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Abstract 

This work investigates the potential of RCCI concept to achieve ultra-low NOx and soot emissions over a 

wide range of engine speed and loads. For this purpose, a detailed experimental methodology has been 

defined and applied in a heavy-duty single-cylinder engine fueled with diesel and gasoline. In addition, 

to assess the influence of the engine compression ratio on RCCI capabilities two different compression 

ratios, 14.4:1 and 11:1, have been tested. 

Results suggest that a low compression ratio allows to fulfill all the self-imposed constraints (maximum 

cylinder pressure rise rate of 25 bar/CAD, NOx< 0.4 g/kWh and soot*< 0.01 g/kWh) from idle to full load 

and engine speeds from 900 to 1800 rpm. However, the use of higher compression ratio requires a 

delayed injection strategy to avoid excessive knocking levels, which results in unacceptable soot 

emissions at loads higher than 50%, even when gasoline fractions around 90% are used. 
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1. Introduction 

The stringent regulations introduced around the world to limit the pollutant emissions in internal 

combustion engines (ICE) present a major challenge for the engine research community. In spite of its 

efficiency, conventional mixing-controlled diesel combustion in CI diesel engines requires complex and 

costly exhaust aftertreatment systems to reach the NOx and soot limitations enforced by the current 

regulations, such as EURO VI. Specifically, the rich local equivalences ratios and the high temperatures 

achieved during the conventional diesel combustion (CDC) as well as the oxygen availability in the 

outside of the spray plume results in unacceptable emissions. Additionally aftertreatment systems, 

which require DPF (to reduce soot emissions) and LNT or SCR (to minimize NOx emissions) can penalize 
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fuel consumption or require a second fluid. Thus, in order to reduce aftertreatment costs and fuel 

consumption it is necessary to avoid the generation of these pollutants in the focus of the emission, i.e. 

during the combustion development.  

Many new compression ignition combustion strategies have been proposed to simultaneously improve 

the engine efficiency while reducing the NOx and soot emission levels under the regulation limits [1][2]. 

The more promising combustion strategies are the well-known low temperature combustion (LTC) 

strategies. A widely investigated combustion strategy is homogeneous charge compression ignition 

(HCCI), which produces virtually no soot or NOx emissions while maintaining high efficiency [3][4][5]. 

However, this combustion process presents new challenges with regard to combustion control and 

engine stress. Due to the rapid heat release, steep pressure gradients occur so that the process has been 

limited to use within the partial load range [6]. On this regard, Bessonette et al. [7] suggested that 

different in-cylinder reactivity is required for the proper HCCI operation under different operating 

conditions. Specifically, high cetane fuels are required at low load and a low cetane fuel are needed at 

medium-high load. 

With the aim of improving the HCCI shortcomings in terms of controllability and knocking, the use of 

fuels with lower reactivity than diesel fuel (gasoline-like fuels) under Partially Premixed Combustion 

(PPC) strategies has been widely investigated [8][9][10][11][12]. The investigations confirmed gasoline 

PPC as a promising method to control the heat release rate providing a reduction in NOx and soot 

emissions [13][14]. Thus, by injecting the fuel later in the engine cycle than in HCCI strategy, the air-fuel 

mixing degree is reduced and therefore higher control on the ignition delay as well as the combustion 

duration is achieved. Additionally, the use of as a gasoline fuel provides more flexibility to achieve the 

required extra mixing time at medium-high loads [15]. However, the concept has demonstrated 

difficulties at low load conditions [16][17] using gasoline with octane number (ON) higher than 90. With 

the aim of improving the PPC cycle-to-cycle control at low loads using high ON gasolines, PPC spark 

assisted concept has been studied [18][19]. It has been demonstrated that the spark assistance provides 

temporal and spatial control over the combustion process [20], however the high local reactivity 

required between the spark plug electrodes at the start of spark timing and the flame propagation 

process result in an unacceptable NOx and soot emissions [21]. In this sense, the double injection 

strategy applied to the PPC spark assisted concept has been confirmed as a suitable strategy to improve 



the unburned HC and CO emissions, but still do not solve the unacceptable NOx and soot emission levels 

[22][23]. 

