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Abstract 
The effect of two localized axisymmetric initial imperfections on the critical load of elastic 
cylindrical shells subjected to axial compression is studied through finite element 
modelling. This was carried out by means of the specialized shell buckling package 
Stanlax. First, a single defect having a triangular geometry is considered in order to 
determine the most adverse defect configuration, then two defects having this arrangement 
and which are symmetrically distributed along the shell length are introduced in the 
problem in order to assess their global interacting effect on the buckling load reduction. A 
statistical approach which is based on full factorial design of experiment tables and analysis 
of variance is used to quantify the relative influence of all the intervening factors. It is 
shown that two interacting defects yield further reduction of the shell critical load.  
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1. Introduction 
Thin shells are used in many fields of civil and mechanical engineering such as structural 
components like silos and tanks. Whatever the manufacturing process is used for these 
structures, the final geometry is never perfect. Geometric imperfections disturb always the 
ideal desired nominal form of the assembled shell. Control and optimization of 
manufacturing processes of shells make it certainly possible today to decrease 
imperfections amplitudes, but they could never be eliminated completely. Even if, at first 
guess, the geometry seems to be perfect, precise measurements enable to detect always 
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small geometric imperfections with magnitudes having in general the same order of scale 
than shell thickness. 
During servicing life, shell structures may be subjected to various kind of loading, such as 
axial compression, external/internal pressure, flexure or torsion. For cylindrical shells under 
axial compression, the buckling behaviour is an important design factor. Calculation of the 
buckling load as it could be affected by the presence of various kinds of geometric 
imperfections constitutes an essential task. The objective is to know how to design with 
relevant margins of safety imperfect shell structures.   
Several studies have been reported in the literature which deal with the effect of 
imperfections on strength buckling of thin shell structures. (Arbocz et al. [1]) have studied 
experimentally buckling of cylindrical shells subjected to general imperfections. They have 
shown that huge reduction of the buckling critical load could be obtained. (Koiter [14]) has 
given a review study about the effect of geometric imperfections on shell buckling strength. 
Other extensive investigations have considered the problem of shell buckling where 
analysis of relative effect of both distributed or localised imperfections on reduction of the 
buckling load has been performed (Yamaki [19]), (Arbocz [2]), (Bushnell [3]), (Godoy [6]) 
and (Gros [7]). (Kim et al. [13]) have considered a generalised initial geometric 
imperfection having a modal superposed form. By using Timoshenko shell theory 
(Timoshenko [18]), they have studied the buckling strength of cylindrical shells and tanks 
subjected to axially compressive loads on soft or rigid foundations, they have found that the 
buckling load decreases significantly as the amplitude of initial geometric imperfection 
increases. 
In all cases, the previous works have assessed that imperfections reduce drastically the 
buckling load of elastic cylindrical shells when subjected to axial compression. The 
obtained reduction depends on the nature of the considered shell geometric imperfection. 
But, in general reduction of the buckling load is more severe in case of distributed 
imperfections than for localized ones.  
Imperfections for which reduction of the buckling load attains a maximum might be purely 
theoretical like for instance the generalized Koiter imperfection (Koiter [14]) and might 
then never be met in practice in case of real shells. Therefore, investigation has been 
motivated by the analysis of buckling in the presence of typical imperfections obtained 
from modal analysis of measured data or by considering realistic imperfection shapes such 
as those resulting from welding operations performed to assemble shell structures. Steel 
silos and tanks are constructed from plates which are rolled to obtain the correct curvature 
and subsequently welded together to form strakes. The strakes are brought together then to 
assemble by welding the complete shell structure. At circumferential welds localised 
geometric imperfections form. Measurements have revealed that mostly axisymmetric 
imperfections occur in these structures (Ding et al. [5]). (Hutchinson et al. [9]) investigated 
localised axisymmetric imperfections and have shown that a single axisymmetric 
imperfection can have large effect on the buckling strength of thin shells. (Jamal et al. [10]) 
have analyzed the influence of localized imperfections on the buckling load for long 
cylindrical shells under axial compression by using an analytical method based on 
interaction modes. Analytical formulas were derived to predict the reduction of the critical 
buckling load. When considering a single localized imperfection, the strength of thin 
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cylindrical shell structures has been shown to be highly dependent on the nature and 
magnitude of imperfections. (Jamal et al. [11]) have investigated both the effect of 
distributed and/or localized imperfections on the buckling load for long cylindrical shells 
under axial compression. The localized imperfection they have used has yielded weaker 
influence on the reduced buckling load by comparison with the distributed imperfection. 
Circumferential weld-induced imperfections were found to have a great influence on 
buckling of thin-walled cylindrical shell structures. Combining shell theory with actual 
field imperfection measurements, (Pircher et al. [17]) have found that three parameters 
governed the shape of the surveyed weld imperfections: the depth, the wavelength and the 
roundness. (Khamlichi et al. [12]) have considered a parabolic localized imperfection and 
have obtained by using an analytical approach large reduction of the buckling load for thin 
cylindrical axisymmetric shell under uniform axial compression. (Mathon [16]) has 
compared the relative influence of several localised imperfections on reduction of the 
buckling load of shells that subjected to axial compression or to flexure. He has shown that 
a triangular imperfection shape has the most severe effect on buckling strength. (Hübner et 
al. [8]) have investigated the case of large steel cylinders with patterned welds by 
considering the interaction of localised geometric imperfection with residual stresses.  
The profile of welding can vary from one shell to another but a common feature of welds is 
they can be characterized by only two parameters the amplitude and the width termed also 
wavelength. Since in almost all the previous works single geometric imperfections were 
considered, emphasis will be done in the following on interaction effects that could result 
from two geometric imperfections. The localized imperfection geometry is assumed to have 
a triangular entering shape form. It is considered isolated or under a situation where two 
imperfections having the triangular form are interacting. In this last case, the distance 
separating the two defects is an additional parameter which could have some influence on 
the shell buckling strength. One should add, to the three factors above mentioned, the 
classical shell aspect parameters: radius over thickness and length over radius. 
The pursued objective of buckling strength analysis is to find the most adverse case for 
which a maximum reduction of the buckling load is attained. This load could be used to 
estimate within the context of reliability theories a safe design load. In the subsequent, thin 
cylindrical axisymmetric shells made from homogeneous and isotropic elastic material are 
considered. They are assumed to deform under purely axisymmetric strain state when they 
are subjected to axially uniform compressive loads. Investigation of the relative effect of 
the intervening five factors on reduction of the shell buckling load is performed by using 
the following methodology. At first, the shell aspect ratios for which maximum effect on 
the buckling strength is obtained are determined. Then with this shell configuration fixed, a 
parametric study is conducted by varying the three free remaining factors according to a 
full factorial design of experiment table. Analysis of variance is finally performed to 
determine the relative influence of factors. 

