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Abstract

In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its ap-
plications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a
long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of
Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control:
from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control
design via some milestones, and key applications. The second part shows where we arrived and what the improve-
ments are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research
topics.

1. The sound of the past: Fuzzy Control’s first 40 years

Fuzzy control is almost as old as fuzzy sets themselves. However, its popularity and acceptance have been
(and, perhaps, still are) subject to fierce controversy. In order to recall to “young” readers what the atmosphere
from the old times was we will pick up some sentences from fuzzy opponents:

“Fuzzification” is a kind of scientific permissiveness. It tends to result in socially appealing slogans unaccompa-
nied by the discipline of hard scientific work and patient observation.

Prof. Rudolf Kalman Univ Florida, 1972 (cited in: [2])

Fuzziness is probability in disguise. I can design a controller with probability that could do the same thing that
you could do with fuzzy logic.

Prof. Myron Tribus, UCLA (Bayesian) on hearing of the fuzzy-logic control of the Sendai subway system, may 1988 [3]

Mamdani type control systems are only appropriate for “toy class” problems.
Prof. Michael Athans, MIT, debate “Fuzzy versus Conventional Control”, 1998 IEEE Conf. on Decision and Control [4]

However, this paper does not intend to make any polemic but it tries to give some thoughts travelling through
history. The reader interested in this history can refer to the Lotfi A. Zadeh’s paper “Is there a need for fuzzy
logic?” published in 2008 [5], that actually embraces a larger area than control.

Let us discuss how the specific area of fuzzy control originated and evolved from such not-too-friendly envi-
ronment in which, somehow, it is still immersed (see later).

1.1. The pioneers’ heuristic approach: 1965–1985, plus (later spawned) industrial applications

Initially, fuzzy control was based on natural language and model free synthesis. With three steps (so-called
fuzzification, inference, defuzzification), it allowed encoding a nonlinear mapping from the inputs (related to
trajectories’ reference, measured outputs) to the outputs (control actions) as a controller.

Let us recall therein the pioneering works of Pr Ebrahim Mamdani (passed in 2010) using linguistic synthesis
for fuzzy controllers [6]. This heuristic rule-based controller so-called Self-Organizing Controller (SOC) was
tested for a long series of experiments on various models, including SISO, MIMO linear, non-linear, with delays,
constraints on the inputs/outputs... and had interesting good capabilities [7]. The so-called “expert systems” were
nascent in the early 80s and big hopes were put onto them in many disciplines; control problems were one of them
[8].

The first industrial application was a cement kiln in Denmark [9] and thousands of them followed in vari-
ous fields: Washing machines, cameras (Canon), vacuum cleaner (Matsushita)... Micro-waves oven, conditioner
(Mitsubishi), showers... Train, lifts, helicopter... A remarkable increase is due to the program LIFE (Laboratory
for International Fuzzy Engineering) which took place in Japan in 1988: it included 45 industrials, only one was
coming from Europe.
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Let us quote also the first resounding application of the automatic Sendaı̈ metro in Japan [10], which where
based on more than 300,000 simulations and 3000 real-time tests improvements for stop precision (divided by 2.5)
comfort (increased x2) and consumption (decrease of 10%) were gained.

Another interesting application was Yamaichi Fuzzy Fund. This is a premier financial application for trading
systems. It handled 65 industries and a majority of the stocks listed on Nikkei Dow and consists of approximately
800 fuzzy rules. The system was tested for two years and its performance in terms of the return and growth
exceeds the Nikkei average by over 20 % [11]. One of the innovative and successful applications on fuzzy control
is helicopter control [12]. After several pioneer and excellent works being presented in the early 1990s, a large
number of studies on helicopter control have been conducted as a typical application of UAVs over the last two
decades. UAVs are, actually, a popular test bench for modern control and path planning applications.

At last, data compiled for the Berkeley Initiative in Soft Computing (BISC, www.cs.berkeley.edu/˜zadeh/
stimfl.html) about patents related to fuzzy logic (therefore larger than control) give the following figures in 2014:
number of fuzzy-logic-related patents issued and applied in WIPO (International): 50,999 (USA 22,000; China
25,454; European Union 3,268; Japan 7,100; . . . ). The reader interested in applications related to the area of fuzzy
control can find a recent overview in [13].

1.2. Decades 1985–2005: the model-based approach

Pioneering works, despite success stories for applications, suffered from a lack of proofs of key mathemat-
ical properties useful for analyzing closed-loop systems: stability, robustness and performances including pole
placement, H2 or H∞ attenuation; such properties were clearly established in the 80s for linear systems (see, for
instance, the celebrated paper [14]).

In this second period, new modelling paradigms for nonlinear systems allowed for such a possibility, with
important milestone theoretical achievements. However, the theory-practice gap widened and, basically, the vast
majority of today’s industrial applications of fuzzy control still rely on the heuristic rulebase ideas conceived in the
above earlier period.