Recent experimental and simulated studies in a heavy-duty engine demonstrated that Reactivity 

Controlled Compression Ignition (RCCI) combustion is a more promising LTC technique than HCCI and 

PPC [24][25]. RCCI concept is a partially premixed combustion strategy based on dual-fuel operation. To 

delivery both fuels separate injection systems for the low reactivity and high reactivity fuel are used, 

being port fuel injected (PFI) and direct injected (DI) respectively. Therefore, a flexible operation over a 

wide range is possible by modifying both, the low reactivity fuel percentage in the blend [26] and the 

direct injection timing [27]. The variation of these engine settings provides the required in-cylinder 

equivalence ratio and reactivity (i.e. octane number) stratification. Thus, previous studies in a heavy-

duty engine at fixed engine speed of 1300 rpm and 1200 rpm, evaluated RCCI concept from low to high 

load concluding that RCCI provides very low NOx and soot compared to the reference CDC cases. In 

addition, a benefit in fuel consumption from low to medium load compared to CDC was also appreciated 

[28]. In this sense, it was confirmed that RCCI combustion process converts greater percentage of the 

recovered heat transfer energy into useful work than in CDC operation [29]. Thus, it was also 

demonstrated that the combination of different strategies to reduce heat transfer losses, such as the 

use of an optimized piston bowl geometry without piston cooling, allows to reach gross indicated 

thermal efficiencies near 60% [30]. In spite of the benefits of RCCI concept in terms of fuel consumption, 

a worse combustion efficiency than CDC was observed, with values around 97% at low load conditions. 

In this regard, an experimental investigation combined with computational modelling [31], 

demonstrated that it is possible to improve the low load combustion efficiency to values above 98% by 

combining the effects of in-cylinder gas temperature and oxygen concentration respectively with the in-

cylinder fuel blending ratio.  

The main objective of the present work is to examine the potential of RCCI concept in a wider range of 

engine speed and loads in a heavy-duty engine. For this purpose, a detailed experimental methodology 

has been defined to ensure stable RCCI operating conditions while fulfilling three self-imposed 

constraints (maximum cylinder pressure rise rate of 25 bar/CAD, NOx< 0.4 g/kWh and soot*< 0.01 

g/kWh). In addition, to assess the influence of the engine compression ratio on RCCI capabilities two 

different compression ratios, 14.4:1 and 11:1, have been tested. 



2. Experimental Facilities and Processing Tools 

2.1. Test cell and engine description 

A single cylinder, heavy-duty diesel engine representative of commercial truck engine, has been used for 

all experiments in this study. The major difference to the standard unit production is the hydraulic VVA 

system, which conferred great flexibility during the research. In particular, the valve timing, duration 

and lift can be electronically controlled for each valve during the engine tests. Detailed specifications of 

the engine are given in Table 1. 

The engine was installed in a fully instrumented test cell, with all the auxiliary facilities required for its 

operation and control, as it is illustrated in Figure 1.  

Moreover, to achieve stable intake air conditions, a screw compressor supplied the required boost 

pressure before passing through an air dryer. The air pressure was adjusted in the intake settling 

chamber, while the intake temperature was controlled in the intake manifold after mixing with the EGR 

flow. The exhaust backpressure produced by the turbine in the real engine was replicated by means of a 

valve placed in the exhaust system, controlling the pressure in the exhaust settling chamber. Low 

pressure EGR was produced taking exhaust gases from the exhaust settling chamber. Then, once it was 

filtered by a DPF, its temperature was reduced passing through a heat exchanger. After that, condensate 

water and other substances were separated from the gas by means of a centrifugal filter, and the 

resulting flow was passed through a secondary filter. Furthermore, a roots-type supercharger was used 

in order to provide the external EGR mass flow rate desired. With the aim of lowering the gas 

temperature increase caused by the supercharger, a second heat exchanger was used before the arrival 

of the EGR gases to a settling chamber equipped with an electric heater. It was then introduced into the 

intake pipe, closing the external EGR loop. The temperature regulation was performed upon the EGR-

fresh air mixture, by means of a temperature sensor in the intake manifold. Finally, the exact EGR rate 

was controlled by means of a valve between the EGR settling chamber and the intake pipe. The 

determination of the EGR rate was carried out using the experimental measurement of intake and 

exhaust CO2 concentration. The concentrations of NOx, CO, unburned HC, intake and exhaust CO2, and 

