used.

(4) Embed the initial surface into the signed distance function ¢. According to
SFM, it is only necessary to calculate distance for those points close to the
front whereas the rest of the points are kept to a constant value.

(5) Include points in its respective list depending on distance values.

(6) Calculate second order central derivatives of VD.

(7) Calculate time step At according to Courant-Friedrichs-Levy (CFL) con-

dition [12] for parabolic PDE. We have found that the maximum possible
A 2
2vma§{D} :

value of time step in order to avoid surface divergence is: At =
(8) Evolution surface loop:

1) Calculate the term V¢" with upwind differencing and first order
derivatives, and x|V¢™| with central derivatives for every points in-
cluded in list LO.

2) Calculate new values of ¢ with (6) and check if those new values are
still in LO range, i.e., for every point of this list:

o If (b?j,i < —0.5Az remove it from L0 and add it to changing status
list point Snl.

o If qﬁ?ﬁ > 0.5Ax remove it from L0 and add it to changing status
list point Spl.

3) For every point (i, 7, k) of Lpl list:

i. Find the LO point (iy, jn,kn), among its neighbours, with the
smallest distance value ¢; ; . and update its distance value ¢; ;
by adding Ax to the value of this point, such as: ¢; ;1 = ¢;, . k., +
Az. If this new value is within L0 range, set it to SO.

ii. If no LO neighbour point is found, the point (i, j, k) is removed
from list Lpl.

4) For every point (7, j, k) of Lnl list:

i. Find the LO point (iy, jn, kn), among its neighbours, with the
maximum distance value ¢;, ; 1. and update its distance value
¢,k by subtracting Az to the value of this point, such as: ¢; j =
G, gk — Ax. If this new value is within L0 range, set it to S0.

ii. If no LO neighbour point is found, the point (3,7, k) is removed
from list Lnl.

5) For every Spl point:

i. Add it to Lpl list.

ii. Change state to 1.

iii. Remove it from Spl list.

6) For every Snl point:

i. Add it to Lnl list.

ii. Change state to —1.

iii. Remove it from Sn1 list.

7) For every SO point:

i. Add it to L0 list.

ii. Change state to 0.

iii. Remove it from SO list.

8) For every point (i, j, k) of L0 list:

i. Search for neighbouring points with state = 2, (inp, jnp, knp), and:
e Change state to 1.

e Update its distance value ¢; ;.
e Add it to Lpl list.
ii. Search for neighbouring points with state = —2, (inn, Jnn, knn ),

= Qijk + AL

np



and:
e Change state to —1.
e Update its distance value ¢;  j & == ¢ — Ax.
e Add it to Lnl list.
9) Go to step (8) until the surface is close enough to the S set points.
(9) Extract final surface from signed distance function and represent it. We use
marching cubes [29] method in order to solve this step.

The computational cost of our implementation is primarily due to step (8), i.e.
the evolution loop of the front, which represents about 50-75% of the total execution
time, depending on the morphology of the structure and the resolution of the grid.
Step (2) is also relevant, representing 22-42% of the simulation time. Thus, steps
(8) and (2) altogether represent about 95% of the simulation time. Table 1 shows
the simulation time of these parts of the algorithm for several sizes of the grid
when executing example a) of figure 2. The results show that the scaling behaviour
of the whole algorithm is not exactly O(N?) due to the high computational cost
of step (2). Nevertheless, the computational time of step (8) scales more accord to
O(N?) behaviour.

Grid size Execution time (s) Step (2) Step (8)
143x406x19 16.3 6.3(2)/38% | 9.4(s)/57%
274x800x 26 40.6 8.9(s)/22% | 29.6(s)/73%
535 % 1588 x40 175.1 15.5(s)/26% | 45.5(3)/65%

Table 1. Computational time of the total execution, step (2) and step (8) of the algorithm, for different grid
sizes of the experiment shown in figure 2. The data shown in third and fourth column are the time required by
the corresponding step and the fraction of the total execution that represents.