1.2.1. Fuzzy modelling
In this period model-based approaches took the leading role in developments. Fuzzy models were expressed

as a blending of simpler models (linear ones, in the earlier literature) were the representation of choice: consider
the linguistic statements

IF z(t) isMi then η = θf,i ∗ wf (t) + θg,i ∗ wg(t) ∗ u, i = 1, . . . r

where Mi is a (possibly multi-dimensional) fuzzy set (with, maybe, a linguistic label) so that all Mi conform
a fuzzy partition (their associated memberships µi(z) adding one), z(t) are denoted as premise variables, θi are
constant model parameters, η is the model output (successor state, state derivatives, plant output, etc.), u is the
plant input, and wf (t), wg(t) are a vector (or matrix) of known regressors (actually functions of state and inputs,
i.e., wf (t) = wf (z(t), x(t), u(t))). The linguistic statement was to be understood as

η(z, t, u) =

r∑
i=1

µi(z(t)) (θf,i ∗ wf (t) + θg,i ∗ wg(t) ∗ u) (1)

The values of θi for a particular nonlinear plant could be obtained by identification (either via linear least-
squares ifMi were fixed [15], or via non-linear algorithms ifMi had to be also identified [16] by adjusting some
tunable parameters of the membership functions).

The so-called Takagi-Sugeno (TS) models [17], in which regressors at the consequent side were functions of
the state, have given rise to a plethora of successful fuzzy control designs. TS models are usually written as (only
continuous-time discussed, for brevity):

ẋ =

r∑
i=1

µi(z(t))(Aix+Biu), y =

r∑
i=1

µi(z(t))(Cix+Diu) (2)

and, in most cases, the premise vector is a subset of the state vector, z ≡ x. The relationship with linear paremeter-
varying (LPV) dynamic systems [18] is clear, so these models have also been labelled as quasi-LPV ones [19].

The history of TS fuzzy-model based control goes back more than two decades. The idea began around 1990,
when Tanaka and Sugeno published their seminal work [20, 21] introducing fuzzy model construction based on
sector nonlinearity (from first-principle models) and parallel distributed compensation (PDC) based on Lyapunov
Stability Theory [22]. The basic ideas and some key references will be discussed in Section 1.2.2.
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Regarding the accuracy of the identification-based approach, the universal function approximator paradigm
[23, 24] allowed to state that (with a high-enough number of rules and regressors in wf , wg) under very mild
assumptions any continuous function could be approximated to any desired degree of accuracy in a compact re-
gion. From that early qualitative assesment, the statistical learning theory was perfected and a cohesive treatment
emerged dealing with fitting linear, fuzzy, neural and other function approximators from raw data [25].

As a last modelling paradigm, uncertain parameters or nonlinearities can also be cast in the so-called Linear
Fractional Transformation form (LFT). This is a well-known modelling task prior to designing robust controllers,
see [26]. If the uncertain parameters are known this leads to gain-scheduling LPV solutions; the application of
these ideas to the fuzzy modelling context was proposed in [27]. It can be shown that, in some cases, LFT allows
representing rational expressions of nonlinearities with a lower number of rules than TS systems.

1.2.2. Model-based fuzzy control design
Several tracks have been followed to go from model-free to “classical” model-based designs. First of all, most

of the techniques used for nonlinear models can be applied to a TS model (which, obviously, can be seen as a par-
ticular case of nonlinear ones): feedback linearization, predictive control, adaptive control, sliding mode control,
control based on inverted models. . . “can” be used with fuzzy models. However, most of these techniques do not
explicitly use any specifically “fuzzy” feature of the used models, so using fuzzy models instead of nonlinear ones
doesn’t provide any particular advantage (and, sometimes, it has disadvantages). In a reverse case, interpolation
steps needed in other model-based techniques were proposed with fuzzy rules, for instance in sliding fuzzy control
in which a fuzzy rulebase can be used to interpolate the (hard) switching surface arising in sliding-mode control to
avoid chattering; however such fuzzification provides nothing significantly different to other options such as plain
linear interpolation [28].

A particular case of the above use of fuzzy models for other nonlinear tools is the following: as a nonlinear
map ẋ = f(x) can be expressed as the feedback interconnection between the linear system ẋ = Ax + η and the
non-linear static one η = f(x) − Ax, stability of TS systems (or that of linear systems with an static heuristic
fuzzy controller) can be evaluated via reformulations of classical linear-nonlinear feedback results such as circle,
Popov or frequency response (descriptive function) ideas, or multivariable generalisation of them (conicity). This
approach is pursued in the early works [29, 30] and some indices were also derived, based on Jacobian matrix, to
indicate how far from instability a fuzzy loop is [31, 32].

These results in the 90s were valuable, in the sense that they were a first step to prove stability of the “heuristic”
controllers of a nonlinear plant in a neighbourhood of the equilibrium, or that of some TS systems, but the approach
(linear plant plus static nonlinearity) didn’t provide flexible enough criteria for design and did not consider per-
formance measures such as H∞ bounds under disturbances. Indeed, by that time, optimal H2 and H∞ designs
for linear systems were well established, so there was a need to generalise such results to a non-linear setting in a
clearer way.

In that decade, the seminal linear matrix inequality (LMI) approach [33] for linear and uncertain systems
was quickly adopted in the fuzzy control community. In particular, there has been a flurry of research activities
on LMI-based fuzzy approaches after the remarkable work [34, 35] was presented; the well-known book [22]
summarises many key contributions in that respect in the 90s. The LMI approach to control was a “revolution”
in the 90’s in many aspects of control. The Riccati Equations for linear systems the 80’s were replaced by LMI
constraints in many extensions of the classical concepts to linear-nonlinear-uncertain-fuzzy-local-. . . stability and
control design problems. Given the existence of efficient convex-optimisation based software [36] to solve them,
since mid 1990’s, a control problem was considered solved once expressed as a set of LMIs; anyway, it is worth
noting that most of such LMIs actually pose only sufficient conditions for solving the problem (if feasible).