O2 were analyzed with a five gas Horiba MEXA-7100 DEGR analyzer bench by averaging 40 seconds after 

attaining steady state operation. Smoke emission were measured with an AVL 415S Smoke Meter and 

averaged between three samples of a 1 liter volume each with paper-saving mode off, providing results 



directly in FSN (Filter Smoke Number) units. A limitation to using a smoke meter based on opacity is that 

it may not accurately account for condensable organic hydrocarbons in the PM, which have been shown 

to be the primary PM mode with RCCI [32]. Thus, measurements of FSN were converted into estimated 

specific soot* emissions (g/kWh) by means of the factory AVL calibration (mg/m3) and considering the 

volumetric exhaust gas flow, but it should be noted that estimated soot* may differ to the real soot 

amount. According to previous studies, the relationship between FSN and real PM for RCCI operation 

should be examined further. 

2.2. Fuels and delivery 

Commercially available diesel and 98 ON gasoline fuels were selected as high and low reactivity fuels, 

respectively. Their main properties related with auto-ignition are listed in Table 2. 

To enable RCCI operation the engine was equipped with a double injection system, one for each different 

fuel used, as it is shown in the scheme of Figure 2. This injection hardware enables to vary the in-cylinder 

fuel blending ratio and fuel mixture properties according to the engine operating conditions. 

To inject the diesel fuel, the engine was equipped with a common-rail flexible injection hardware which 

is able to perform up to five injections per cycle. The main characteristic of this hardware is its capability 

to amplify common-rail fuel pressure for one of the injections by means of a hydraulic piston directly 

installed inside the injector. The main characteristics of the injector and nozzle used are depicted in Table 

3. 

Concerning the gasoline injection, an additional fuel circuit was in-house built with a reservoir, a fuel filter, 

a fuel meter, an electrically driven pump, a heat exchanger and a commercially available port fuel injector 

(PFI). This injector was located at the intake manifold and was specified to be able to place all the gasoline 

fuel into the cylinder during the intake stroke. The gasoline injection timing was fixed at 10 CAD after the 

IVO to allow the fuel to flow along the distance of 160 mm from the PFI location up to the intake valves 

during the intake stroke. The objective was to avoid fuel pooling over the intake duct surface and the 

undesirable variability in the mixture formation caused by this phenomenon. The main characteristics of 

the gasoline injector are depicted in Table 4. 

2.3. Analysis of in-cylinder pressure signal 



The combustion analysis was performed with an in-house one-zone model named CALMEC, which is 

fully described in the literature [33]. This combustion diagnosis tool uses the in-cylinder pressure signal 

as its main input. The in-cylinder pressure was measured with a Kistler 61215C pressure transducer 

coupled with a Kistler 5011B10 charge amplifier. A shaft encoder with 1800 pulses per revolution was 

used, which supplies a resolution of 0.2 CAD. The pressure traces from 150 consecutive engine cycles 

were recorded in order to compensate the cycle-to-cycle variation during engine operation. Later, each 

individual cycle pressure data was smoothed using a Fourier series low-pass filter with a variable cutoff 

frequency depending on engine speed [34][35]. Once filtered, the collected cycles were ensemble 

averaged to yield a representative cylinder pressure trace, which was used to perform the analysis. 

Then, the first law of thermodynamics was applied between IVC and EVO, considering the combustion 

chamber as an open system because of blow-by and fuel injection. The ideal gas equation of state was 

used to calculate the mean gas temperature in the chamber. Along with these two basic equations, 

several sub-models were used to calculate instantaneous volume and heat transfer, among other things 

[36]. The main result of the model was the Rate of Heat Release (RoHR). Information related to each 

cycle can be obtained, such as the IMEP. Start of combustion (SOC) was defined as the crank angle 

position in which the RoHR slope begins to rise due to combustion and combustion phasing is defined as 

the crank angle position of 50% fuel mass fraction burned (CA50). 