2. Modelling of thin cylindrical shells with localized defects 
In order to analyse the effect of imperfections on shell buckling strength for the particular 
case of thin circular cylindrical shells subjected to quasi-static uniform compressive loads, 
shell equations corresponding to Sanders model and incorporating the effect of initial 

2525



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

imperfections are used (Markus [15]).  A variant of this model has been used by (Gros [7]). 
Relevant finite element modelling of these equations was carried out by means of Coque 
element developed under Stanlax software package (Combescure [4]). Stanlax software is 
used in the following in order to model the imperfect cylindrical axisymmetric shell having 
a given number of localized geometric imperfections. Stanlax software is based on an 
analytical expansion in terms of circumferential variable contributions and a finite element 
discretisation of axial dependant quantities. The initial imperfections are included in model 
formulation under the assumption of small perturbations to shell geometry. Stanlax offers 
either a linear Euler buckling analysis or a full non linear iterative computation of the 
buckling load. For shells under axial compression, linear Euler mode is sufficient for 
buckling analysis. 
 

   

                                     
 

 
Figure 1: Shell geometry 

 
The shell material is assumed to be linear elastic having Young’s modulus E  and Poisson’s 
coefficient υ .  The geometric imperfections are supposed to be localized in the median 
zone of the shell length in positions that are sufficiently far from the shell ends in order to 
avoid significant interaction with the boundary conditions. The selected boundary 
conditions are those corresponding to clamped shell ends.  