Indeed, the basic idea was posing controllers for (2) in the form u =
∑
µi(z)Fix (denoted as parallel dis-

tributed compensators, PDC), yielding closed loops in the form ẋ =
∑r
i=1

∑r
j=1 µi(z)µj(z)(Ai +BiFj), where

the right-hand-side term in the expression of ẋ conforms a so-called 2-dimensional fuzzy summation. From these
expressions, most fuzzy control results ended up in the need of proving a matrix inequality:

r∑
i=1

r∑
j=1

µiµjΞij > 0 (3)

for which some shape-independent1 relaxations in LMI form could be written. The simplest of it is, trivially,
Ξij + Ξji > 0. For instance, based on that relaxation, an straightforward LMI to prove quadratic stability for state

1Shape-independence entails proving (3) for any positive µi as long as they add one, instead of the specific “shape” µi(z); of course, this
might involve a lot of conservatism.
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feedback is (AiP + BiMj + AjP + BjMi) + (AiP + BiMj + AjP + BjMi)
′ > 0 for all 1 ≤ i ≤ j ≤ r. If

feasible, the PDC controller gains are Fi = MiP
−1.

Of course, apart from the above straightforward controller, other more sophisticated Lyapunov functions and
control laws were also proposed in this exciting period. By 2005, there existed a large body of literature on
stability analysis and design of T-S fuzzy control systems. Improvements have appeared in piecewise/gridpoint
approaches [37, 38], non-PDC design [39, 40, 41], multi-step non-monotonic Lyapunov functions [42], and Linear-
Fractional transformation approaches to fuzzy modelling [27], with clear links to the LPV gain-scheduling concepts
[18]. Widely used relaxations of the double-summation problem (which apply to many fuzzy results) appeared in
[43, 44], although conservatism remained.

Also, straightforwardly, the T-S models were extended with time-delays. As in the linear/robust case, stability
of T-S delay systems can be naturally classified into two classes: delay-independent and delay-dependent. Natu-
rally the second class is less conservative than the first one, considering that information on the delays is taken into
account: the class of systems that can withstand an arbitrarily long delay is very reduced.

Pioneering works used Lyapunov-Razumikhin functional approaches for stability and stabilization problems
[45] and mainly limited stabilization to the delay- independent case. Delay-dependent conditions appeared as a
continuation, introducing classical Lyapunov-Krasovskii functional (LKF) methods for example in [46, 47, 48] or
using descriptor representation [49]. These works initiated a lot of tracks to be further developed.

So, after the seminal theoretical developments in the period, the situation in the area of fuzzy systems and con-
trol got characterized by a striking mismatch between, on one hand, one of the main motivation of fuzziness, that is,
readability (using understandable rules, computing with words) and, on the other hand, the use of mathematically
involved and non-transparent techniques (optimisation on hundreds of variables) to ensure robust performance, in
direct analogy with mainstream (nonlinear and gain-scheduled) control theory. From a research point of view, in
the low-level control loop (models with differential equations) the knowledge-based approach was basically super-
seded by the model-based one in that time period. From the late 90’s onwards, the original “intelligent control”
knowledge-based approach only remains an option in higher control levels (supervision, diagnosis, planning,...)
dealing with “qualitative” concepts instead of differential equations.

1.3. Adaptive fuzzy control

Adaptive fuzzy control deals with using input-output data in order to craft suitable update laws to change
process or controller parameters θ in time, using process models and controllers in the form (1). Linear adaptive
control was actually in its infancy in most of the earlier period (pre-1985) and, hence, no significant contributions
in incorporating fuzzy ideas to adaptive control were produced until the 1990’s.

The SISO/MIMO nonlinear systems were usually considered in the canonical Brunowski form y(r) = f(x) +
g(x)u , being y(r) an output’s r-th time derivative, with f(x) and g(x) (the latter one assumed regular, a controllability-
like assumption) being unknown nonlinear functions of appropriate size and r being the relative degree.

Based on the universal function approximator, such functions are expressed as (1) (plus an error term tending
to zero as the number of regressors grows) [50]. Two different approaches apply: direct and indirect adaptive
control. In the direct method the fuzzy system directly approximates the “ideal” control law, and its parameters
are tuned directly to meet the objectives [51]. The indirect scheme was based on classical feedback linearisation,
i.e., using the ideal unknown control law u = g−1(x)(v − f(x)) with v a new control vector so y(r) = v, and
setting v = yrm +Ke being ym the tracking reference and K a stabilising linear state feedback gain for a chain of
r integrators. Instead of the unknown f and g, generally, two parameterized approximation f̂(x, θf ) and ĝ(x, θg)
of f(x) and g(x) respectively, are used, being θf and θg the estimated parameters; widely-cited references of that
period are [50, 52, 53]. In fact, given that many results rely on the universal approximation property and the basic
difference is in the approximator being linear or not in the adjustable parameters, many fuzzy, neural and classical
adaptive approaches of the decade may be viewed under a unifying perspective [54].

These different methods suffered from several limitations. Amongst them, real time feasibility, computational
cost, bounding parameters values [55] and the major one was the difficulty to go from state-feedback adaptive
control (state is assumed measured) to output-feedback control, addressed in [56]. This last point had several
solutions but majority of them suffered from drawbacks, a useful review and critics of these first proposals is given
in [57].

