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Abstract

For a {k}-involutory matrix R ∈ C
n×n (that is, Rk = In) and s ∈ {0, 1, 2, 3, . . . },

a matrix A ∈ C
n×n is called {R, s + 1, k}-potent if A satisfies RA = As+1R. In

this paper, a matrix group corresponding to a fixed {R, s + 1, k}-potent matrix is
explicitly constructed and properties of this group are derived and investigated. This
constructed group is then reconciled with the classical matrix group GA that is
associated with a generalized group invertible matrix A.
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1 Introduction

For a matrix A ∈ C
n×n, the group inverse, if it exists, is the unique matrix A# satisfying

the matrix equations

AA#A = A, A#AA# = A#, AA# = A#A. (1)

It is well known that A# exists if and only if rank A2 = rank A. Further information on
group inverses and their applications can be found in [4], and a collection of results on the
importance of group inverses of certain classes of singular matrices in several application
areas can be found in the recent book [5]. Theorem 7.2.5 in [4, pp. 124] states that a

∗Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA.
E-mail: catralm@xavier.edu.
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square matrix A of rank r > 0 belongs to a (multiplicative) matrix group GA if and only
if rank A2 = rank A. In this case, A ∈ C

n×n has the canonical form

A = P

[

C O
O O

]

P−1, (2)

where P ∈ C
n×n and C ∈ C

r×r are nonsingular matrices. The matrix group GA corre-
sponding to A is then given by

GA =

{

P

[

X O
O O

]

P−1 : X ∈ C
r×r, rank(X) = r

}

. (3)

The identity element in GA is

E = P

[

Ir O
O O

]

P−1,

where Ir ∈ C
r×r is the identity matrix, and the inverse of A in this group is

Ag = P

[

C−1 O
O O

]

P−1.

Some results related to matrix groups on nonnegative matrices can be found in [1].
Note that the inverse Ag of A in GA satisfies the matrix equations in (1), and by

uniqueness, Ag = A#; the identity element E in GA satisfies E = AA# = A#A.
For p ∈ {2, 3, . . . }, a matrix A is called {p}-group involutory if the group inverse of A

exists and satisfies A# = Ap−1; in such a case, an equivalent condition is that Ap+1 = A
(see [2, 3]).

Throughout this paper we will use matrices R ∈ C
n×n such that Rk = In where k ∈

{2, 3, 4, . . .}. These matrices R are called {k}-involutory [11, 12, 14], and they generalize
the well-studied involutory matrices (k = 2). Note that the definition given in [11, 12]
differs from that in [14]; in this paper we adopt the definition given in [14], namely that R
is {k}-involutory does not require that k be minimal with respect to Rk = I.

Let R ∈ C
n×n be a {k}-involutory matrix and s ∈ {0, 1, 2, 3, . . . }. A matrix A ∈ C

n×n

is called {R, s + 1, k}-potent if it satisfies

RA = As+1R. (4)

These matrices generalize centrosymmetric matrices (that is, matrices A ∈ C
n×n such that

AJ = JA where J is the n× n antidiagonal matrix; see [13]), the matrices A ∈ C
n×n such

that AP = PA where P is an n × n permutation matrix (see [10]), and {K, s + 1}-potent
matrices (that is, matrices A ∈ C

n×n for which KAK = As+1 where K2 = In; see [7, 8]).
For a study of {R, s + 1, k}-potent matrices we refer the reader to [6] where, in particular,
the following characterization was given.

Theorem 1. [6, Theorem 1] Let R ∈ C
n×n be a {k}-involutory matrix, s ∈ {1, 2, 3, . . . },

ns,k = (s + 1)k − 1, and A ∈ C
n×n. Then the following conditions are equivalent:
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(a) A is {R, s + 1, k}-potent.

(b) A is an {ns,k}-group involutory matrix and there exist disjoint projectors P0, P1, . . . , Pns,k

with

A =

ns,k
∑

j=1

ωjPj and

ns,k
∑

j=0

Pj = In,

where ω = e
2πi

ns,k , and Pj = O when ωj /∈ σ(A) and P0 = O when 0 /∈ σ(A), and such
that the projectors P0, P1, . . . , Pns,k

satisfy

(i) For each i ∈ {1, . . . , ns,k − 1}, there exists a unique j ∈ {1, . . . , ns,k − 1} such
that RPiR

−1 = Pj,

(ii) RPns,k
R−1 = Pns,k

, and

(iii) RP0R
−1 = P0.