H  

R  

t  

2526



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

As shown in figure 1, parameters t , H  and R designate respectively shell thickness, shell 
length and shell mean radius.  
Let A  and d  be respectively the geometric imperfection amplitude and the distance 
separating the two imperfections. Let c 1.72 Rtλ = , the following non dimensionalized 
parameters associated to the intervening five factors are introduced:  
- R / t radius to thickness ratio; 
- H / R length to radius ratio; 
- A / t  defect amplitude parameter; 
- H / d  height to defect interval scale ratio; 
- c/α = λ λ defect wave length to critical wave length. 

 
 

               
 

Figure 2: Shape of the localized triangular imperfection  
 
 
 

 

      
 

 
 

Figure 3: Configurations of triangular localized geometric imperfections 
Single entering triangular imperfection (dimensions A  and λ  are exaggerated) 
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During the whole study, the shell radius is maintained constant at the value 
R=135 mm while the other parameters are varied. The considered localised geometric 
imperfection has the triangular configuration shown in figure 2. It is directed inwards the 
shell radius. Combinations of the geometric imperfections for both a single imperfection of 
two imperfections have the configurations shown in figures 3 and 4. 
Stanlax software package enables for each combination of parameters to compute the shell 
buckling load when it is subjected to uniform axial compression. Use is systematically 
made of shell element Coque and convergence assessment is performed in order to 
determine the optimal mesh size to be employed. 
 
 

 

     
 

 
 

Figure 4: Configurations of triangular localized geometric imperfections 
Two entering triangular imperfections (dimensions are exaggerated) 

 
 
3. Parametric study of the shell buckling load as affected by localized geometric 
imperfections 
 
The effect of a single localized geometric imperfection is investigated at first in order to 
determine the most adverse shell aspect parameters with regards to the buckling load 
reduction. This enables to fix parameters H / R  and R / t , and simplifies investigation 
about the relative influence of the geometric imperfection parameters α , A / t  and H / d .  
 

2.1. Case of a single imperfection 
Let’s consider a single triangular geometric imperfection located at the mid height of the 
shell for which geometric and material properties are given by: R 135mm= , H 405mm= , 

t 0.09 mm= , 10E 7 10 Pa= ×  and 0.3υ = . In this case the classical buckling load is given 

by 6
cl =28.233 10 Paσ × . When, the imperfection amplitude is fixed at A / t 1=  and its 

d  
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wavelength at 15mmλ = , figure 5 presents the evolution of the buckling load ratio 

cr clK /= σ σ  as function of the number of elements and the number of circumferential 
harmonics, with crσ  the actual critical load and clσ  the classical buckling load defined as 

cl 2

E t
R3(1 )

σ = ×
− υ

. 
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Figure 5: Convergence study of the finite element model developed under Stanlax;  
single entering localized geometric triangular imperfection 

 
 

Figure 5 shows that a total number of 300 elements and a total number of 30 harmonics 
guarantee finite element model convergence. Other results not shown here have 
demonstrated that for all single or interacting imperfection cases a total number of 300 
elements and a total number of 30 harmonics guarantee well convergence of the finite 
element model.  
Figure 6 gives the buckling load, for the case of a single triangular entering geometric 
imperfection, as function of wavelength and amplitude parameters when H / R 1=  and 
R / t 750= . Almost the same curves are obtained for the following values of shell aspect 
parameters: H / R 1 or 3=  and R / t 750 or 1500= . These results show that there is only a 
small effect of parameters H / R  and R / t  on the shell buckling load. It could be seen also 
from figure 6 that the wavelength 2.5α =  yields the most adverse case since this curve is 
below those associated to 1α =  and 4α = .  
Fixing now 2.5α = , figure 7 gives, for H / R 3= , the buckling load as function of shell 
aspect ratio R / t  and amplitude parameter A / t .  Almost the same curves are obtained if 
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the shell aspect ratio H / R 1=  is used. These results show that there is only a small effect 
associated to parameter H / R  and that the most adverse case is obtained for H / R 3= . 
Fixing again 2.5α =  for the case of a single triangular entering geometric imperfection, 
figure 8 gives, for the shell aspect parameter R / t 1500= , the buckling load as function of 
shell aspect parameter H / R  and amplitude parameter A / t . Here also, the results show 
that there is only a small effect of parameter R / t  and that the most adverse case 
corresponds to R / t 1500= . 
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Figure 6:  Effect of wavelength α  on the buckling load for R / t 750=  and H / R 1=  
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Figure 7:  Effect of shell aspect ratio on the buckling load reduction for H / R 3=  
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Figure 8: Effect of shell aspect ratio on the buckling load reduction for R / t 1500=  
 