2. What did the last decade bring us: (2005–present)

Amongst these various approaches in the last 10 years it appears that the principal results focused mainly on
two techniques: model based control using the so-called Takagi-Sugeno quasi-LPV models and adaptive control
using the property of universal approximation of the fuzzy models. Also, a new paradigm based on polynomial
fuzzy models appeared. Therefore, the overview will mainly focus on these three approaches, pinpointing a few
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key developments based on the authors’ interest and experience but, maybe, leaving out significant results in the
contribution of fuzzy modelling and control to stochastic, Markov, PDE systems, higher-level planning, robotics,
etc.

2.1. New improvements in TS system analysis

Regarding TS systems analysis, one of the leitmotivs of the last decade was to develop the non-quadratic
Lyapunov function ideas first introduced at the end of the previously revised period. Another source of results is
extending prior results to nonlinear systems with delay, stochastic inputs or parameter variations, etc. Many of
the stability/stabilization results can be translated to various performance possibilities (decay,H2 guaranteed cost,
H∞, robust stabilization, . . . ). Let us briefly discuss some of the main ideas.

First, a brief mention to a basic result: in order to “decouple” decision variables in control gains from those
in Lyapunov functions, many of the results make heavy use of the so-called Finsler’s lemma. Consider a vector ψ
and a Lyapunov inequality ψTTzψ < 0 which must be fulfilled only when some model equality holds Hzψ = 0,
where subindex z denotes a dependence on the membership functions. Then, if a multiplier Mz can be found such
that Tz +MzHz +HT

z M
T
z ≤ 0, the constrained inequality is proven to hold. Lyapunov decision variables appear

in Tz , and controller gains appear in Hz . A suitable choice of multiplier (albeit, in most cases, conservative) can
write the problem as LMI or, in some cases, as an LMI plus some scalars to be searched for.

2.1.1. Non-quadratic Lyapunov functions
Consider a generic Lyapunov function (usually V (x) = xTP (·)x for observation or V (x) = xTP−1(·)x for

control with the actual arguments and structure of P (·) to be defined according to the case under study. A constant
P (·) corresponds to the quadratic case.

Mainly, the first parametrizations of P (·) were variations of the form P (·) = Pz =
∑r
i=1 µi(z(t))Pi, the

so called “multiple” or “fuzzy” Lyapunov function [40, 41], commented in the previous section. Multiple-sum
Lyapunov functions, in the form P (z) =

∑r
i1=1

∑r
i2=1 · · ·

∑r
id=1 µi1(z(t)) . . . µid(z(t))Pi1i2...id were proposed

afterwards in [58, 59, 60]. Accordingly, multiple sums were introduced in the controller and observer gains. Results
were less conservative as the number of sums involved increased, see Section 2.4. Another interesting result was
the so-called α-samples variation, based on the following idea: in an asymptotically stable system the states tends
to zero as time increases, so if initial conditions lie at any level set of an arbitrary strictly positive-definite function
Ṽ (x), Ṽ (0) = 0, the state will eventually enter any inner level set, even if Ṽ (x) is not a “true” Lyapunov function
itself (i.e., even if the one-step variation Ṽ (x(t + 1)) − Ṽ (x(t)) < 0 cannot be proved). This allows replacing
the standard one-step variation by an α-sample variation Ṽ (x(t + α)) − Ṽ (x(t)) < 0 and still have a sufficient
condition to prove stability [61], see details in [62]; conservatism reduces as α increases. The idea was extended
to general Lyapunov functions and control/observer structures in [63, 64, 65].

A renewed interest in the continuous-time non-quadratic stabilization also appeared, in three directions.
A first family of results deals with the assumption, originally stated in [40], of bounded membership-function

time derivatives, i.e., existence of known scalars φi such that |µ̇i(z)| ≤ φi. Results in this line appear in, for
instance, [66]. Although the assumption is understandable for stability results, when z ≡ x, which is the case in
nonlinear systems modelled as TS ones, it is more questionable for stabilization as, by chain rule, dµi(x)

dt = ∂µi

∂x

T
ẋ

and ẋ can contain the to-be-designed control action in a general case, so the validity region of the obtained con-
troller must be checked a posteriori, see discussion in [67]. In [68], the parameter-dependent (a.k.a. fuzzy) Lya-
punov function is exploited for stabilization with output-feedback gain-scheduled controller for linear-fractional-
transformation descriptions; the resulting controller needs real-time measurements of the parameters (member-
ships) and their derivative.

As an alternative to bounding µ̇i, a nice global result without such bounds appeared in [69], exploiting the
so-called path-independent Lyapunov property, but with two key restrictions: a limitation to a specific class of TS
models and BMI formulation in the stabilization case. A refinement based on slack variables can be found in [70],
that gives, under some assumptions, parameter-dependent LMI problems.

The third option leads to a family of results proposing recasting the problem from global stability with time-
derivative bounds (first idea above) to local stability with bounds on the partial derivative of the memberships. The
basic idea is that, if a bound ‖∂µi