3. Results and discussion 

3.1. Experimental procedure 

As explained in the introduction section, a mandatory constraint in this study is to ensure NOx levels 

under EURO VI limit and ultra-low soot emissions. In addition, from the engine’s mechanical integrity 

point of view, a restricted cylinder pressure rise rate is also necessary. Figure 3 and Figure 4 show a 

scheme of the experimental procedure with the three steps in order to reach the three imposed 

constraints over a wide range of engine speed and loads.  

The first step is aimed at finding the potential engine settings allowing stable RCCI operation at the 

desired engine load. As literature demonstrates [37], the more effective control parameters over RCCI 

combustion are the diesel injection timing and the in-cylinder fuel blending ratio (diesel to gasoline ratio 

in the blend). In this sense, for fixed intake charge properties, the single or the combined modification of 

these parameters enables the modulation of the combustion development to achieve a stable 



combustion with a desired combustion phasing. Figure 3 illustrates that, starting from the reference CDC 

case at low load, the stable RCCI conditions at desired load can be reached by gradually increasing the 

gasoline fraction (defined in terms of mass in this work) and advancing diesel SOI. Both actions favor low 

soot emission levels, which is one of the objectives of the global procedure. Nevertheless, it is 

interesting to remark that the maximum gasoline fraction is limited to ensure stable conditions 

(COVIMEP< 4%) and the SOI advance is also limited to avoid excessive knocking (PRRmax< 25 bar/CAD). The 

CDC settings are the ones used by the authors in the reference test, which is measured every day before 

starting the experimental batch of tests. These settings are not relevant for the development of the 

global procedure. 

In the second step, a loop to reach EURO VI limits in terms of NOx together with soot* levels below 0.01 

g/kWh is proposed. In this case, additionally to the diesel SOI and gasoline fraction, the EGR rate was 

also considered as key variable to reach the goal. It is interesting to remark that no explicit restrictions in 

terms of CO and HC emissions are imposed in this step, but the limitation introduced in the coefficient 

of variation of the IMEP (COVIMEP <4%) is aimed to avoid misfire conditions (with unacceptable HC and 

CO). As a result of this second step, a NOx and soot* compliant engine operating point but not 

optimized in terms of HC and CO emissions is achieved (noted as potential setting in the figure). 

Finally, an optimization step (referred as fine tuning in the scheme of Figure 4) was done. The objective 

of this final step is to minimize HC and CO emissions as well as to improve the fuel consumption while 

maintaining NOx< 0.4 g/kWh and soot*< 0.01 g/kWh. In this case, the EGR rate and diesel SOI were 

found as the key engine variables. Figure 5 illustrates the effect of the EGR rate on RCCI engine-out 

emissions at high load and 1200 rpm. In this case, the operating conditions obtained at the end of the 

second step (denoted as initial point in the figure) resulted in NOx and soot* levels considerably lower 

than the limits proposed, with an excessive CO and HC emissions. As expected, the EGR reduction 

provides an improvement of around 45% and 76% in HC and CO emissions, respectively. Moreover, 

soot* emissions are decreased as EGR is reduced due to the enhancement of its oxidation process, and 

NOx emissions remains below the limit of 0.4 g/kWh. Further reductions in the EGR rate only will cause 

the non-compliance in terms of NOx emissions. From the figure, the reduction in HC and CO emissions is 

clearly linked to the enhancement in the second combustion stage, when the majority of gasoline is 

consumed [31]. Thus, a notable increase in the maximum RoHR peak is appreciated in this second stage, 



while in the first one is progressively reduced. It is also interesting to remark that combustion phasing 

remains almost unchanged with the EGR modification (only a 0.6 CAD variation between the extremes 

was appreciated). 

On the other hand, Figure 6 shows the potential of combining both effects (EGR rate and diesel SOI 

modification) in order to reduce HC and CO emissions while maintaining a desired combustion phasing. 

