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On a matrix group constructed from an
{R, s+ 1, k}-potent matrix
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Abstract

For a {k}-involutory matrix R € C™*" (that is, R¥ = I,,) and s € {0,1,2,3,...},
a matrix A € C™" is called {R,s + 1,k}-potent if A satisfies RA = A*T1R. In
this paper, a matrix group corresponding to a fixed {R, s + 1, k}-potent matrix is
explicitly constructed and properties of this group are derived and investigated. This
constructed group is then reconciled with the classical matrix group G4 that is
associated with a generalized group invertible matrix A.
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1 Introduction

For a matrix A € C™ ", the group inverse, if it exists, is the unique matrix A# satisfying
the matrix equations

AA*A = A, AFAA* = A# AA* = A* A (1)

It is well known that A* exists if and only if rank A? = rank A. Further information on
group inverses and their applications can be found in [4], and a collection of results on the
importance of group inverses of certain classes of singular matrices in several application
areas can be found in the recent book [5]. Theorem 7.2.5 in [4, pp. 124] states that a
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square matrix A of rank r > 0 belongs to a (multiplicative) matrix group G4 if and only
if rank A% = rank A. In this case, A € C™" has the canonical form

A:P[g 8}13-1, (2)

where P € C™" and C' € C™" are nonsingular matrices. The matrix group G 4 corre-
sponding to A is then given by

Gy {P l P } P X € C, rank(X) = 7’} | (3)

The identity element in G4 is

(5L 07 ..
E_P[OO]P,

where I, € C"™*" is the identity matrix, and the inverse of A in this group is

c1 O
g __ —1
A_P{ ; O}p |

Some results related to matrix groups on nonnegative matrices can be found in [1].

Note that the inverse A9 of A in G, satisfies the matrix equations in (1), and by
uniqueness, A9 = A#: the identity element F in G4 satisfies E = AA# = A7 A.

For p € {2,3,...}, a matrix A is called {p}-group involutory if the group inverse of A
exists and satisfies A” = AP~!: in such a case, an equivalent condition is that AP™! = A
(see [2,3]).

Throughout this paper we will use matrices R € C"*" such that R* = I, where k €
{2,3,4,...}. These matrices R are called {k}-involutory [11, 12| 14], and they generalize
the well-studied involutory matrices (k = 2). Note that the definition given in [11, 12]
differs from that in [14]; in this paper we adopt the definition given in [14], namely that R
is {k}-involutory does not require that k& be minimal with respect to R¥ = I.

Let R € C"*" be a {k}-involutory matrix and s € {0,1,2,3,...}. A matrix A € C"*"
is called {R, s + 1, k}-potent if it satisfies

RA = A*TIR. (4)

These matrices generalize centrosymmetric matrices (that is, matrices A € C™*™ such that
AJ = JA where J is the n x n antidiagonal matrix; see [13]), the matrices A € C"*" such
that AP = PA where P is an n x n permutation matrix (see [10]), and {K, s + 1}-potent
matrices (that is, matrices A € C"™ " for which KAK = A*™! where K? = I,,; see [7, 8]).
For a study of {R, s + 1, k}-potent matrices we refer the reader to [6] where, in particular,
the following characterization was given.

Theorem 1. [6, Theorem 1] Let R € C"*" be a {k}-involutory matriz, s € {1,2,3,...},
nsk = (s+1)" =1, and A € C™™. Then the following conditions are equivalent:
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(a) Ais{R,s+ 1, k}-potent.

(b) Avis an {ng}-group involutory matriz and there exist disjoint projectors Py, Py, ..., P,

? Ns k
with
Ns k Ns k

A:ijPj and Zszln,
j=1 Jj=0

where w = e , and P; = O when w? ¢ o(A) and Py = O when 0 ¢ o(A), and such
that the projectors Po, P1,. .., P, , satisfy

(1) For each i € {1,...,ns, — 1}, there ezists a unique j € {1,...,ns; — 1} such
that RP,R™ = P;,

(i) RP, ,R™' =P, ,, and
(iii) RPyR™! = B,
(c) A is diagonalizable and there exist disjoint projectors Py, P, ..., Py, satisfying condi-
tions (i), (ii), and (iii) given in (b).