∂x ‖ ≤ γi exists, with known γi, then |µ̇i| ≤ γi‖ẋ‖ so LMIs to ensure control gains
are chosen bounding ‖ẋ‖ ≤ βi in a particular Lyapunov level set can be crafted; subsequently, Lyapunov decrease
conditions where βi and γi appear can be stated. If feasible, local stabilisation is guaranteed in the modelled region
without the need of a posteriori checks. The idea has been developed in [71, 67] and embedded into multiple-sum
Lyapunov functions in [72, 73].
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2.1.2. Delay
Initiated in the first years of the past decade, works for TS time-delays systems have increased in an important

proportion in the last 10 years. Delay analysis involves use of Lyapunov-Krasovskii functionals in the form V =

xTPx +
∫ b
a
xTQx +

∫ d
c
ẋRẋ +

∫ f
e

∫ h
g
ẋSẋ + . . . for some delay-bound related integration limits. Also, Finsler

lemma is routinely used to replace integral terms in V̇ by delayed states, asMz[x(t)−x(t−τ)−
∫ t
t−τ ẋ(s)ds] = 0,

for any arbitrary multiplier expression Mz , jointly with Jensen’s inequality and other technical lemmas.
In 2006, [74] proposed the introduction of extended Lyapunov-Krasovskii functional (LKF) that copes with

interval time-varying delays removing any assumption on the derivative of time-delays. Then, the efforts to reduce
the conservativeness of the results mainly resumes in constructing new augmented LKF approaches. For example
in [75] a triple integral form associated with the so-called Finsler’s lemma and some augmented vectors including
further information of time-varying delays are exploited. Nevertheless this onward rush led quickly to compu-
tational problems due to a huge increase in the number of decision variables. Another idea developed concerns
delay-partitioning approach for interval time-varying delays with the idea not only to outperform the methods but
also to reduce the number of LMI constraints as well as the number of decision variables in comparison with
previous approaches [76, 77]. At last, a new way of writing the positiveness of the LKF, i.e. not every term of
its sum is needed to be positive can be found in [78]. Most of these interesting results mainly focus on stability
problems with state delays. Therefore, there is room for a lot of combinations to work on: state feedback [74] using
the input/output framework via interconnection schemes and scaled small-gain condition [79], state feedback with
inputs delays [80], output feedbackH∞ control design [81] and many others (out of the scope of this overview).

Some attention seems to be paid, too, to stochastic fuzzy systems where Ito’s differential formula [82] is used
instead of the standard time derivative to account for variance effects when taking the derivative of the average of
a quadratic form. Combination of such systems with delay ones appear in, for instance, [83, 84, 85].

2.2. Fuzzy-polynomial techniques
From the discussion on section 1.2, the success history of Takagi–Sugeno (T–S) fuzzy-model based control

goes back more than two decades.
Though LMI-based approaches have enjoyed great success and popularity, there still exist a large number

of design problems that either cannot be represented in terms of LMIs, or the results obtained through LMIs
are sometimes conservative. A post-LMI framework is the Sum-of-Squares (SOS) approach. The basic idea
of the SOS approach is realising that any degree d polynomial p(x) can be written, if d is even, in the form
ψT (x)Rψ(x) with ψ(x) being a vector of all the monomials up to degree d/2 and R a (non unique) matrix
trivially built from the polynomial coefficients. Maximising the minimum eigenvalue of R over the set of matrices
such that ψT (x)Rψ(x) = p(x) is an LMI problem, as R ranges in an affine subspace. If a positive minimum
eigenvalue is found, then R > 0 and the Choleski factor of it, say Q, allows expressing p(x) = (Qψ)T (Qψ),
i.e., a sum of squares. So finding SOS decompositions of a polynomial is a convex problem and LMI Lyapunov
results (degree 2 polynomials) can be easily extended to higher degree polynomials in both Lyapunov function and
process model [86]. Another key result (Positivstellensatz) extending the S-procedure is the fact that p(x) > 0 for
all x such that q(x) > 0 if there exists a SOS multiplier µ(x) such that p(x)− µ(x)q(x) is SOS, allowing to prove
local positiveness of polynomials. Note, however that there are positive polynomials which cannot be written as a
sum of squares [87]. When the multiplier doesn’t need to be SOS, the concept extends Finsler’s lemma (Section
2.1) to polynomial equality constraints.

The extension to fuzzy polynomial models in the form ẋ =
∑r
i=1 hi(z(t)) (pi(x) + qi(x)u), with pi, qi poly-

nomial matrices, was first proposed in 2007 [88, 89, 90]. Such polynomial fuzzy models include the well-known
Takagi-Sugeno fuzzy systems and controllers as special cases. In fact, the above models, by extracting common
polynomial factors, are usually expressed in a more TS-looking way as: ẋ =

∑r
i=1 hi(Ai(x)ζ(x) + Bi(x)u),

where ζ(x) is a vector of monomials.
An efficient polynomial fuzzy model construction, from nonlinear first-principle ones, based on Taylor series

approach has been proposed by extending the sector nonlinearity idea in [91]; it can reduce conservatism (in system
design and analysis) caused by fuzzy model construction with respect to TS approaches. The SOS approach has
given rise to later developments in control [92, 93], observers [94], fuzzy polynomial Lyapunov functions [95],
both in continuous-time and in discrete-time [96]. Using the above mentioned multipliers, conservatism in local
stability results can be reduced [93, 97]. Polynomial and delay or sample-data techniques can be, too, combined
[98]. In fact, many TS results with an LMI involving constant verticesAi and Lyapunov matrix P can be translated
to polynomial-fuzzy with Ai(x) and P (x̂) via straightforward developments (note that x̂ cannot be the full state x
in some cases, see below): the standard V (x) = xTPx is translated to V = ζ(x)TP (x̂)ζ(x). Denoting as Jζ the
Jacobian matrix of ζ, we have

V̇ = 2ζ(x)TP (x)Jζ ẋ+ ζ(x)T Ṗ (x̂)ζ(x) =
∑
i

hiζ(x)T
(
PJζAi +ATi J

T
ζ P
)
ζ + ζ(x)T Ṗ (x̂)ζ(x) (4)
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where a “standard” translation (PJζAi + ATi J
T
ζ P ) of the usual Lyapunov derivative appears, but adding Jζ in

the middle as a consequence of chain-rule. Regarding the rightmost term, choosing the argument of P (x̂) in
stability analysis as x̂ ≡ x, then Ṗ (x) =