(c) A is diagonalizable and there exist disjoint projectors P0, P1, . . . , Pns,k
satisfying condi-

tions (i), (ii), and (iii) given in (b).

In [9], a matrix group constructed from a given {K, s+1}-potent matrix was presented
and studied. The goal of this paper is to construct a matrix group corresponding to a given
{R, s+1, k}-potent matrix. We then reconcile this constructed group with the matrix group
GA given in (3).

2 First results

In this section we assume s ≥ 1. We now establish properties of {R, s + 1, k}-potent
matrices.

Lemma 1. Suppose that A ∈ C
n×n is an {R, s + 1, k}-potent matrix. Then the following

properties hold.

(a) A(s+1)k

= A.

(b) A# = A(s+1)k
−2 and the group projector AA# satisfies AA# = A(s+1)k

−1.

(c) (A(s+1)k
−1)j = A(s+1)k

−1 for every j ∈ {1, 2, 3, . . . }.

(d) RpAj = Aj(s+1)p

Rp for every p ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , (s+1)k−1}. In particular,
Rp and A(s+1)k

−1 commute, the matrices Aj are {R, s+1, k}-potent and A is {Rp, (s+
1)p − 1, k}-potent.

(e) (AjRp)m = Aj[(s+1)mp
−1]/[(s+1)p

−1]Rmp, for every j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈
{1, 2, . . . , k}, m ∈ {1, 2, . . . , k}. In particular,

(e)’ (AsR)m = A(s+1)m
−1Rm for every m ∈ {1, 2, . . . , k}.
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(f) For every j, ` ∈ {1, 2, . . . , (s + 1)k − 1}, p,m ∈ {1, 2, . . . , k}, (AjRp)(A`Rm) = A`′Rp′,
where `′ ≡ `(s + 1)p + j [mod ((s + 1)k − 1)] and p′ ≡ p + m [mod (k)].

(g) (AjRp)A(s+1)k
−1 = A(s+1)k

−1(AjRp) = AjRp, for every j ∈ {1, 2, . . . , (s + 1)k − 1},
p ∈ {1, 2, . . . , k}.

(h) For every j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}, the following equalities hold:
(A`Rk−p)(AjRp) = (AjRp)(A`Rk−p) = A(s+1)k

−1, where ` is the unique element of
{1, 2, . . . , (s + 1)k − 1} such that ` ≡ −j(s + 1)k−p [mod ((s + 1)k − 1)].

(i) (AR)ks+1 = AR.

Proof. Statements (a) and (b) were proved in [6]. Using (a),

(A(s+1)k
−1)2 = A(s+1)k

A(s+1)k
−2 = AA(s+1)k

−2 = A(s+1)k
−1,

and now (c) follows by induction.
We next prove (d). First note that

RAR−1 = As+1 (5)

implies RAjR−1 = Aj(s+1), for all j ≥ 1. Thus, if A is {R, s + 1, k}-potent then so is Aj

for all j ≥ 1. In particular, let j = s + 1. Then

RAs+1R−1 = A(s+1)2 , (6)

and (5) and (6) gives R2AR−2 = A(s+1)2 . By induction, RpAR−p = A(s+1)p

for all p ≥ 1.
Since for all j > 1, Aj is also {R, s + 1, k}-potent, it follows that RpAjR−p = Aj(s+1)p

for
all j ≥ 1 and all p ≥ 1. This proves (d).

For (e), the equality is clear for m = 1. For m = 2, we have

(AjRp)2 = AjRpAjRp

= AjAj(s+1)p

R2p, by (d)
= Aj(1+(s+1)p)R2p.

