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Abstract 25 

Wine quality depends mostly on the features of the grapes it is made from. Cluster and berry 26 

morphology are key factors in determining grape and wine quality. However, current practices 27 

for grapevine quality estimation require time-consuming destructive analysis or largely 28 

subjective judgment by experts. 29 

The purpose of this paper is to propose a three-dimensional computer vision approach to 30 

assessing grape yield components based on new 3D descriptors. To achieve this, firstly a partial 31 

three-dimensional model of the grapevine cluster is extracted using stereo vision. After that a 32 

number of grapevine quality components are predicted using SVM models based on new 3D 33 

descriptors. Experiments confirm that this approach is capable of predicting the main cluster 34 

yield components, which are related to quality, such as cluster compactness and berry size 35 

(R
2
 > 0.80, p <0.05). In addition, other yield components: cluster volume, total berry weight 36 

and number of berries, were also estimated using SVM models, obtaining prediction R
2
 of 0.82, 37 

0.83 and 0.71, respectively.  38 

 39 

Keywords: grape quality; cluster yield components; Vitis vinifera L; non-invasive 40 

technologies; stereo-vision; 3D descriptors;  41 
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1. Introduction 43 

Due to the economic importance of the wine industry worldwide, innovative methods and 44 

technologies are being developed and applied to increase the quality of wine. The quality of 45 

wine is partially subjective, as it depends on the consumer’s taste and preferences. However, it 46 

also depends on objective parameters. Of all the factors that influence the quality of the wine, 47 

the most important is the quality and features of the grapes it is made from. 48 

Cluster compactness and berry size are two key factors of grapevine fruit quality. Current 49 

practices to assess these quality parameters require time-consuming destructive analysis or 50 

largely subjective judgments by experts. Unfortunately, in addition to the lack of objectivity of 51 

these parameters, the short and limited time available for analysis during harvest time and the 52 

lack of measurement tools as well as their high cost, among other factors, make it difficult to 53 

assess grape quality. For this reason, developing non-destructive grape supervision analysis, 54 

which increases the objectivity (Tello & Ibáñez, 2014) or automates the estimation (Roscher et 55 

al., 2014), represents a huge technological advance compared to the current practices. 56 

Nowadays, 2D vision systems are widely used in the agri-food industry/agribusiness with 57 

proven results (Benlloch, Agustí, Sanchez, & Rodas, 1995; Brosnan & Sun, 2004; Diago, Sanz-58 

Garcia, Millan, Blasco, & Tardaguila, 2014…). Moreover, huge advances in 3D sensor 59 

technology are leading to new opportunities and challenges. Specifically, one of the sectors 60 

which can clearly benefit from 3D computer vision technology is viticulture; for example, to 61 

forecast the quality of wine grapes (Whalley & Shanmuganathan, 2013).  62 

 63 

1.1 Three-dimensional computer vision methods 64 

There are many methods for extracting 3D information from 2D images. These methods can be 65 

classified into active and passive methods. Active methods emit light patterns into the scene to 66 

analyze their behavior, while passive methods only analyze the behavior of ambient light. 67 

 68 

Some active methods are based on structured light (Udomkun, Nagle, Mahayothee, & Müller, 69 

2014; Verdú et al., 2013). The simplest form of this is the projection of light stripes onto the 70 

surface, enabling the 3D position of the surface to be calculated from its intersection with the 71 

stripes. 72 

 73 

Passive methods, such as stereo photogrammetry (Cyganek & Siebert, 2011), consist of two 74 

camera views of the surface from slightly different locations. Corresponding features are 75 

matched between the two images and the 3D surface is then constructed by triangulation. An 76 

advantage of photogrammetry over structured light is that the natural appearance of the 77 

surface is captured as a normal part of the process. A disadvantage is that it relies on there 78 

being enough features in the surface texture (visual appearance) for matching to take place. 79 

 80 

Although stereoscopy is very simple and has a low cost when compared to other 3D 81 

techniques, not many studies using this technique for food inspection can be found in the 82 

available literature. This is mainly because automatic matching of points from stereo pairs is a 83 

difficult task for computer-based image analysis. However, there are some interesting works 84 

using stereoscopy for detecting weeds (Sachez & Marchant, 2000), measuring the thickness of 85 

wheat grains (Sun, Berman, Coward, & Osborne, 2007), estimating firmness in salmon 86 
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(Quevedo & Aguilera, 2010) and measuring the volume of apple slices in a drying process 87 