∑m
l=1

dP
dxl
ẋl is a polynomial-fuzzy matrix. In control synthesis x̂ = Exk

is chosen, with E such that EBi(x) = 0 for all i (in this way, no control-related decision variables appear in
Ṗ (x̂); V (x) in inverse form ζTP−1(x̂)ζ is also helpful) and, as intuitively expected, Ai(x) should be replaced
by Ai(x) +Bi(x)Fj(x). Details are omitted for brevity, but many TS results (stabilisation, guaranteed-cost,H∞,
delay,. . . ) can be “polynomialised” developing the above idea (plus suitable Positivstellensatz multipliers for local
stability, if so wished).

2.3. Shape-dependent laws

Expressions (3) are, in general, proved via LMI sufficient conditions in the sense that positiveness is proved
for any value of µ in the standard simplex (memberships positive and adding one). Of course, if successful then
the conditions for a particular “shape” µi(x) arising from modelling a particular system to be controlled do hold,
but they also hold for a large family of related plants which actually should not be controlled. This is the so-called
shape-independent conservatism: shape-independence plugs robustness in places we might not actually want to.

Once the issue was realised, some contributions in that respect were developed: Relaxations including knowl-
edge that a particular set of linear expressions of the memberships held true [99], generalisation of such a case
to polynomial constraints on the memberships [100, 101], NQ Lyapunov functions from bounds in partial deriva-
tives of memberships [67], combined membership-state polynomial constraints [102], etc. Also, in most modelling
problems in which nonlinearities are separately modelled by interpolation between two bounds, the resulting mem-
bership functions have tensor-product structure; exploiting this allows reduced conservatism [103, 104]. Shape-
dependent analysis with TS fuzzy models of the partial derivatives of membership functions appears in [95].

2.4. Asymptotical exactness

Several results in the last decade, some of them already mentioned above, have achieved the so-called asymptot-
ical exactness, in the following sense: conservatism reduces as used computational resources increase (modulated
by a so-called complexity parameter) and, in theory, when the complexity parameter of the proposed algorithms
tends to infinity, conservatism reduces to zero (well, usually only in a particular facet of it). Such results are of
theoretical interest, in the sense that they “close” important problems which were open 10 years ago. However,
regarding the practical side, usually the increase of computational resources is exponential (or combinatorial) in
the complexity parameter, so a very limited improvement over clever existing solutions can be achieved, except in
simple cases. Let us briefly discuss the main ideas in some of these “asymptotically exact” results:

Fuzzy summations. A set of convex problems proving shape-independent positive-definiteness of expression (3)
with reduced conservativeness was first proposed in [105] and a related triangulation-based approach appeared in
[106]. In fact, SOS versions of such relaxation can also be conceived [107]. The basic idea is the so called matrix-
Polya theorem: if Ξ =

∑r
i1=1

∑r
i2=1 hi1hi2Qi1i2 ≥ γ > 0 then there exists a complexity parameter d such

that, from the equivalent expression Ξ = (
∑r
l=1 hl)

d
∑r
i1=1

∑r
i2=1 hi1hi2Qi1i2 > 0, expressing Ξ as a matrix

polynomial in h (grouping all elements which are multiplied by the same monomial in h, up to degree d + 2) all
its coefficients are positive definite matrices; the reader is referred to the cited references for details. The term Ξ is
denoted as a multi-dimensional fuzzy summation.

Lyapunov function families. Reaching any possible smooth Lyapunov function using the above multi-dimensional
fuzzy summations in fuzzy Lyapunov functions [59], or increasing the degree of a polynomial Lyapunov function
at will [108, 101] progressively increases the expressive power of the chosen Lyapunov function family. In the
polynomial case, if there exists a smooth Lyapunov function (so that its Taylor series converges to it), the result
is asymptotically exact as degree increases (well, actually, up to the gap between positive and SOS polynomials
[87]).

There are other ideas which allow generalising the concept of Lyapunov functions, or even “dismissing” it
(proving stability without having explicitly found such function). A first proposal is the α-samples argumenta-
tion outlined in Section 2.1.1: from the sheer definition of stability, if you wait long enough, any non-degenerate
quadratic function is an α-sample Lyapunov function for any asymptotically stable system, even if it is not a
“standard” Lyapunov function; based on that, the work [62] proposed discrete-time generalisations asymptotically
exact as a delay parameter increases. A second approach uses necessary and sufficient shape-independent stability
conditions for polytopic linear differential inclusions (i.e., TS systems in the fuzzy jargon) systems. These con-
ditions can be stated with a Lyapunov function chosen from a family of either polyhedral, piecewise quadratic or
convex-hull of ellipsoids [109]: a constructive algorithm to prove the largest possible shape-independent domain
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of attraction (maximal invariant set in non-fuzzy literature) of a TS system is proposed in [110]; such set is com-
puted by an iterative algorithm (which converges in a finite number of steps, under mild assumptions), producing
a polyhedral Lyapunov function whose existence is asymptotically necessary and sufficient for stability of the TS
system (up to a Polya-fuzzy-summation complexity parameter); asymptotic exactness can also be proven for the
stabilization problem [111], although the computational burden is higher.