In [9], a matrix group constructed from a given { K, s+ 1}-potent matrix was presented
and studied. The goal of this paper is to construct a matrix group corresponding to a given
{R, s+1, k}-potent matrix. We then reconcile this constructed group with the matrix group
G 4 given in (3).

2 First results

In this section we assume s > 1. We now establish properties of {R,s + 1, k}-potent
matrices.

Lemma 1. Suppose that A € C™*" is an {R, s + 1, k}-potent matriz. Then the following
properties hold.

(a) AGTD" = A,
(b) A#* = ATV =2 und the group projector AA# satisfies AA# = A+D* =1,
(¢) (AGHD =17 — AGHD* =1 for cpery j € {1,2,3,... }.

(d) RPAT = ATV RP for everyp € {1,2,...,k}, 7 €{1,2,...,(s+1)kF—1}. In particular,
RP and ATV"1 commute, the matrices A7 are {R, s+ 1, k}-potent and A is {RP, (s +
1)? — 1, k}-potent.

(e) (AIRPY™ = ATV UV =URme - for every j € {1,2,...,(s + k¥ — 1}, p €
{1,2,...k}, me{1,2,...,k}. In particular,

(e)’ (A*R)™ = ATV 1R™ for every m € {1,2,...,k}.



(f) For every j,0 € {1,2,...,(s+1)* =1}, pm € {1,2,...,k}, (AVRP)(A’R™) = AR
where ¢! = (s + 1) + j [mod ((s + 1)* — 1)] and p’ = p +m [mod (k)].

(9) (ATRPYAGTD =1 — AGHD*~L(AIRPY = AIRP, for every j € {1,2,...,(s + 1)¥ — 1},
pe{l,2,... k}.

(h) For every j € {1,2,...,(s+ 1)* =1}, p € {1,2,...,k}, the following equalities hold:
(A'RFP)(ATRP) = (AJRP)(A'RFP) = AGTD=1 where ( is the unique element of
{1,2,...,(s+ 1)k — 1} such that £ = —j(s + 1)*7P [mod ((s + 1)k — 1)].

(i) (AR)ks+1 = AR.
Proof. Statements (a) and (b) were proved in [6]. Using (a),

Y

(A(s+1)k71)2 — AGHDF gD =2 _ g g(s+D)F -2 _ A(s+1)’“f1

and now (c) follows by induction.
We next prove (d). First note that

RAR™! = Ast! (5)

implies RAVR™' = A7+t for all j > 1. Thus, if A is {R,s + 1, k}-potent then so is A’
for all j > 1. In particular, let j = s+ 1. Then

RAIR™ = AC+D”, (6)

and (5) and (6) gives RZAR2 = A6+’ By induction, RPAR™? = AGTD” for all p > 1.
Since for all j > 1, A7 is also {R, s + 1, k}-potent, it follows that RPA'R™P = A/ for
all 7 > 1 and all p > 1. This proves (d).

For (e), the equality is clear for m = 1. For m = 2, we have

(ARPY? = AJRPAIRP
_ WA R by (d)
QIO+ R2p.

The general case (A7 RP)™ = AT+ D (D)2 4+ (st D)7 pmo fo]16ws by induction. The
identity [(s +1)? — 1][(s + 1) VP 4. 4 (s + 1)P + 1] = (s + 1)™ — 1 yields the result.
For the proof of (e)’, it is enough to set j = s and p = 1 in (e).

Statement (f) follows easily from (d). Next, by using (c¢) and (d),

(AjR;D)A(SJrl)’“*1 — AAGED 1 pp AT AGED P — AT ARP — ATRP

for every j € {1,2,...,(s+1)* =1} and p € {1,2,...,k}. This proves one equality in (g).
The other equality can be directly shown as

AGTDS 14T RPY = Al 4071 RP — ATRP.
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For the proof of (h), let j € {1,2,...,(s+ 1)* — 1}. By (d), there exists ¢ such that
(A'RF-P)(ATRP) = AGHD"1if and only if A+ — AGHD"1 " This last equality
holds if and only if £ = —j(s+ 1)¥77 [mod ((s + 1)¥ — 1)]. Using this value of ¢ we can get
((s+1)P=—j(s+ 1)* [mod ((s + 1)* — 1)]. Now,