(Sampson, Chang, Rupasinghe, & Zaman, 2014). In all these works, edge features are used to 88 

solve the correspondence problem. 89 

 90 

 91 

1.2 Grapevine quality components 92 

Cluster architecture and berry morphology and distribution are key factors in determining 93 

grape quality. On the one hand, compact clusters show favorable conditions for the 94 

development of different grape pests and diseases (especially Botrytis cinerea). On the other 95 

hand, the number of interior berries increases with cluster compactness. These interior berries 96 

may not receive the sunlight needed to achieve an adequate phenolic maturity, leading to a 97 

heterogeneous ripeness of the cluster. At present, cluster compactness is visually estimated by 98 

experts using OIV descriptor No. 204 (OIV, 2007). This descriptor categorizes a cluster into one 99 

of five groups, quantified by 1, 3, 5, 7 and 9, where number 1 indicates “berries in grouped 100 

formation with many visible pedicels” and number 9 indicates “misshapen berries”. This 101 

estimation is subjective, but objective compactness estimations are required to allow 102 

comparisons between different works. Recently (Tello & Ibáñez, 2014) have evaluated some 103 

destructive methods for an objective estimation of grape cluster compactness.  104 

 105 

Berry size is related to the skin-to-pulp ratio of the berry and the concentration of skin-located 106 

compounds that play a key role in wine quality. Two pieces of research have been published 107 

recently regarding the estimation of grape berry size. (Cubero et al., 2014) presents a method 108 

to estimate the size and weight of isolated wine-grapes taking into account the peduncle. 109 

(Roscher et al., 2014) detects circular structures on in-field images which are potentially 110 

berries and classifies them into the ‘berry’ or ‘non-berry’ class by utilizing a conditional random 111 

field. These two works estimate berry sizes from one image using a calibration object with a 112 

known size, which is located at a certain distance from the berries in the scene. Instead of this, 113 

it will be interesting to use a stereoscopic system to estimate berry size (without the constraint 114 

of always having a known calibration object in the scene). 115 

 116 

This work contributes to accomplishing an objective and non-destructive estimation of the 117 

main grape yield components. To achieve this, a new approach has been developed to 118 

generate a partial three-dimensional model of the grape cluster using 3D computer vision 119 

technology. The approach is intended to be used alongside an inspection system consisting of 120 

two cameras arranged in a stereoscopic fashion. The system outputs two images of the grapes, 121 

one from each camera. These images, along with the camera calibrations, are then used to 122 

provide a partial 3D reconstruction of a grape cluster. Once this 3D model is obtained, 3D 123 

descriptors are automatically extracted to estimate the main cluster quality components and 124 

other yield components. 125 

 126 

The experiments, obtained plant material and images are presented in Sections 2.1 and 2.2. In 127 

Section 2.3 the proposed 3D reconstruction approach is presented. Section 2.4 explains the 3D 128 

descriptors and the models proposed to estimate quality and yield components. The 129 

experiments and the results obtained are shown and discussed in Section 3. Finally, the 130 

conclusions of the paper are presented in Section 4. 131 

 132 
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2. Material and methods 133 

2.1. Description of grapevine cluster samples 134 

The study was carried out with 100 grapevine clusters from ten different red grapevine (Vitis 135 

vinifera L.) varieties: Grenache, Pinot Noir, Graciano, Monastrell, Mencia, Bobal, Cabernet 136 

Sauvignon, Tempranillo, Merlot and Carignan. All clusters were collected at Vitis Navarra 137 

Nursery vineyards (Navarra, Spain), just prior harvest in 2011.  138 

At a first stage, cluster compactness was rated according to OIV descriptor No. 204 (OIV, 2007) 139 

by a panel formed by 10 experienced judges. Secondly, yield components, including the 140 

number of berries per cluster, cluster volume, and cluster and berry weight, were destructively 141 

measured at the University of La Rioja (Spain). The weight of each cluster was determined 142 

using a scale (Blauscal, AC-5000), and the morphological volumes were measured through the 143 

volume of water displaced by immersion in a bucket filled with water. Once clusters were 144 

destemmed by hand, the number of berries was counted. In addition, 15 berries per cluster 145 

were randomly chosen to measure their length and width using digital calipers (Mitutoyo, CD-146 

15DCX). For the latter two features, the average of the 15 measures was used.  147 