2.5. Adaptive control

Since the starting steps discussed in Section 1.3, several issues have been addressed in the past decade. One
issue is that the number of parameters to be tuned in the online control laws in such methods is too important;
therefore both the learning time and the real time feasibility are rapidly faced to problems when dealing with high
order systems. Some proposals have been done; amongst others using lower triangular structure, thus mixing with
backstepping techniques, for indirect scheme [112], for direct scheme [113].

Another issue that has been tackled is when there is no a priori knowledge about the sign of the control gain.
Solutions were obtained using the so-called Nussbaum-gain technique [114]. To avoid the measurement of the
whole state, and go to output feedback control, several (direct and indirect) adaptive fuzzy observer design schemes
have also been proposed [57, 115]. Especially in [57], for SISO systems the design is done for any kind of observer
structure (linear, high gain, sliding mode) and both the update law and the robust term are based on filtering the
output tracking error. The interest is therefore to overcome the strictly positive real condition.

At last some refinements mainly dealing with approximation-based adaptive backstepping control were also
derived, for example MIMO systems with unknown coefficient gain signs [115], MIMO time-delay systems with
nonlinearities on the inputs [116], with dead-zone [117] and recently MIMO systems with input saturations and
output constraints [118].

3. General discussion about present and future

As a general thought, the last decade has brought a better understanding of the conservatism inherent to fuzzy
approaches to nonlinear control. So, now, we have a family of powerful conditions on Lyapunov function choices,
polynomial modelling, non-quadratic Lyapunov functions, summation relaxation which, however, hit current com-
puter’s limits with low-order state-feedback problems. Problems with high-order systems, or output feedback (even
harder with non-measurable premises), haven’t improved so much in practical terms in the last decade.

Given the asymptotical exactness of some solutions (with, however, unsurmountable computational resources),
the conceptual picture of the situation appears below:

Set of problems with a Solution

Set of problems with a tractable LMI/SOS Solution

X

X

If the white ellipse represents the unknown set of problem with a solution, whose determination is computa-
tionally very hard, the general goal is twofold. First, necessary conditions to exclude unfeasible problems (cross
mark out of the set) are needed (for instance, to determine that there does not exist a controller satisfying a partic-
ular performance goal), second computationally efficient solutions must be found to outperform current sufficient
conditions to enlarge the red area and capture more feasible points (cross mark into the set).

For the first point very few results are available [106]. Most of the results try to solve the second problem
(indeed, solutions outside the red set can be proved neither feasible nor unfeasible but, taking the worst case, they
are usually dismissed).

3.1. Old problems still unsolved

Some problems which were present since the origins of the sector-nonlinearity LMI approach have not been
overcome (and possibly, they will never be2, because of the sheer philosophical idea of fuzzy models: instead of
ẋ = f(x) we change in TS modelling to ẋ ∈ F (x) where F (x) is a set with either a finite number of vertices (equal
to the number of rules, in open-loop) or with an infinitude of them (in closed-loop, due to multiple-summations;

2At least in a membership-shape-independent approach. Of course, as TS models are equivalent to the original nonlinear ones, ideally an
infinitely-powerful shape-dependent approach could operate on the “true” nonlinear system without conservatism. Such approach, however, is
currently non-existent within the TS modelling framework.
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sum-relaxation embed such set in a polyhedron with an ever increasing precision). Then, many key geometrical
aspects of the nonlinear system is lost under the “cloud” of points which comprise the image of a single x, because
differential geometry cannot be carried out in set-valued maps. Observability, controllability, feedback linearisa-
tion results (which are, sometimes, straightforward in an original nonlinear model) get cumbersome (or, plainly,
impossible) in the TS representation of it. In the same way, decoupling, inversion and two-degree-of-freedom con-
trol, frequency-response (descriptive function), interaction measures are also hard to deal with in the TS platform,
being, however, of paramount importance in (linear) multivariable process control applications in industry [26].

Other key issues, for which no truly significant achievement has been proposed in the last 10 years, lie in
the modelling and identification arenas. Regarding fuzzy modelling of complex systems by sector-nonlinearity
approaches, as each nonlinearity gives rise to two rules, the number of rules is a power of two and some of the
results’ computational requirements increase hugely with the number of nonlinearities (even in the TS approach),
and the model is non-unique. Again, although theoretically elegant, no more than 4 or 8 rules can be reliably
assessed in the latest high-order fuzzy/polynomial/local results. Fuzzy identification, set up as solving optimisation
problems involving minimising the squared prediction error, hasn’t advanced that much recently; as in 2005,
there is no “cross-talk” yet between the control requirements (usually in terms of model error at certain target
“bandwidth”, uncertainty written in particular LFT form) to the key issues of learning/identification of dynamic
systems (experiment design, number of data needed, speed of convergence of algorithms, local minima, etc.).

3.2. An appraisal of the present situation

We can reuse the question of [5] “Is there a need for fuzzy logic?” and go for “Is there a need for fuzzy
control?”. Indeed, there are many debatable points out there deserving some discussion.

Industry reach. Linguistic approaches are clearly hopeless in future research, albeit industry associations pro-
moted fuzzy rulebases to be integrated into industrial automation standards (IEC 61131-7) more than 10 years ago.
However, even if extremely useful, current linguistic fuzzy applications in industry seem to be only ad-hoc refine-
ments to linear regulators or substitution for coarse-grained lookup tables, or soft thresholds for alarms. Nonlinear
predictive control seems to have won the match regarding transition from theory to industry [119] in advanced
nonlinear control problems, due to the inherent optimisation embedded into it, and the above-mentioned lack of an
elegant way of handling inversion/decoupling/bandwidth issues in the TS approach.