(AjRp)(AERk—p> — AJ ALY pp pk—p Aj(s+1)kA£(s+1)p _ Aj(s+1)k+€(s+1)p _ A(s+1)k71,
which leads to (h). Observe that £ = —j(s + 1)*77 [mod ((s + 1)* — 1)] is equivalent to

j(s+ 1)F = —l(s+1)? [mod ((s + 1)* — 1)].
Finally, by setting j = p =1 and m = k in (e), we obtain

a1 ]? &
(AR = [(AR)]*AR = {A”i} AR — ACY AR — AR,

where the last equality follows from (a). This proves statement (i), and completes the
proof of Lemma (1. O

3 Construction of the matrix group

Using Lemma [1, we construct, from a given {R, s + 1, k}-potent matrix, a matrix group
containing a cyclic subgroup of {R, s + 1, k}-potent matrices. Throughout this section we
assume s > 1.

Theorem 2. Suppose A € C™" is an {R, s+1, k}-potent matriz, and assume that A* # A’
for all distinct i,7 € {1,2,...,(s+ 1) —1}. Then the set

G={ARr: jec{l,2,....(s+1)" =1}, pe{l,2,.... k}}
s a group under matrix multiplication, and the following statements hold.
(a) A is an element of order (s +1)* — 1, and the set
Sy={A", je{1,2,...,(s+1)"—1}} (7)

is a cyclic subgroup of G. Moreover, S 4 is the smallest (in the inclusion sense) subgroup
of G that contains A, A", and AA*.

(b) AR and ATV ~1RE-1 gre elements of order k of G.
(¢) (A*R)A(AR)F1 = A+,

(d) The set Sa is a normal subgroup of G and all its elements are {R,s + 1, k}-potent
matrices.

(e) The order of G is k((s + 1)* — 1) and G is not commutative.



Proof. Properties (f) — (h) in Lemma [1lshow that G is a group under multiplication with
identity element A(+D*~1,

Statement (a) follows from properties (a) — (¢) in Lemma [1 and the assumption that
the powers A’ are distinct for i € {1,2,..., (s + 1) —1}.

By setting m = k in property ()’ in Lemma 1} we obtain (A*R)* = AG+D"~1 On the
other hand, since AT~ and RF~! commute by property (d) in Lemma 1,

stk _ st 1)k s 1)k
(A( +1) le l)k _ (A( +1) 1) (Rk) _ A( +1) 17

proving statement (b).
By setting m = k — 1 in property (e)’ in Lemma 1, we obtain

(ASR)A(ASR)k—l _ ASRA(S—i—l)’“*le—l _ ASA(S—f—l)k*l(s—i—l)RRk;—l _ AstL

proving statement (c).

For the proof of statement (d), let j,t € {1,2,...,(s+1)* =1}, p€ {1,2,...,k}, and
e {1,2,...,(s+ 1)* — 1} such that j(s + 1)* = —(s + 1)? [mod ((s + 1)* — 1)]. Using
property (d) of Lemma 1| we obtain

(AjRp)At(Aszip) A]At (s+1) RpAZRk p _ A]At(s+1 AE(SJrl Rka p _ At(erl)p.

Hence, S4 is a normal subgroup of G, and by setting p = 1 in property (d) in Lemma [1}
we find that the elements of S are {R, s + 1, k}-potent matrices.

For the proof of statement (e), we show that the elements A7RP, j € {1,...,(s+1)*—1}
and p € {1,...,k}, are pairwise distinct.