2.1. Case of two imperfections 
The previous procedure was employed also when two interacting geometric imperfections 
are present. The same conclusions can be assessed. So, the shell aspect parameters can be 
fixed at H / R 3=  and R / t 1500= in order to obtain the most adverse buckling case. The 
influence of geometric imperfection parameters: α ,  A / t  and H / d  on the shell buckling 
load can now be straightforwardly investigated.  
Table 2 lists parameters levels that have been considered in the analysis of geometric 
imperfections under the coupling situation: lower threshold, intermediate value and higher 
threshold. Based on this table, a parametric study regarding the influence two interacting 
geometric imperfections has been performed according to a design of experiment method 
using a full factorial table containing the three factors. A total set of 27 simulations have 
been conducted for each case: single or two defects. 

 
Table 2: Ranges of variation of geometric imperfection factors 

 
 α  A / t  H / d  
Lower threshold 1.0 0.5 81 
Intermediate value 2.5 1.0 40.5 
Higher threshold 3.0 2.5 20.25 

 
 
For the case where R / t 1500= , H / R 3= , 2.5α =  and H / d 40.5=  the obtained results 
in terms of cr cl/σ σ  versus parameter A / t  are presented in figure 9. It is shown that the 
most adverse reduction in the critical load cr cl/σ σ  passes from 0.176 in the case of a single 
triangular imperfection to only 0.119 in case of two interacting imperfections.  
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Figure 9: Reduction of the buckling load as function of defect amplitude A / t  
 
 
3.3 The special effect of distance separating geometric imperfections 
It is of particular interest to investigate how the separating distance associated to parameter 
H / d  may affect the shell buckling load value when a large range of parameter d is 
considered. This may be of significant help to determine the best strategy to apply when 
assembling shell strakes.  
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Figure 10: Effect of parameter H / d  on the buckling load 
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Fixing parameter 2.5α =  and varying parameter A / t , figure 11 gives the buckling load as 
function of parameter H / d . It can be seen that parameter d has not an equal effect on the 
buckling strength. Small values of d yield higher reduction of the bulking load, while for 
high values of distance d the obtained buckling load is a little bit higher. A local maximum 
appears in case of A / t 2.5= . From a practical point of view this gives the ideal height for 
welding strakes during shell assembly in order to maximize the bulking strength. 
 
3.4 Analysis of variance 
Analysis of variance was performed on the buckling load results associated to the 27 
combinations considered for two triangular localized geometric imperfections. It has given 
the following p-values ( α :0.0741; A / t : 0.0001; d / H : 0.4164). This shows that the 
amplitude parameter is the most significant factor. It is followed by the wavelength 
parameter and finally by the distance separating imperfections. 

4. Conclusions 
Numerical simulations based on the finite element method have been performed in order to 
quantify shell buckling load reduction in the presence of localized geometric imperfections. 
Elastic thin cylindrical shells subjected to axial compression and having one or two 
axisymmetric defects of entering triangular shape have been taken into account. A set of 
five factors intervening in the problem have been identified and their relative effect 
analysed.  
The most adverse case in terms of shell aspect ratios has been first determined when a 
single geometric imperfection is considered to act alone. A parametric study with regards to 
the left factors has been performed in case of two geometric imperfections according to a 
full factorial design of experiment table.  
It has been shown that two localized imperfections yield further reduction of the buckling 
load. This reduction is important and can reach 67% of the buckling load in comparison 
with the case of a single geometric imperfection.  
Analysis of the relative effect of factors has shown that the imperfection amplitude has the 
greatest influence on the buckling load reduction. It is following by the imperfection 
wavelength and the relative distance separating the two geometric imperfections.  
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