2.2. Image acquisition system 148 

Images were taken using a Bumblebee2 stereo camera (Point Grey Research Inc, Richmond, 149 

BC, Canada) model BB2-08S2C-25 configured in automatic mode (white balance, gain and 150 

shutter). Images were synchronized and had a resolution of 1024 x 768 RGB color pixels from 0 151 

to 255 values per channel. 152 

Image acquisition was performed in lab conditions but the image acquisition set-up was 153 

designed to be near field conditions. The sample grape cluster was fixed from its peduncle, as 154 

if hanging from the vine (Fig. 1). The illuminants employed were four pairs of fluorescent tubes 155 

(Osram L 18W/965 BIOLUX) with a color temperature of 6500 K. They were distributed and 156 

oriented at different angles, which produced highlights on the sample (Fig. 2). The distance 157 

between illuminant and samples was around 0.35 m. It was decided that the light intensity 158 

should not be changed because it would have a lower effect than the color changes between 159 

samples. The camera can be placed at a distance of 0.10 m to 0.25 m from the sample. In this 160 

set-up, the furthest distance was chosen to work with the lowest resolution of the sample 161 

projection (around 170x250 pixels). As a result, this set-up resulted in a difficult image 162 

acquisition scenario. 163 

A controlled background was needed to calculate one of the proposed 3D descriptors for 164 

assessing compactness. 165 

 166 

 167 
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Image acquisition was performed using the program PGR FlyCapture v.1.22 (Point Grey 168 

Research Inc, Richmond, BC, Canada). 169 

2.3. Stereoscopic 3D reconstruction of grape clusters 170 

The proposed approach is intended to be used alongside an inspection system consisting of 171 

two cameras arranged in a parallel stereoscopic fashion. The system outputs two images of the 172 

grape cluster, one from each camera. These images, along with the known camera calibrations, 173 

are then used to automatically obtain a partial 3D reconstruction of a grape cluster, which can 174 

be refined manually by a user.  175 

 176 

Unfortunately, this approach has some inherent difficulties. Firstly, some of the grapes in the 177 

internal layers of the cluster are totally or partially hidden behind other berries. This fact 178 

impedes the reconstruction of the berries that are completely hidden. However the 3D 179 

descriptors can still be extracted from the reconstructed grape berries. This also means that 180 

the grape berries that are partially hidden will be harder to generate due to missing 181 

information. In addition, for it to be feasible to solve the problem, grape berries were modeled 182 

mathematically as perfect spheres. In fact, though, they may actually be slightly deformed, 183 

more akin to an ovoid, which may be somewhat troublesome in certain extreme cases. 184 

 185 

In order to overcome these difficulties, several computer vision techniques were used. These 186 

included: i) the 3D implementation of the Hough transform (Woodford, Pham, Maki, Perbet, & 187 

Stenger, 2014), ii) feature detection and iii) feature matching. Also, the approach presented 188 

here involved extensive use of direct and inverse perspective projection at various stages of 189 

the automatic process. 190 

A new 3D reconstruction tool has been developed in C++ using Microsoft Visual Studio 2010 191 

Professional and the Qt 4.8.0 UI framework. Image processing was performed using the 192 

openCV library v.2.3.1. This 3D reconstruction tool provides a clearly defined workflow, 193 

including an automatic approach and a manual refinement part. In the automatic phase, the 194 

tool generates as many correct grapes as possible without user supervision. The effectiveness 195 

of this method varies greatly on a case by case basis, as some grape varieties may be easier to 196 

reconstruct than others, depending primarily on how prominent the difficulties discussed 197 

above are. 198 

2.3.1. Automated approach 199 

This approach automatically generates a partial three-dimensional model of the grape berries 200 

without the user’s help. In order to do so, the following problems were solved. 201 

 202 

Firstly, the original images were rectified to accomplish a parallel camera configuration, where 203 

the baseline (b = 0.1197 m) was aligned with the Xs-axis and therefore the epipolar constraints 204 

could be easily applied to solve the correspondence problem. In this case, only vertical edge 205 

features were used, since the horizontal edges belong to the same epipolar line and this 206 

increases the risk of obtaining wrong correspondences. 207 

Edges are features which fit perfectly in scenarios with a high degree of variability in color or 208 

illumination. In this case, vertical edges were extracted from the rectified images and for each 209 
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vertical edge in the rectified images a vector of descriptors was estimated. This vector consists 210 

of the gradient module (mi), the sines (si) and the cosines (ci) of the gradient orientation. The 211 

range of distances allowed between the camera and the sample, described at image 212 

acquisition set-up as shown in Fig. 1, achieved accuracy with reconstruction errors smaller 213 

than 1 mm at occlusion edges. Therefore, the occlusion edges of the berries can be used to 214 

solve the reconstruction problem obtaining low errors. 215 

The measure of similarity between features in the left and right images was calculated by the 216 