First we show that for fixedp € {1,...,k—1}, ARP # A’ forany j € {1,..., (s+1)*—1}.
Otherwise, ARPA = A7™! and using property (d) in Lemmar A(RPA) = A(A(5+1)pRp) =
Al+DP (ARP) = AGHD" - But then, A7T! = AGHD*H contradicting the assumption
that the powers A’ are pairwise distinct for i € {1,...,(s + 1)¥ — 1}. Next, since for
pe{l,....,k—1}, ARP # AJ for any j € {1,...,(s + ) — 1}, it follows that for any ¢ €
{1,2,...,(s+1)F—1} andpe{l,...,k—l},AeRp%AJ foranyje{l 2,...,(s+1)F—1}.
Finally, if A7RP = A‘R™ for some j, ¢ € {1,2,...,(s+ 1)* — 1} and p,m € {1,...,k}
with (j,p) # (¢,m), then AJRP~™ = A‘, contradlctmg the previous assertion. Thus, the
elements ATRP, j € {1,...,(s+1)*—1} and p € {1,...,k}, are pairwise distinct, and the
order of G is k[(s + 1)* — 1]. In order to show that G is not commutative, it is enough to
see that (AR)(ASTIRF-1) = (ASH1RF1)(AR) gives AGTD L — AG+D 145+l which leads
to a contradiction. O

Theorem 3.1 (e) in [9] states that for a { K, s+ 1}-potent matrix, the associated matrix
group G either has order (s+ 1)? — 1 and is commutative, or has order 2((s+ 1)? — 1) and
is not commutative; Theorem 2 (e) now asserts that the former case does not occur.

We have shown that A, A%, and AA* belong to Sa. Is I, — AA¥ also an element of
the group G?



Proposition 1. If A € C"" is a nonzero {R, s + 1, k}-potent matriz then the eigenpro-
jection at zero does not belong to G, that is,

I, — AA* ¢ G.

Proof. If we suppose that I, — AA# € G then there exist j € {1,2,...,(s+1)* -1}, p €
{1,2,...,k} such that I, — AA# = AJRP. Pre-multiplying by A we get A7l = O, that is,
A is nilpotent. Since A is diagonalizable, we arrive at A = O, which is a contradiction. [

Let H be the set defined by
H={ACT" IR e {1,2,... k}}.

Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because
if g= AT 2 and h = ATV IRe for p € {1,2..., k — 1} then ghg™' ¢ H.

Corollary 1. The group G is a semidirect product of H acting on S 4.

Proof. Every element A’RP of G can be written as a product of an element of S, and
an clement of H as ATRP = AI(AGHD"~1RP) and this representation is unique. This
uniqueness follows from the fact that G has order k((s + 1)¥ — 1). O

Observe that H ~ Zj, Sa =~ Z1yx—1, and another way to see that G is isomorphic
to a semidirect product of Zj acting on Zqyx_; is by considering its representation in
the form (a,b|a® = e,b" = e,aba = b™) where m,r are coprime. Here r = (s + 1)¥ — 1,
a=AR, b=A m=s+1.

Moreover, notice that the result presented in Corollary [1 describes the quotient group
G/S4. In fact, the natural embedding ¢ : H — G, composed with the natural projection
7w : G — G/Sy, gives an isomorphism between /S, and H, which is represented in (8]).

G—>G/Sa (8)

1A

H

We next reconcile the matrix group G given in Theorem 2/ that is constructed from an
{R,s + 1, k}-potent matrix A, and the matrix group G4 given in (3). We begin with the
following lemma.

Lemma 2. Suppose that R € C"*" is {k}-involutory, s € {1,2,3,...}, and A € C"™™™ has
rank r > 0. Then A is {R, s+ 1, k}-potent if and only if there exists a nonsingular matrix
P e C™" such that

o [c o] .. [R 07 ..
A_PL)O]P, R_P{O &]P, (9)

where Ry € C™7, Ry € Cv=X(=") gre {k}-involutory, and C € C™" is nonsingular and
{Ry,s + 1, k}-potent.



Proof. Suppose that A is {R, s+ 1, k}-potent. Then A has index at most 1 and so it has
the form

B c O 1
1=r[S 9]pm o
where C' € C™" is nonsingular. We now partition R conformable to A as follows
_ Ry Rs —1
R—P{R4 R2:|P . (11)

Using expressions and we have that

C*t'R, C*"'R
s+1 _ 1 3 —1
ATR=P { 0 0 } P
and c O
- Ry _1
RA=P { R.C O } P

Equating blocks,
C**"'R, = R,C, C*"Ry = O, and R,C = O.

Since C' is nonsingular, R3 = O, Ry = O, and so

R 07,
ner[® 0 ]p

Using R* = I,,, this last expression implies that R; and R, are both {k}-involutory. Hence,
Cis {Ry,s + 1, k}-potent.
The converse is trivial. O]

Recall that the elements of G4 have a canonical form as given in (3).