4. Results

In this section some reconstructed surfaces with our implementation are shown,
as well as performance results. The implementation is developed in pure Java and
the testing machine consists of an Intel Core i7 at 2.8 GHz with 8 GB of RAM with
64 bit Windows-based server Java Virtual Machine version 1.7.0_03. In addition,
results obtained with CCA method [25] are also shown in order to compare the
improvement obtained with the proposed technique. Three examples of experiments
are collected in figure 2. Notice that shading points technique has been applied to
the direct CCA cloud of points in order to obtain the CCA results shown in blue.
Figures represented in green show the results of the reconstructed surface with
our LS method implementation. Gouraud technique [22] is applied to shade the
surfaces.

The first example is a three-axis accelerometer presented in [36]. Second example
are microneedles [38] used for drug delivery and the last example is a wagon wheel
experiment [21] used to characterize the anisotropy of a particular etchant. Some
figures show a closeup image of some parts of the main structures and they clearly
show the improvement obtained respect to the point cloud of the CCA simulator.

Despite of the completely different topologies that present these three experi-
ments, our LS implementation has been able to reconstruct all of them. In addi-
tion, the final surfaces are always continuous even in those complicated parts of
the structures. Thus, details of the final structures can be easily visualized. This
improvement is clearly shown in example c¢) of figure 2 since the spokes of the
wheel are very thin and it is difficult to determine correctly the normal vector cor-
responding to each atom for the CCA model. In contrast, our LS implementation
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Figure 2. Surfaces reconstructed with our implementation represented in green. Figures represented in
blue are the shaded point cloud solution obtained with CCA simulator [25]. a)Three-axis accelerometer
[36], b)microneedles [38] and c)wagon wheel [21].

[a) b)

Figure 3. Comparison between the profile representation of the implemented SFM a) and the CCA method
b). These profiles corresponds to a plane of the example shown in figure 2 a).

is able to reconstruct the surface flawlessly.

Although the atoms of a plane follow the crystallographic structure of the silicon,
our implementation represents the planes of the structures as continuous regular
surfaces. This feature improves the visualization of the final results as can be
observed explicitly in figure 3.

On the other hand, the curvature dependency of the SFM tends to soften the
corners as shown in example a) of the figure 2. Depending on the fabricated MEMS
purpose, flats intersections might be relevant, thus, in those cases a larger grid
should be used to obtain better accuracy.

Performance data of these simulations is collected in table 2. The second column
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shows the size of the built grid, the third one shows the number of the points
produced by CCA simulator, the fourth column is the number of iterations needed
to converge, the fifth one collects the time required by LS algorithm to converge
and finally the time required by the CCA simulations are also shown. The CCA
times are obtained when executing the method on a GPU Nvidia GeForce 260GTX.

Grid size | Points of S | Iterations | LS time (s) | CCA time (s)
a) | 274x800x26 1109390 73 40.6 10.7
b) | 212x212x117 287034 70 19.4 58.2
c) | 352x352x49 785471 60 35.1 26.3
Table 2. Summary of the parameters used to obtain simulations results shown in figure 2. Simulations times

required by the CCA approach are also presented.

Due to SFM and the low order derivatives that have been used, time required
by LS algorithm to converge is only about a few tens of seconds even at example
¢) which has a grid of more than 6 millions points. On the other hand, due to the
optimized GPU-based CCA simulation times are in the same order of magnitude
than the visualization process itself, our SFM visualization technique can be used
as a final procedure to improve the representation of the MEMS structure. Never-
theless, our algorithm can also take advantage of the acceleration process offered
by the massively parallel platforms GPUs as proved in other other studies [27, 34],
leaving the possibility of further acceleration processes.

5. Conclusion

In this study it has been demonstrated that:

e LS method is capable to improve visual representation of CCA applied to
anisotropic wet etching.

Our implementation has been able to reconstruct all the tested topologies types.
Due to SFM optimization, execution time is only about tens of seconds.

First order derivatives are sufficient to get a good level of details.

Since the optimized GPU-based CCA simulations requires similar time than the
LS visualization technique, the presented implementation can be used as a final
procedure to improve the representation of the MEMS structures.

By using our implementation of the L.S method, the visual representation of CA
based simulators is improved, so it can be very useful to ease the design of MEMS.
In addition, execution time could be reduced even more if the algorithm is adapted
to a many-core platform like GPUs, as it has been demonstrated previously on
similar LS methods [27, 34].
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