Euclidean distance between their normalized vector of descriptors [mi, si, ci]. Feature matching 217 

consists of an optimization problem where features in a row in the left image must be 218 

matched with features in the same row in the right image. This correspondence problem was 219 

solved using dynamic programming, where a tree of possible solutions is explored. A node of 220 

this tree contains two column indexes (one for each image), a list of matching pairs and the 221 

correspondence cost. The two indexes pointed to the features that the algorithm was trying to 222 

correspond in this node (Fig. 3). 223 

Each node generated three new branches. The first branch took into account the case when 224 

the feature in the left image was occluded and therefore did not correspond to any feature in 225 

the right image. In this case, the son node incremented its left index and added a constant to 226 

its correspondence cost. The second branch considered the case when the feature in the left 227 

image matched with the feature in the right image. In this case the node incremented its two 228 

indexes, included the new matching pair in the list and added the similarity distance to its 229 

correspondence cost. And finally, the third branch assumed that the feature in the right image 230 

was occluded and therefore did not correspond to any feature in the left image. In this last 231 

case, the node incremented its right index and added a constant to its correspondence cost. 232 

The algorithm expanded the tree and found the optimal solution, which was the list of 233 

matching pairs on the leaf node with the minimum cost. 234 

For each matching pair of vertical edges, a 3D point was obtained by triangulation. In 235 

addition, others features (not only vertical edges) could be reconstructed. For example, 236 

points between berries, which have a dark appearance in the two images. The 3D points, 237 

reconstructed using vertical edges, were the input to a Hough transform which had been 238 

adapted to detect spheres in the four dimensional parameter space (xc, yc, zc, r). After the 239 

accumulation phase, a minimum number of votes were set for detecting spheres. A 240 

refinement step was performed in order to detect and remove some wrong spheres, such 241 

as overlapping spheres or spheres which include reconstructed points between berries. It 242 

is important to mention that Hough transform is a robust technique against possible noise 243 

like highlights.   244 

2.3.2. Manual refinement  245 

In the manual phase, the user could reconstruct additional berries using the 3D reconstruction 246 

tool. This could be achieved by two methods. The first required the user to input the 247 

coordinates (position and radius) of the grape. While this method certainly worked, it may be 248 

somewhat unintuitive and slow. For this reason, an alternative, more visual method was 249 
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designed and developed. In this case, in order to reconstruct a grape the user just needed to 250 

specify 5 points of its border in one of the original images and its center in the other one. With 251 

these data, the tool generated a 3D grape berry automatically, without the need for any 252 

further action. This enabled the user to reconstruct a grape simply by entering a total of 6 253 

points in a totally visual, intuitive and quick way. Furthermore, the tool assisted this process by 254 

providing the user with a visual aid in the form of previsualizations of the final result in both of 255 

the original images and axis restrictions whenever possible. With this method the user would 256 

not need to be an expert to use the tool, as the process is simple, easy and straightforward.  257 

One of the objectives of this work was to make the 3D reconstruction tool as intuitive as 258 

possible. Therefore, the tool has a graphical interface (GUI) that enables the user to visualize 259 

the model and interact with it. The GUI that can be seen in Fig. 4 and it is divided into two 260 

main parts: the 2D viewports and the 3D viewport. 261 

On the one hand, there is a 2D viewport, where all the information related to the 2D space, 262 

such as the original images of the grape, is shown. As mentioned above, the reconstruction 263 

process takes two images of the grape as input; therefore, the tool has two 2D viewports, one 264 

for each camera. These viewports can also be used by the user to enter input to the tool, such 265 

as the 6 points required in the manual reconstruction phase. 266 

A 2D viewport also has some features that are not directly related to the reconstruction 267 

process but that can greatly help the user. The most important of these features is the 268 

projection of the model onto the original images. The result is a new image which consists of 269 

the original image with the projection of the current model drawn over it. With this new image 270 

the user can easily check if the model correctly fits the grapes in the original images.  271 