Theorem 3. Suppose A € C"*" is an {R, s+1, k}-potent matriz, and suppose that A* # A’
for all pairwise distinct i,j € {1,2,...,(s+ 1)* —1}. If A and R are expressed as in (9)
then

j PP
G:{p{c(fi1 g]P1:je{LZ”w@+lf—1Lpe{LZ”wH}.

Moreover, G is a subgroup of G 4.

Proof. The description of the elements of G follows from Theorem 2| and Lemma 2. It is
clear that G C G 4. Since C'is {Ry, s + 1, k}-potent, G is closed, hence G is a subgroup of
Ga. O



4 Final remarks: the case s =0

For the case s = 0 in (4), the matrix A satisfies AR = RA where R* = I,. Notice that
property (a) in Lemma [1 does not give any information. However, if there exists some
positive integer ¢ such that A" = A and ¢ is the smallest positive integer satisfying this
property, then we can construct the group G = {A7RP,j € {1,2,...,t},p€ {1,2,...,k}}
having similar properties as in the case s > 1. If such an integer ¢ does not exist, it is
impossible to construct the corresponding group, as the following example shows.

Example 1. Consider the matrices

cos(a) sin(a) 0 0 -1 0
A= | —sin(a) cos(a) 0 and R=|1 0 0|,
0 0 2 0 01
for some a € R, we have that R* = I3, AR = RA and
cos(ma) sin(ma) 0
A™ = | —sin(ma) cos(ma) 0 for all m > 2.
0 0 2m

In general, when s = 0 there is no relation between the existence of the group inverse of
A and of A being {R, 1, k}-potent. In Example[l we have a {R, 1, 4}-potent matrix that is
nonsingular whereas in Example 2 below the given {R, 1,4}-potent matrix does not have
a group inverse.

Example 2. Consider the matrices

A:

O O =
o O O
O = O

7
and R=10
0

O = O
_ o O

In this case, AR = RA, R* = I3, but the group inverse of A does not exist.

References

[1] A.N. Alahmadi, Y. Alkhamees, S.K. Jain. On semigroups and semirings of nonnegative
matrices, Linear and Multilinear Algebra, 60, 5, 595598, 2012.

[2] O.M. Baksalary, G. Trenkler. On K-potent matrices, FElectronic Journal of Linear
Algebra, 26, 446-470, 2013.

[3] R. Bru, N. Thome. Group inverse and group involutory matrices, Linear and Multi-
linear Algebra, 45 (2-3), 207-218, 1998.



[4]

[9]

[10]

[11]

[12]

[13]

[14]

S.L. Campbell, C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover,
New York, Second Edition, 1991.

S.J. Kirkland, M. Neumann. Group Inverses of M-Matrices and Their Applications.
CRC Press, London, 2013.

L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that RA = AST'R
when R* = I, Linear Algebra and its Applications, 439, 1017-1023, 2013.

L. Lebtahi, O. Romero, N. Thome. Characterizations of {K, s + 1}-potent matrices
and applications. Linear Algebra and its Applications, 436, 293-306, 2012.

L. Lebtahi, O. Romero, N. Thome. Relations between {K,s + 1}-potent matrices

and different classes of complex matrices. Linear Algebra and its Applications, 438,
1517-1531, 2013.

L. Lebtahi, N. Thome. Properties of a matrix group associated to a { K, s+ 1}-potent
matrix, Flectronic Journal of Linear Algebra, 24, 34-44, 2012.

J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, Linear Al-
gebra and its Applications, 150, 255-265, 1991.

W. F. Trench. Characterization and properties of matrices with k-involutory symme-
tries, Linear Algebra and its Applications, 429, 2278-2290, 2008.

W. F. Trench. Characterization and properties of matrices with k-involutory symme-
tries II, Linear Algebra and its Applications, 432, 2782-2797, 2010.

J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigen-
values and eigenvectors, American Mathematical Monthly, 2, 10, 711-717, 1985.

M. Yasuda. Some properties of commuting and anti-commuting m-involutions. Acta
Mathematica Scientia, 32B(2), 631-644, 2012.

10