It contributes not only to reduce the emission levels, but also to improve the fuel consumption (BSFC). 

As seen in the figure, the first advance in diesel SOI (from -8 CAD to -11 CAD ATDC) results in a notable 

improvement in BSFC. This improvement is related with the better combustion phasing achieved (CA50 

moved from 11.1 CAD to 7.5 CAD ATDC), which allows enhancing the fuel to work efficiency. In addition, 

a great reduction in HC and CO emissions is observed. In this sense, as the combustion development is 

shifted to higher pressure and temperature conditions, the late soft burn (which causes the majority of 

unburned products) is avoided. Once a desired combustion phasing (CA50) is reached, the combined 

modification of the EGR rate and diesel SOI allows to modulate the combustion development in order to 

search slight improvements in BSFC and emissions. Comparing the RoHR traces of SOI -13 and -32 CAD is 

possible to appreciate how the combustion shape changes from a two staged to a one stage heat 

release. The advance in diesel SOI without the additional modification of other engine settings results in 

an over-dilution of the diesel fuel injected, and then lower ERG rate is needed to maintain a stable 

combustion with a desired CA50. Thus, focusing on the RoHR shape of SOI -32 CAD, it is clear that 

almost the whole combustion development takes place after TDC. In addition, the improved in-cylinder 

reactivity, due to the EGR reduction, results in a higher RoHR peak. Both factors lead to a reduction of 

3.5% in BSFC. Also of note is that CO and HC emissions are not strongly affected with this strategy. It is 

believed that once certain emission levels are achieved, the emissions are mainly governed by 

geometric factors such as squish flow and crevices and not by the engine settings [29]. 

3.2. RCCI engine mapping results 

This section presents a summary of the trends obtained following the experimental procedure described 

above. It is interesting to remark that only the results that fulfill all the imposed constraints are 

represented. In order to perform the maps, different engine loads from idle to full load and engine 

speeds from 900 to 1800 rpm have been tested. 

3.2.1. Compression ratio of 14.4:1 



In a first approach, the nominal compression ratio of 14.4:1 was tested. Figure 7 represents different key 

parameters for the RCCI combustion analysis as a function of the engine speed and load. The dashed 

lines across the figure denote the BMEP values of 10%, 25%, 50%, 75% and 100% load at 1200 rpm for 

the CDC cases using the baseline engine settings. In addition, the specific RCCI measured points are 

highlighted with black dots in the maps. 

In this the figure, it can be observed that RCCI engine mapping was only possible up to 50% load (load 

referred to CDC at 1200 rpm) whatever the engine speed. In this regard, it is remarkable that neither the 

excessive knocking level nor the combustion stability are limiting factors for extending the RCCI mode to 

higher values of BMEP. As observed, the experimental procedure defined to reach stable RCCI 

conditions (Figure 3) ensures maximum PRR values well below 25 bar/CAD in all the operating points, 

with higher values as BMEP is increased and engine speed is reduced. In this case, the low engine speed 

allows higher time to burn and enhances the combustion process, which is confirmed looking the CO 

and HC trends in Figure 8. Hence, the more fuel mass burned leads to higher knocking levels. On the 

other hand, stable combustion is attained in all the tests with COVIMEP values only slightly higher than 4% 

at 1800 rpm and idle conditions. Also worth noting is that the comparison of these two parameters 

confirm its inverse relationship, with more stable combustion (lower COVIMEP) as PRR is increased. 

From the gasoline fraction map analysis, is observed that the maximum GF achievable while fulfilling the 

combustion stability criteria at low load was around 37%. In addition, for a given engine load, the GF 

was maintained as the engine speed varied without knocking or stability problems. Thus, the higher GF 

region is found at 25% load, where a maximum GF of 89.9% at 1800 rpm was set. Finally, focusing on 

gross indicated efficiency (GIE) trend, it is clear that it increases as engine speed increases. In addition, 

the higher value found in this specific study was 47.2% at 1800 rpm and 25% load, which corresponds to 

the test with the highest GF. The trend of GIE as a function of the engine load shows a parabolic 

behavior, with maximum values between 25% and 50% load, which also correspond with the higher GF 

levels in the map. Hence, it is confirmed that to achieve high efficiency while maintaining low NOx and 

soot* emissions, the larger portion of the energy should come from the low reactivity fuel. 