On the other hand, the 3D viewport provides a fully three-dimensional visualization of the 272 

current model. The user can select individual grapes and edit their parameters, as well as 273 

navigate through the 3D space. The 3D viewport is immediately updated with new information 274 

to reflect the current state of the model. This means that, whenever the user adds a new grape 275 

using the system explained above, the 3D viewport will show the changes on the fly. The same 276 

applies to the automatic phase: the moment it finishes its execution, the 3D viewport will be 277 

updated. 278 

Finally, the reconstructed model can be saved in an open, easily-readable format, meaning 279 

that the models can be easily used by other applications that want to display or perform 280 

certain operations on them. 281 

 282 

2.4. 3D descriptors and models 283 

There are many morphological descriptors for the characterization of the grapevine cluster 284 

which can be measured manually. However, with the cluster 3D model, non-destructive 285 

descriptors can be calculated automatically (see Table 1). In this work, six 3D descriptors were 286 

extracted automatically from the 3D model: cluster volume, berry size, number of berries per 287 

cluster, concavity measure, intersection between berries, and number of berries per area. The 288 
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last 3D descriptors are new descriptors proposed in this work to assess grapevine cluster 289 

compactness that cannot be measured by hand. 290 

In order to calculate the concavity measurement (holes between berries) an image 291 

segmentation should first be performed. This segmentation was performed in two steps: 292 

firstly, the definition of a region of interest (ROI) and secondly, classification of pixels into 293 

three classes: background, holes and berries. 294 

The first step, ROI definition, calculates the difference between the convex hull of the cluster 295 

and the berries from the 3D model. This difference estimates the potential concavities. These 296 

estimated potential concavities were extracted from the 2D images based on the projection of 297 

the 3D model. The convex hull of the cluster was calculated for the image based on a 2D 298 

Delaunay triangulation. This triangulation was calculated from the projected sphere centers of 299 

the 3D model. Then, using the triangles obtained, a convex hull was created. However, some 300 

triangles from this convex hull were removed to ensure a better fit to the projected shape of 301 

the cluster, specifically focusing on removing large concavities. This refinement consisted of 302 

removing the triangles that had at least one vertex belonging to the convex hull and in which 303 

the longest edges are three times longer than their heights. Pixels inside this refined convex 304 

hull were used as the first region. The second part of this step was to make a second region as 305 

the union of the ellipses from the projection of the 3D model. Finally, the ROI was defined as 306 

the difference between the first region and the second region.  307 

Fig. 5 shows an example of this step on the Bobal sample 1. The projected berries can be seen 308 

in green, the Delaunay triangulation in blue, the convex hull in red and the removed triangles 309 

in purple. In Fig. 6, pixels inside the ROI were colored in red. 310 

The second step was the color segmentation of the pixels in the ROI into 3 classes. This pixel 311 

classification was based on the k-nearest-neighbors pattern recognition approach (Sánchez, 312 

Albarracin, Grau, Ricolfe, & Barat, 2008). Five different grape colors were self-trained for each 313 

pair of images using a k-means clustering of the pixel colors inside the projected ellipses of the 314 

3D model. Five colors were also trained for the background determination. Then, for each pixel 315 

inside the ROI a difference to these trained colors was calculated. If the lowest difference in 316 

absolute values was with a background color, then it was classed as background. If the lowest 317 

difference was with a self-trained grape color, then if the difference was positive (pixel color 318 

was brighter than self-trained grape color) it was classified as grape color, otherwise it was 319 

classified as a hole with the difference as an approximate measure of the depth.  320 

The depth value for all the hole pixels was accumulated plus the accumulated value of all the 321 

background pixels inside the ROI, taking their depth as 255. The mean of both images was 322 

calculated for each sample. This value was called the concavity measure and it is the only 3D 323 

descriptor that requires a controlled background. 324 

The intersection between spheres was approximated using the Eq. 1 where c is the center of 325 

the sphere, r its radius and n the total number of grapes in the 3D model.  326 
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 327 

The number of berries per area was approximated as the area of the ROI divided by the 328 

number of berries. This value was averaged using the stereo pair of images. 329 

The cluster volume was calculated using the information from the 3D model following this 330 

equation (Eq. 2). 331 

 ! ��4 ∗ # ∗ 
�$3
�
� �

 (2) 

 332 

Another value extracted from the 3D model was the berry size as the mean volume of the 333 

grape berries in the 3D model (Eq. 3). 334 

 

 !& � 1� ∗ ! (3) 