“Fuzzy” versus “linear parameter-varying” versus “nonlinear”. As shown throughout this paper, current fuzzy
control approaches are more or less entering in the “classical” automatic control way of doing: the “fuzzy” term
loses some of its historic interest, such as taking into account “vagueness” and “uncertainty”. The robust control
way of defining and dealing with uncertainty has been the way to go since LMIs were around. Nowadays, the com-
munities of linear parameter varying (LPV), quasi-LPV and TS (basically, different names for the same thing), as
well as the publications are getting close. Indeed, at the end, fuzzy is a means to actual control of nonlinear systems
by linear-like techniques. Linear time-varying approaches are also a means to do that and shape-independent fuzzy
approaches are somehow philosophically similar to LTV analysis, as the relationship between premise variables
and state variables is not actually exploited.

Ideally, only shape-dependence involving combined state/membership constraints would actually be truly
“nonlinear” (non-conservative); otherwise, if µ(z) are handled as variables independent from x in stability condi-
tions, there is no “key” difference with a linear time varying

∑
i µi(t)(Aix + Biu) model. Bounding the time-

derivative of memberships is not “so nonlinear”, in the sense that µ̇i(t) has also been considered by the LTV people
since at least the mid-90’s. Recent contributions bounding the partial derivative of the memberships with respect
to state (not time) feels philosophically more on the right track as the decisive fact that memberships are functions
of the state is implicitly assumed. The advent of SOS (allowing analysis of fuzzy-polynomial systems) has further
moved fuzzy control towards the mainstream nonlinear landscape.

Scientific impact of fuzzy control. It is difficult to evaluate the real impact of fuzzy in control through all literature.
Nevertheless it really exists; as an example, two main international journals are directly concerned with it: Fuzzy
Sets and Systems and IEEE Trans. on Fuzzy Systems. A Technical Committee “Computational Intelligence in
Control” from the International Federation of Automatic Control (IFAC) is also devoted to these approaches.

However, the initial aversion towards the heuristic fuzzy approach in earlier time still distills disliking towards
fuzziness in prominent control journals. Indeed, substandard/heuristic fuzzy control papers appear (elsewhere)
with too high a frequency and get indexed in major databases. The visibility of such contributions doesn’t give
good reputation.

So, how does fuzzy control keep up in “top” journals? Well, it depends... Very roughly speaking, searching for
the keyword “fuzzy” in selected top “control theory” journals brings up around 40 times less results than searching
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for “control” in top “fuzzy” journals. However, alike concepts appear in the former ones under polytopic or gain-
scheduling denominations, and some “classical” people sends some results to fuzzy journals, too. Anyway, there
is still a clear asymmetry and more cross-talk should be promoted.

Other approaches. Some different tracks are tested nowadays that are (in our opinion) more or less successful:
type-II fuzzy sets, neuro-fuzzy, interval approaches extend to fuzzy sets, . . .

For instance, some control results with the so-called Type-2 sets (where membership function hi(x) is itself
a fuzzy set) claim superiority over type-1 or conventional linear controllers (for instance,[120]); however, given
that conventional (type-1) fuzzy models are universal function approximators, there is no type-2 controller which
cannot be crafted with standard type-1 setups: so, the superiority claims do not have a firm theoretical support for
the time being. A more focused approach to type-2 control, as a way to analyse uncertain nonlinear systems, might
be interval approaches pursued in, for instance, [121]. However, the underlying idea is, philosophically, related to
older literature in which “imperfect knowledge of the plant memberships” is assumed, such as [122].

3.3. What should, could be the future?

From the above discussion, at last, several questions arise: how can we come back to the “fundamentals” of
fuzzy logic? Is there still space for a “linguistic” way of doing? Or are we, in a sense, loosing the “essence” of
what fuzziness was created to?

Of course, fuzzy control should also go to the areas where mainstream automatic control is moving to, among
them, large scale systems, interconnected (networks) large systems, hybrid systems. . . Evolutionary results (juxta-
postion of prior large-scale, networked, polynomial-delay, polynomial-networked, . . . results) are indeed expected;
however, some of them will be so computationally demanding than they will be useful only for “large-scale” sys-
tems comprised of “a couple of 2nd-order systems”. Also, proving that something with a very involved theory
works in noiseless state-feedback isn’t that useful in practice, by the way.

Only “straightforward in theory” plus “straightforward in practice” are “great” solutions to change a disci-
pline... Somehow, the earlier fuzzy controllers (with its limitations) were a bit like that (considered in their histori-
cal context, i.e., in the 70’s); the LMI approach spurred a revolution in the 90’s when problems previously thought
as intractable were solved in fractions of a second with ten lines of code... On the contrary, even if theoretically ele-
gant, practical computational aspects of the fuzzy-polynomial approach make it not as promising as it was thought
to be 8 years ago...

Well, maybe, we are waiting for the next “big” thing in fuzzy control... such revolutionary things are, of course,
always unexpected. And, of course, there will always be the beauty of some theoretical concepts irrespective of
whether they are of any practical use. It seems that, for theoretical aspects, we are at a crossroad where some new
interesting “step” has to emerge to go further than just some adjustments in various known techniques in order to
confidently say “yes, there is a need for fuzzy control” in the future.

Only those who attempt the absurd... will achieve the impossible. I think... I think it’s in my basement... Let me
go upstairs and check. (Maurits Cornelis Escher, 1898-1972)

The truth is rarely pure and never simple. (Oscar Wilde, 1854-1900)
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