Figure 8 represents the engine-out emissions in a similar way as in previous figure. As explained in the 

experimental procedure, soot* emission levels were a key experimental constraint with a imposed limit 

of 0.01 g/kWh that could be achieved across the whole engine map. As seen from the figure, at 50% 



load soot* levels are very close to the limit (mainly at 1200 rpm). It was confirmed that further increase 

in load (i.e. in fuel mass) pushed the soot* levels over the maximum allowed value, even with GF greater 

than 90%. These high soot* levels are consequence of the required delay in diesel SOI to avoid excessive 

PRR as load is increased (Figure 3). As a consequence, the mixing time for diesel injection is reduced and 

the mixture distribution at SOC becomes richer, which promotes the soot formation. This fact limits the 

RCCI engine map to 50% load with the nominal compression ratio. 

Regarding NOx emissions, it is worthy to note that all the values are below EURO VI limitation (0.4 

g/kWh). In addition, the trend obtained differs notably to the one observed in the other pollutant 

emissions. In this case, a greater dependency on the engine speed is found with lower emission levels 

for the 900 and 1500 rpm operating points. Additionally, a rise in NOx levels is observed as load is 

increased. This fact is explained due to the enhancement in the combustion development (higher 

stability and low HC and CO). 

HC and CO emissions were found to decrease as BMEP increased. As expected, the lower HC and CO 

emissions are located in the region of the map with great combustion stability and also high PRR. Inside 

this region, the slight differences in the emission values are the result of variations in diesel SOI, stability 

and GF. Thus, the engine operating condition with the best balance in terms of HC and CO emissions 

achieved in this specific study was found at 1500 rpm and 50% load, with 3.9 g/kWh and 4.4 g/kWh 

respectively. 

3.2.2. Compression ratio of 11:1 

In order to explore the potential of RCCI concept at higher loads, an effective compression ratio of 11:1 

was set by means of advancing the intake valves closing event (early Miller cycle). 

Figure 9 shows the same parameters as in the previous section, but for compression ratio of 11:1. The 

figure shows how with this lower compression ratio, the RCCI operation can be extended towards high 

BMEP, and almost up to full load at 1200 rpm. In addition, it is found that the trends in COVIMEP and PRR 

are the same found with high CR, with higher PRR and combustion stability as BMEP is increased and 

engine speed is reduced. Also of note is that at 50% load, slightly higher maximum PRR values than in 

the case of CR 14.4:1 were obtained. The lower CR allows to advance the diesel SOI to minimize soot 

formation, which implies slightly higher maximum PRR than the same operating condition at CR 14.4:1. 

Consequently, the maximum PRR registered in this study was 25.1 bar/CAD at 1200 rpm and 96% load. 



On the other hand, the maximum COVIMEP values are slightly lower than with CR 14.4:1 and the 

minimum values are lower too, which denotes that the combination of the settings proposed with the 

lowered CR provide higher combustion stability in the whole engine map. 

Focusing on the gasoline fraction effect, three different areas are identified. At idle conditions, in which 

a higher amount of diesel fuel was needed to maintain stable operation, the GF varies from 35% (at high 

engine speed) to 65% (at low engine speed), since the more unstable conditions at 1800 rpm require 

higher diesel fuel amount in the blend. In a region between 25% and 75% load, the GF varies from 70% 

to 78% with peaks of 88% at 1200 rpm. Finally, at high load a peninsula with lower GF than at medium 

load is appreciated. This fact is consequence of a technological limitation. In particular, the higher boost 

pressure required at high load restricts the injection rate of the gasoline injector, and an increase in 

diesel injection is needed to reach the target load. Finally, gross indicated efficiency increases as engine 

speed and load increase. The highest value found was 48.2% at 1200 rpm and 96% load. It is interesting 

to remark that a similar value is obtained at 1500 rpm and 85% load. 