 

 

The number of berries was the number of reconstructed berries in the 3D model for each 335 

sample. 336 

The 3D descriptors calculations were performed using our own code developed using the 337 

image processing toolbox of Matlab R2008a (The Mathworks, Natick, Massachusetts, USA) and 338 

loading the previously reconstructed 3D models. 339 

2.5. Statistical analysis 340 

Kendall’s Tau-b (Kendall, 1970) correlation coefficients were calculated between the 3D 341 

descriptors and the compactness measured by the visual evaluation panel. 342 

Support Vector Machine regression models (using nu-support vector regression) (Schölkopf, 343 

Smola, Williamson, & Bartlett, 2000) were used to predict compactness and some 344 

morphological components (berry size, cluster volume, cluster weight and number of berries) 345 

using the calculated 3D descriptors as input data. The model is based on a number of support 346 

vectors (samples selected from the calibration set) restricted by the nu parameter and non-347 

linear model coefficients which define the non-linear mapping of variables (calculated 3D 348 

descriptors). 349 

The samples were pseudo randomly divided 2/3 for building the model and 1/3 for testing it. It 350 

was adjusted so that all the different grape species were represented for building and testing. 351 

To estimate the fit of the calibration data with the models developed, the Root-Mean-Square 352 

Error of Calibration (RMSEC) was used. It is defined as:  353 
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Where y20  are the values of the predicted variable when all samples are included in the model 354 

formation, y3 are the known values and � is the total number of samples. 355 

A random cross-validation method was employed to evaluate the models developed for the 356 

samples used in the calibration model. In this method, subsets of 8 (n/8) random samples are 357 

used to test the model developed without them. This method was iterated three times with 358 

different samples and its results averaged to achieve more reliable validations.  359 

The Root-Mean-Square Error of Cross-Validation (RMSECV) was used to evaluate and compare 360 

the accuracy of the different SVM models developed using the random cross-validation 361 

method described previously. RMSECV is based on Eq. 4, but in this case the parameter		y24 was 362 

the value of the variable estimated using a model that was built without the removed group of 363 

samples (� ∈ '6�786�)9�:;6<). 364 

The prediction accuracy of the model was estimated using the root-mean-square error of 365 

prediction (RMSEP). RMSEP is calculated exactly as in Eq.4, except that the estimates y20  refer 366 

to 33 new samples which were not involved in model building. 367 

All statistical procedures were performed on PLS Toolbox 6.5 (Eigenvector Research Inc., 368 

Wenatchee, Washington, USA), a toolbox extension within the Matlab 7.6 computational 369 

environment (The Mathworks, Natick, Massachusetts, USA). 370 

 371 

3.  Results and discussion 372 

The efficiency of the 3D reconstruction tool was tested by generating the 3D model of 100 373 

clusters of grapes of different varieties. All models were successfully generated using a 374 

combination of the automatic and manual phase (Fig. 7). The process of obtaining an almost 375 

exact reconstruction of the visible part of the cluster never took more than 10 minutes, often 376 

less depending on the complexity of the cluster. 377 

Applying only the automatic reconstruction phase, the mean success rate was 20% correctly 378 

reconstructed berries per view (approximately 10 berries) (Fig. 8). The lowest rate was 10% 379 

when the automatic phase was applied to “Tempranillo” clusters. The rest of the varieties 380 

provided better reconstruction ratios, the best case being “Bobal”, with 27.78%.  381 

Using the aforementioned features of the 2D viewport the model developed was checked 382 

against the original images of the cluster, obtaining successful results with projected errors 383 

lower than 5 pixels (Fig. 9). Taking into account the acquisition set-up defined in Fig. 1, it was 384 
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proven that if the error of projected edges is lower than 5 pixels, the reconstruction error will 385 

be lower than 1 mm. The only visible grapes that could not be generated were the ones that: 386 

a) were visible only in one image and hidden in the other, thus making it impossible to 387 

generate a 3D version of it; or b) could not be properly identified because of visual noise. All 388 

the other visible grapes could be reconstructed with minimal error. 389 

At this point, it is important to highlight the advantages of having a digitalized, 3D model of the 390 

grapes. The most important one is the fact that the desired 3D descriptors can be extracted 391 

automatically, of course. However, it is important to note that it also allowed the model to be 392 

saved easily, virtually forever.  393 

The benefits of this implication are significant because it is possible to create a record of 394 

models of different wine varieties over the years. Moreover, it is also possible to recover a 395 

previously analyzed model and extract new descriptors for it that were not needed before. 396 