The general case (AjRp)m = Aj[1+(s+1)p+(s+1)2p+...+(s+1)(m−1)p]Rmp follows by induction. The
identity [(s + 1)p − 1][(s + 1)(m−1)p + · · · + (s + 1)p + 1] = (s + 1)mp − 1 yields the result.
For the proof of (e)′, it is enough to set j = s and p = 1 in (e).

Statement (f) follows easily from (d). Next, by using (c) and (d),

(AjRp)A(s+1)k
−1 = AjA(s+1)k

−1Rp = Aj−1A(s+1)k

Rp = Aj−1ARp = AjRp

for every j ∈ {1, 2, . . . , (s + 1)k − 1} and p ∈ {1, 2, . . . , k}. This proves one equality in (g).
The other equality can be directly shown as

A(s+1)k
−1(AjRp) = A(s+1)k

Aj−1Rp = AjRp.
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For the proof of (h), let j ∈ {1, 2, . . . , (s + 1)k − 1}. By (d), there exists ` such that
(A`Rk−p)(AjRp) = A(s+1)k

−1 if and only if A`+j(s+1)k−p

= A(s+1)k
−1. This last equality

holds if and only if ` ≡ −j(s + 1)k−p [mod ((s + 1)k − 1)]. Using this value of ` we can get
`(s + 1)p ≡ −j(s + 1)k [mod ((s + 1)k − 1)]. Now,

(AjRp)(A`Rk−p) = AjA`(s+1)p

RpRk−p = Aj(s+1)k

A`(s+1)p

= Aj(s+1)k+`(s+1)p

= A(s+1)k
−1,

which leads to (h). Observe that ` ≡ −j(s + 1)k−p [mod ((s + 1)k − 1)] is equivalent to
j(s + 1)k ≡ −`(s + 1)p [mod ((s + 1)k − 1)].

Finally, by setting j = p = 1 and m = k in (e), we obtain

(AR)ks+1 = [(AR)k]sAR =

[

A
(s+1)k−1

s

]s

AR = A(s+1)k
−1AR = AR,

where the last equality follows from (a). This proves statement (i), and completes the
proof of Lemma 1.

3 Construction of the matrix group

Using Lemma 1, we construct, from a given {R, s + 1, k}-potent matrix, a matrix group
containing a cyclic subgroup of {R, s + 1, k}-potent matrices. Throughout this section we
assume s ≥ 1.

Theorem 2. Suppose A ∈ C
n×n is an {R, s+1, k}-potent matrix, and assume that Ai 6= Aj

for all distinct i, j ∈ {1, 2, . . . , (s + 1)k − 1}. Then the set

G = {AjRp : j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}}

is a group under matrix multiplication, and the following statements hold.

(a) A is an element of order (s + 1)k − 1, and the set

SA = {Aj, j ∈ {1, 2, . . . , (s + 1)k − 1}} (7)

is a cyclic subgroup of G. Moreover, SA is the smallest (in the inclusion sense) subgroup
of G that contains A, A#, and AA#.

(b) AsR and A(s+1)k
−1Rk−1 are elements of order k of G.

(c) (AsR)A(AsR)k−1 = As+1.

(d) The set SA is a normal subgroup of G and all its elements are {R, s + 1, k}-potent
matrices.

(e) The order of G is k((s + 1)k − 1) and G is not commutative.
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Proof. Properties (f)− (h) in Lemma 1 show that G is a group under multiplication with
identity element A(s+1)k

−1.
Statement (a) follows from properties (a) − (c) in Lemma 1 and the assumption that

the powers Ai are distinct for i ∈ {1, 2, . . . , (s + 1)k − 1}.
By setting m = k in property (e)′ in Lemma 1, we obtain (AsR)k = A(s+1)k

−1. On the
other hand, since A(s+1)k

−1 and Rk−1 commute by property (d) in Lemma 1,

(A(s+1)k
−1Rk−1)k = (A(s+1)k

−1)k(Rk)k−1 = A(s+1)k
−1,

proving statement (b).
By setting m = k − 1 in property (e)′ in Lemma 1, we obtain

(AsR)A(AsR)k−1 = AsRA(s+1)k−1

Rk−1 = AsA(s+1)k−1(s+1)RRk−1 = As+1.

proving statement (c).
For the proof of statement (d), let j, t ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}, and

` ∈ {1, 2, . . . , (s + 1)k − 1} such that j(s + 1)k ≡ −`(s + 1)p [mod ((s + 1)k − 1)]. Using
property (d) of Lemma 1, we obtain

(AjRp)At(A`Rk−p) = AjAt(s+1)p

RpA`Rk−p = AjAt(s+1)p

A`(s+1)p

RpRk−p = At(s+1)p

.