As far as engine-out emissions, Figure 10 shows that soot* levels remain under the imposed value in the 

whole engine map. The peninsula with higher soot levels corresponds to the peninsula of the limited GF 

at high load. In this sense, since a large total fuel mass has to be supplied to the engine at this operating 

condition, a GF around 75% still implies high diesel injected mass, which enhances the soot formation.  

The NOx emissions trend suggest a stronger dependency on engine speed than on engine load. Only at 

1800 rpm a clear change in NOx emissions levels is observed as a function of the engine load. At this 

engine speed, a region with values near the limit is observed between 10% and 25% load, with a 

maximum NOx level of 0.39 g/kWh. This fact is well related with the low GF used in this case (35%). In 

addition, it is demonstrated that all the values remain below the EURO VI limitation. 

Finally, as found with CR 14.4:1, HC and CO emissions levels were notably reduced as BMEP increased. 

The lower HC and CO emissions are also located in the zone of the map with the greater combustion 

stability and PRR. Specifically, values of HC=0.17 g/kWh and CO=1.75 g/kWh were attained at 1500 rpm 

and 85% load. This represents a 95% improvement in HC and 60.2% in CO versus the best balanced 

operating point in terms of these emissions at CR 14.4:1. 

In order to compare directly the effect of compression ratio, Figure 11 shows the engine-out emissions, 

PRR and GIE versus engine load for both compression ratios at constant engine speed of 1200 rpm. The 



main findings previously described are also confirmed in this figure. Lowered compression ratio allows 

achieving the constraints proposed over the whole engine load sweep, while nominal compression ratio 

exceeds the soot* limitation from medium load.  

4. Conclusions 

In the present study, the potential of RCCI concept to reach EURO VI NOx levels and ultra-low soot 

emissions in a heavy-duty engine over the whole engine map has been demonstrated. For this, a 

detailed experimental methodology has been defined and applied to obtain maps of the engine-out 

emissions and other different parameters. Moreover, two different compression ratios, 14.4:1 and 11:1, 

have been evaluated.  

From the experimental engine procedure, it is found that the key variables to reach stable RCCI 

operation are the diesel injection timing and the in-cylinder fuel blending ratio. The modification of both 

variables allows to modulate the combustion pashing while maintaining a certain pressure rise rate with 

a high gasoline fraction in the blend. In a second step, aimed at introducing the potential RCCI engine 

operating points under the EURO VI NOx and soot* limitations, the exhaust gas recirculation (EGR) rate 

was also considered as key variable. In addition, the limitation in the COV of IMEP introduced in this step 

allows to control the CO and HC emission levels. Finally, an optimization step is needed to minimize CO 

and HC emissions.  

It should be noted that the results presented here have not been rigorously optimized and it is expected 

that different combinations of injection parameters, EGR levels, and gasoline percentages may yield 

similar results. 

Following the defined experimental procedure, the ability of RCCI concept to be mapped has been 

demonstrated. The key conclusions from the analysis of the different results presented in the maps are 

summarized as follows: 

 The methodology proposed ensures to achieve the imposed limitations of maximum PRR and 

COVIMEP without limiting the upper portion of the RCCI engine map. 

 The high soot* levels, consequence of the progressive delay in diesel SOI to avoid excessive PRR 

as load is increased, limited the RCCI engine map to 50% load at nominal CR of 14.4:1. This 

restriction was solved by lowering the CR to 11:1. 



 NOx emissions trends showed a stronger dependency on engine speed than the other pollutant 

emissions. In this case, all the values are below EURO VI limitation for both compression ratios. 

 Gross indicated efficiency increased with engine speed and load. In addition, the regions of 

maximum GIE values in the map correspond with the higher GF levels. A 48.2% peak of GIE at 

1200 rpm and 96% load was found with CR 11:1. 