To correctly assess these benefits one can compare it to the traditional system where only 397 

measures or images can be stored. This means that in order to analyze the grape clusters with 398 

new criteria it is necessary to perform the measurement again. Apart from the time needed to 399 

do this, those grape clusters may not be available any more. 400 

 401 

3.1. Cluster quality components 402 

A Kendall tau study was performed to correlate with compactness for the new 3D descriptors 403 

concavity measure, intersection between berries and number of berries per area. It was also 404 

calculated for the index CI-12, which (Tello & Ibáñez, 2014) claims can be used for 405 

compactness measures. As it can be seen in Table 2, the CI-12 result confirmed a good 406 

correlation, as reported by the authors. The concavity measure descriptor presented the 407 

highest Pearson correlation coefficient, whereas the number of berries per area was poorly 408 

correlated. 409 

Fig. 10 and Fig. 11 depict the image segmentation results of two samples of Cabernet Franc 410 

with two different classes of compactness 3, a loose cluster, and 7, corresponding to a tight 411 

cluster. Hole depths inside the cluster were coded as blue being deeper the higher the value. 412 

As it can be seen, there were significantly more background and hole pixels in Fig. 10 than in 413 

Fig. 11. This information was collected by the previously defined concavity measurement. 414 

Therefore, it seems logical that there was a high correlation value with the compactness 415 

obtained with the Kendall tau study. 416 

The results of the calibrated SVM model for predicting compactness using these three 3D 417 

descriptors: concavity measure, intersection between berries and number of berries per area, 418 

can be seen in Table 3. The inclusion of the 3D descriptors intersection between berries and 419 

number of berries per area in the SVM model for grape cluster compactness enhanced the 420 

results by around 10% in comparison with using the concavity measure alone. Although the 421 

Kendal tau results in a poor direct correlation for the 3D descriptor of number of berries per 422 
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area (Table 2), it helped to model some extreme cases, which explains the better results when 423 

it is used.  424 

It should be noted that only one model was generated for ten different grapevine cultivars, 425 

which increases the complexity of the problem. Prediction results were moderate (R
2
 Pred = 426 

0.80), but it can be observed in Fig. 12 that the maximum error for test samples was around 427 =2 so it was misclassified in the worst case as one class above or below.  428 

Another SVM model was built regarding the berry size quality component. The results (Table 3) 429 

were good, with an error in calibration and prediction of less than 0.23 cm
3
 and an R

2 
above 430 

0.82. The model built was very robust because the samples used for the prediction fit even 431 

better than those used in the calibration (RMSEP< RMSEC). It should be mentioned, however, 432 

that for the compactness descriptors, this 3D descriptor was calculated based only on the 433 

automatic reconstruction of the 3D model and it did not need a controlled background.  434 

 435 

3.2. Other cluster yield components 436 

Three different SVM models were also built for each of the morphological descriptors 437 

estimated (cluster volume, total berry weight and number of berries). These models were built 438 

using the same distribution of samples for calibration and testing as those used for the quality 439 

components. Just one 3D descriptor was used for each yield component (the 3D descriptor 440 

with the same name as the yield component, except for weight, which was calculated with the 441 

cluster volume). As can be seen in Table 3, the results for cluster volume and total berry 442 

weight showed a determination coefficient (R
2
) in prediction higher than 0.82. For the manual 443 

measurement of cluster volume, the complete cluster (including pedicels and branches) was 444 

measured, while for the image method employed, only the information about the 445 

reconstructed berries was used, so it seems coherent that a better result was obtained using 446 

berry weight alone. The outcomes were lower for number of berries (approx. 24 berries of 447 

error in prediction) probably because many berries were occluded inside the cluster (especially 448 

for the samples with greater compactness). 449 

 450 

4. Conclusions 451 

The research focused on estimating grape yield components using stereo vision. Due to the 452 

difficulty of making the correct correspondence between the pair of images, a 3D 453 

reconstruction tool was developed to obtain an accurate 3D model of the samples with a 454 

reconstruction error of less than 1 mm. It has been proven that the tool actually achieves the 455 

goal of reconstructing the model successfully while complying with the standards of usability, 456 

speed and user-friendliness. In fact, using the 3D models obtained only from the automatic 457 

approach, berry size was estimated by an SVM model with an R
2
 in prediction higher than 0.82. 458 