Hence, SA is a normal subgroup of G, and by setting p = 1 in property (d) in Lemma 1,
we find that the elements of SA are {R, s + 1, k}-potent matrices.

For the proof of statement (e), we show that the elements AjRp, j ∈ {1, . . . , (s+1)k−1}
and p ∈ {1, . . . , k}, are pairwise distinct.

First we show that for fixed p ∈ {1, . . . , k−1}, ARp 6= Aj for any j ∈ {1, . . . , (s+1)k−1}.
Otherwise, ARpA = Aj+1, and using property (d) in Lemma 1, A(RpA) = A(A(s+1)p

Rp) =
A(s+1)p

(ARp) = A(s+1)p+j. But then, Aj+1 = A(s+1)p+j, contradicting the assumption
that the powers Ai are pairwise distinct for i ∈ {1, . . . , (s + 1)k − 1}. Next, since for
p ∈ {1, . . . , k − 1}, ARp 6= Aj for any j ∈ {1, . . . , (s + 1)k − 1}, it follows that for any ` ∈
{1, 2, . . . , (s+1)k−1} and p ∈ {1, . . . , k−1}, A`Rp 6= Aj for any j ∈ {1, 2, . . . , (s+1)k−1}.
Finally, if AjRp = A`Rm for some j, ` ∈ {1, 2, . . . , (s + 1)k − 1} and p,m ∈ {1, . . . , k}
with (j, p) 6= (`,m), then AjRp−m = A`, contradicting the previous assertion. Thus, the
elements AjRp, j ∈ {1, . . . , (s + 1)k − 1} and p ∈ {1, . . . , k}, are pairwise distinct, and the
order of G is k[(s + 1)k − 1]. In order to show that G is not commutative, it is enough to
see that (AR)(As+1Rk−1) = (As+1Rk−1)(AR) gives A(s+1)2+1 = A(s+1)k−1+s+1 which leads
to a contradiction.

Theorem 3.1 (e) in [9] states that for a {K, s+1}-potent matrix, the associated matrix
group G either has order (s + 1)2 − 1 and is commutative, or has order 2((s + 1)2 − 1) and
is not commutative; Theorem 2 (e) now asserts that the former case does not occur.

We have shown that A, A#, and AA# belong to SA. Is In − AA# also an element of
the group G?
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Proposition 1. If A ∈ C
n×n is a nonzero {R, s + 1, k}-potent matrix then the eigenpro-

jection at zero does not belong to G, that is,

In − AA# /∈ G.

Proof. If we suppose that In − AA# ∈ G then there exist j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈
{1, 2, . . . , k} such that In −AA# = AjRp. Pre-multiplying by A we get Aj+1 = O, that is,
A is nilpotent. Since A is diagonalizable, we arrive at A = O, which is a contradiction.

Let H be the set defined by

H = {A(s+1)k
−1Rp : p ∈ {1, 2, . . . , k}}.

Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because
if g = A(s+1)k

−2 and h = A(s+1)k
−1Rp for p ∈ {1, 2 . . . , k − 1} then ghg−1 /∈ H.

Corollary 1. The group G is a semidirect product of H acting on SA.

Proof. Every element AjRp of G can be written as a product of an element of SA and
an element of H as AjRp = Aj(A(s+1)k

−1Rp) and this representation is unique. This
uniqueness follows from the fact that G has order k((s + 1)k − 1).

Observe that H ' Zk, SA ' Z(s+1)k
−1, and another way to see that G is isomorphic

to a semidirect product of Zk acting on Z(s+1)k
−1 is by considering its representation in

the form 〈a, b| ak = e, br = e, aba = bm〉 where m, r are coprime. Here r = (s + 1)k − 1,
a = AsR, b = A, m = s + 1.