 For both compression ratios, HC and CO emissions were reduced as BMEP increased. In 

addition, the lower HC and CO emissions were located in the region of the map with great 

combustion stability and PRR. The comparison of the best balanced operating conditions for 

both CR values suggested that the extension in load range achieved with CR 11:1 results also in 

a great improvement in both emissions. 
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Abbreviations 

ATDC: After Top Dead Center 

BMEP: Break Mean Effective Pressure 

BSFC: Break Specific Fuel Consumption 

CA50: Crank Angle at 50% mass fraction burned 

CDC: Convention Diesel Combustion 



COV: Coefficient of Variation 

CI: Compression Ignition 

DI: Direct Injection 

DPF: Diesel Particulate Filter 

EVC: Exhaust Valve Closing 

EVO: Exhaust Valve Opening 

FSN: Filter Smoke Number 

GF: Gasoline Fraction 

GIE: Gross Indicated Efficiency 

HCCI: Homogeneous Charge Compression Ignition 

IMEP: Indicated Mean Effective Pressure 

IVC: Intake Valve Close 

IVO: Intake Valve Open 

LNT: Lean NOx Trap 

LTC: Low Temperature Combustion 

MON: Motor Octane Number 

ON: Octane Number 

PM: Particulate Matter 

PFI: Port Fuel Injection 

PPC: Partially Premixed Charge 

PRR: Pressure Rise Rate 

RCCI: Reactivity Controlled Compression Ignition 

RON: Research Octane Number 

RoHR: Rate of Heat Release 

SCR: Selective Catalytic Reduction 

SOC: Start of Combustion 

SOI: Start of Injection 

VVA: Variable valve actuation  



Table 1. Single cylinder engine specifications 

Engine type Single cylinder, 4 Stroke, DI 

Bore x Stroke [mm] 123 x 152 

Connecting rod length [mm] 225 

Displacement [L] 1.806 

Geometric compression ratio [-] 14.4:1 

Bowl Type Open crater 

Number of Valves 4 

IVO 375 CAD ATDC 

IVC 535 CAD ATDC 

EVO 147 CAD ATDC 

EVC 347 CAD ATDC 
 

  



Table 2. Physical and chemical properties of the fuels used in the study 

 Gasoline Diesel B7 

Density [kg/m3] (T= 15 °C)   739 837.9 

Viscosity [mm2/s] (T= 40 °C)   - 2.67 

RON [-] 98.8 - 

MON [-] 85.2 - 

Cetane number [-] - 54 

Lower heating value [kJ/kg] 41.32 42.61 
 

  



Table 3. Diesel injector characteristics 

Actuation Type Solenoid 

Steady flow rate @ 100 bar [cm3/s] 28.56 

Number of Holes 7 

Hole diameter [µm] 194 

Included Spray Angle [°] 142 

 

  



Table 4. Gasoline injector characteristics 

Injector Type Saturated 

Steady flow rate @ 3 bar [cm3/min] 980 

Included Spray Angle [°] 30 

Injection Pressure [bar] 5.5 

Injection Strategy Single 

Start of Injection Timing 385 CAD ATDC 

 

  



 

Figure 1. Complete test cell setup 

  



 

Figure 2. Fuel injection systems scheme 

  



 

 

Figure 3. Experimental procedure to reach stable RCCI conditions (Step 1). 

  



 

 

Figure 4. Experimental procedure to introduce the stable RCCI operating points from Step 1 

under EURO VI NOx and soot* limits (Step 2). 

  



 

 

Figure 5. Effect of EGR rate on RCCI engine-out emissions at high load and 1200 rpm. 

  



 

 

Figure 6. Effect of the combined modification of the EGR rate and diesel SOI on RCCI engine-

out emissions at medium load and 1200 rpm. 

  



 

 

Figure 7. Different engine parameters with effective compression ratio of 14.4:1. 

  



 

 

Figure 8. Engine-out emissions with nominal compression ratio of 14.4:1. 

  



 

 

Figure 9. Different engine parameters with effective compression ratio of 11:1. 

  



 

 

Figure 10. Engine-out emissions with effective compression ratio of 11:1.  



 

 

Figure 11. Engine-out emissions, PRR and GIE versus engine load for both compression ratios, 
11:1 and 14.4:1 at 1200 rpm. 

 

 