Once three-dimensional models were available, new 3D descriptors were extracted from them 459 

to assess the compactness quality component: concavity measure, intersection between 460 

berries and number of berries per area. These descriptors were evaluated and compared with 461 

the state-of-the-art index CI-12 on 100 different samples from 10 different varieties. The 462 
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concavity measure descriptor gave a Kendal tau correlation of -0.71 (p<0.01) compared with 463 

the 0.52 (p<0.01) obtained by CI-12. An SVM was developed using these new 3D descriptors 464 

with an R
2
 in prediction higher than 0.80, with a maximum classification error of one class. In 465 

addition, other yield components: cluster volume, total berry weight and number of berries, 466 

were estimated using SVM models, obtaining the following R
2
 in prediction, respectively: 0.82, 467 

0.83 and 0.71.  468 

 469 

The results achieved show the capability of this technique for solving the problem of having an 470 

accurate and objective tool for measuring cluster compactness. In addition, the fact that the 471 

berry size quality component was estimated automatically without a controlled background 472 

made this technique very feasible for use under field conditions. It would be very useful, for 473 

example, to assess grapevine quality components in inter varietal studies (such as genetic 474 

association studies). 475 

 476 

Grape clusters were measured in a difficult image acquisition scenario with the aim of 477 

simulating field conditions. Future work will focus on extrapolating these results into the field 478 

scenario.  479 
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Descriptors Morphological 
(measured by hand) 

3D 
(automatic measures) 

Units 

Cluster length Non-destructive Non-destructive m*10
-2

 

Cluster width Non-destructive Non-destructive m*10
-2

 

Cluster volume Non-destructive Non-destructive m
3
 *10

-3
 

Cluster weight Non-destructive Estimated kg*10
-3

 

Berry size  Non-destructive Non-destructive m
3
 *10

-6
 

Number of berries 
per cluster 

Destructive  Estimated  

Seeds per berry Destructive Occluded  

Pedicel length Destructive Occluded m*10
-2

 

Rachis weight Destructive Occluded kg*10
-3

 

First to seventh 
rachis node length 

Destructive Occluded m*10
-2

 

Ramifications per 
cluster  

Destructive Occluded  

Concavity 
measure 

Not possible Non-destructive  

Intersection 
between berries 

Not possible Non-destructive m
3
*10

-6
 

Number of berries 
per area 

Not possible Non-destructive  

Table 1 Morphological and 3D descriptors 

 

Table01



Compactness descriptors Rho 

CI-12:   B.weight/B. length� 0.530** 

Concavity measure -0.710** 

Intersection between berries 0.569** 

Number of berries per area -0.205* 

Table 2 Kendall tau results for compactness descriptors **p<0.01 *p<0.05  

Table 02



 

 Number of 
SVs 

RMSEC RMSECV RMSEP R
2
 Cal R

2
CV R

2
 Pred 

Compactness 20 0.920 1.139 0.817 0.886 0.826 0.808 

Berry size  16 0.214 0.227 0.180 0.842 0.820 0.830 

Cluster volume  36 28.204 46.945 56.798 0.944 0.845 0.822 

Berry weight  42 19.549 36.672 44.656 0.966 0.880 0.830 

Number of berries 23 13.307 23.821 23.791 0.947 0.826 0.714 
Table 3 SVM results of the cluster components 

 

Table 03



 

Figure 01



 

Figure 02
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Figure 10



 

Figure 11



 

Figure 12



Fig. 01 Image acquisition set-up. 
Fig. 02 Images captured with low resolution and highlights (Bobal sample 6) 
Fig. 03 A node example. A pair of features with the same color represents a matching pair. The gray 
color represents an occluded feature. 
Fig. 04 3D reconstruction tool interface. The 2D viewports are marked in red. The 3D viewport is 
marked in blue. 
Fig. 05 Convex hull created by Delaunay triangulation. 
Fig. 06 Region of interest selected for pixel classification. 
Fig. 07 3D model refined by hand. 
Fig. 08 Berries detected using Hough transform. Color points are the 3D points extracted from the 
vertical edges. Black points represent 3D points between berries. 
Fig. 09  Checking the 3D model on the rectified images. 
Fig. 10 Image segmentation of sample 2 Cabernet Franc (Compactness class 3). 
Fig. 11 Image segmentation of sample 2 Cabernet Franc (Compactness class 7). 
Fig. 12 SVM compactness results. 
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