Moreover, notice that the result presented in Corollary 1 describes the quotient group
G/SA. In fact, the natural embedding ι : H ↪→ G, composed with the natural projection
π : G → G/SA, gives an isomorphism between G/SA and H, which is represented in (8).

G
π

// G/SA

H

ι

OO

g

<<
y

y
y

y
y

y
y

y

(8)

We next reconcile the matrix group G given in Theorem 2 that is constructed from an
{R, s + 1, k}-potent matrix A, and the matrix group GA given in (3). We begin with the
following lemma.

Lemma 2. Suppose that R ∈ C
n×n is {k}-involutory, s ∈ {1, 2, 3, . . . }, and A ∈ C

n×n has
rank r > 0. Then A is {R, s + 1, k}-potent if and only if there exists a nonsingular matrix
P ∈ C

n×n such that

A = P

[

C O
O O

]

P−1, R = P

[

R1 O
O R2

]

P−1, (9)

where R1 ∈ C
r×r, R2 ∈ C

(n−r)×(n−r) are {k}-involutory, and C ∈ C
r×r is nonsingular and

{R1, s + 1, k}-potent.
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Proof. Suppose that A is {R, s + 1, k}-potent. Then A has index at most 1 and so it has
the form

A = P

[

C O
O O

]

P−1, (10)

where C ∈ C
r×r is nonsingular. We now partition R conformable to A as follows

R = P

[

R1 R3

R4 R2

]

P−1. (11)

Using expressions (10) and (11) we have that

As+1R = P

[

Cs+1R1 Cs+1R3

O O

]

P−1

and

RA = P

[

R1C O
R4C O

]

P−1.

Equating blocks,

Cs+1R1 = R1C, Cs+1R3 = O, and R4C = O.

Since C is nonsingular, R3 = O, R4 = O, and so

R = P

[

R1 O
O R2

]

P−1.

Using Rk = In, this last expression implies that R1 and R2 are both {k}-involutory. Hence,
C is {R1, s + 1, k}-potent.

The converse is trivial.

Recall that the elements of GA have a canonical form as given in (3).

Theorem 3. Suppose A ∈ C
n×n is an {R, s+1, k}-potent matrix, and suppose that Ai 6= Aj

for all pairwise distinct i, j ∈ {1, 2, . . . , (s + 1)k − 1}. If A and R are expressed as in (9)
then

G =

{

P

[

CjRp
1 O

O O

]

P−1 : j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}

}

.

Moreover, G is a subgroup of GA.

Proof. The description of the elements of G follows from Theorem 2 and Lemma 2. It is
clear that G ⊆ GA. Since C is {R1, s + 1, k}-potent, G is closed, hence G is a subgroup of
GA.
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4 Final remarks: the case s = 0

For the case s = 0 in (4), the matrix A satisfies AR = RA where Rk = In. Notice that
property (a) in Lemma 1 does not give any information. However, if there exists some
positive integer t such that At+1 = A and t is the smallest positive integer satisfying this
property, then we can construct the group G = {AjRp, j ∈ {1, 2, . . . , t}, p ∈ {1, 2, . . . , k}}
having similar properties as in the case s ≥ 1. If such an integer t does not exist, it is
impossible to construct the corresponding group, as the following example shows.

Example 1. Consider the matrices

A =





cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 2



 and R =





0 −1 0
1 0 0
0 0 1



 ,

for some α ∈ R, we have that R4 = I3, AR = RA and

Am =





cos(mα) sin(mα) 0
− sin(mα) cos(mα) 0

0 0 2m



 for all m ≥ 2.

In general, when s = 0 there is no relation between the existence of the group inverse of
A and of A being {R, 1, k}-potent. In Example 1 we have a {R, 1, 4}-potent matrix that is
nonsingular whereas in Example 2 below the given {R, 1, 4}-potent matrix does not have
a group inverse.

Example 2. Consider the matrices

A =





1 0 0
0 0 1
0 0 0



 and R =





i 0 0
0 1 0
0 0 1



 .

In this case, AR = RA, R4 = I3, but the group inverse of A does not exist.
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