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Abstract 
Steel silos are often supported on a small number of columns to facilitate emptying 
operations. The connection between these columns and an elevated cylindrical metal silo 
shell is a long-standing difficult problem in shell analysis. The presence of local supports 
beneath a cylinder leads to stress concentrations in the cylindrical wall just above the 
supports, which can cause buckling or plastic collapse and consequently failure of the entire 
structure. Engaged columns produce a gentler introduction of the support forces into the 
cylindrical shell and cause a smoother stress distribution above the column termination.  
Engaged columns are therefore a very practical solution for local supports. In practice, 
smaller silo structures are often supported on engaged columns attached to the side of the 
shell, but very few investigations of the structural behaviour or the strength of such an 
arrangement have ever been made. In this paper, the structural behaviour of a cylinder 
supported on engaged columns is investigated, including the effects of geometric 
imperfections and geometric nonlinearity.  The study is conducted using the requirements 
for computational evaluations set out in EN 1993-1-6 (2007) and using the finite element 
package ABAQUS.  The columns are assumed to be flexurally and axially rigid to provide 
a clear scientific study of the failure behaviour of the cylinder under these conditions. 
Keywords: shell structure, instability, Eurocode, cylinder, local supports, capacity curve. 

1. Introduction 
For the storage of large quantities of particulate solids and fluids, a cylindrical shell metal 
structure with its axis vertical is usually the most economic.  Metal silos and tanks are often 
required to be elevated above ground level to permit trains, trucks or conveying systems to 
be placed beneath a hopper from which the solid or fluid is withdrawn.  Elevated silos must 
be supported, and access requirements often mean that the supports must be local (either on 
columns or supported from an elevated floor system).  The connection of such a support to 
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a cylindrical shell is a long-standing difficult problem in shell analysis, and most designs 
are based on past experience of successes and failures. 
The light support system of the engaged column has always been designed by rules of 
thumb and no experiments appear to have been conducted to explore their strength.  With 
the increasing codification of consistent and comprehensive rules for design, the engaged 
column presents a significant challenge because the simpler analysis methods cannot be 
used to justify designs that have proved their adequacy in practice, but complex nonlinear 
calculations are out of the question in design evaluations for smaller structures. 
The behaviour of steel silos resting on a limited number of support columns has been 
studied by several researchers (Kildegaard [7], Guggenberger et al. [6], Vanlaere et al. [13], 
Doerich and Rotter. [2]). In practice smaller silo structures are often supported on engaged 
columns, which are attached to the side of the silo wall (Fig. 1). This arrangement produces 
a gentler introduction of the load into the cylindrical shell than discrete supports beneath 
the cylinder.  Very few investigations of the structural behaviour of these column-supported 
steel cylinders with engaged columns have ever been made (Rotter [8], Wallner [14], Zhaoa 
et al. [16]).  
In this paper, the structural behaviour of a cylinder supported on engaged columns is 
investigated by means of numerical simulations. The results are presented and interpreted in 
a manner consistent with the new framework of the Eurocode (EN 1993-1-6 [5]). 

 P 

Total load 
on the 

structure: 
F=2πrtP 

 
Figure 1: The parameters of a cylinder with engaged columns 

2. Investigated geometry 
The results of an initial numerical study are presented here.  The behaviour and strength of 
a single cylinder geometry is described. The dimensions were chosen as those of a scale 
model that will soon be tested in the laboratory at the Ghent University. 
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The geometrical parameters of the example cylinder are indicated in Fig. 1. The cylinder 
was supported by 4 columns and had a radius to thickness ratio r/t=500 with r=350mm and 
t=0.7mm.  Its length to radius ratio was L/r=2 and the width of the support columns d was 
related to the cylinder radius as r/d =7 (d/r=0.1429). The columns were attached to the 
cylinder wall over one quarter of the cylinder length (L/lc = 4).  The cylinder was loaded by 
a uniform line load around the upper edge (Fig. 1).  

3. Numerical simulations 

3.1. Numerical model 
The structural behaviour of the engaged column cylinder was studied using numerical 
simulations with the finite element package ABAQUS using shell elements (S8R5). To 
reduce the computational time, only a 45° segment of the cylinder was modelled (grey 
shaded in Fig. 1). Symmetry boundary conditions were applied to the longitudinal edges of 
the model, whilst all radial displacements were restrained on the top and bottom edges. The 
engaged columns were assumed to be flexurally and axially rigid and modelled by rigid 
elements (R3D4) because the focus here was on the behaviour of the cylinder.  The 
boundary conditions simulated a clamped column. The steel had a Young’s modulus 
E=200 GPa, with Poisson’s ratio ν=0.3 and a yield stress σy=250 MPa. A perfect elastic-
plastic model was adopted in the materially nonlinear analyses. 

3.2. Results of the analyses 
The most realistic numerical simulation is a geometrically and materially nonlinear analysis 
of the imperfect structure (GMNIA). However this analysis presents several challenges for 
the analyst or designer. When the failure load is calculated using a GMNIA analysis, it is 
necessary to undertake a thorough search for an appropriately damaging but realistic 
imperfection shape (ECCS [4] and EN 1993-1-6 [5]).  It is only possible to identify the 
relative importance of buckling and plasticity if several different analyses are performed 
(ECCS [4] and EN 1993-1-6 [5]) in which each analysis targets one key aspect of the 
structural behaviour.  The linear bifurcation analysis (LBA) and the materially nonlinear 
analysis (MNA) form the first basis for a good understanding of the structural behaviour 
(Rotter [11]).  The following calculated failure loads Fi represent the load placed on the 
entire cylinder (eight times the load on the computational model). 
The LBA and MNA analyses produce the reference loads FLBA=150.2kN for linear 
bifurcation and FMNA=180.0kN for the small displacement theory plastic collapse load.  
Since these are comparable values, it may be expected that elastic-plastic buckling may 
occur.  The plastic collapse load may be closely estimated by the condition of membrane 
yield all around the engaged column. 

 
2 1

4 2 181.2
3 3

dF t kNy c ypl σ σ= ⋅ ⋅ ⋅ + ⋅ =⎛ ⎞
⎜ ⎟
⎝ ⎠

l  (1) 
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The influence of elastic geometric nonlinearity can be judged by comparing the linear 
bifurcation analysis (LBA) with a geometrically nonlinear elastic analysis (GNA). In this 
investigation geometric nonlinearity reduced the buckling load by more than 25% 
(FGNA=110.4kN compared to FLBA=150.2kN) (Fig. 2). For comparison, uniformly 
compressed cylinders typically experience only a 15% strength reduction due to geometric 
nonlinearity (Yamaki [15]), so 25% indicates a strong geometrically nonlinear effect.  
Since the GNA analysis (FGNA=110.4kN) falls far below the MNA analysis 
(FMNA=180.0kN), it is clear that plasticity may be present but should not have a strong 
effect. This conclusion is confirmed (Fig. 2) by the geometrically and materially nonlinear 
analysis of the perfect structure (FGMNA=105.2kN), which is very close to the GNA analysis.   
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Figure 2: Overview of the results of the numerical simulations 

Imperfection sensitivity is always of major concern when dealing with thin-walled shells. 
Even minor deviations from the perfect shape can lead to a dramatic reduction in the 
buckling strength (Yamaki [15]). However, the choice of imperfection shape and amplitude 
is difficult (Rotter [11]). Due to space requirements just two different imperfection shapes 
with an amplitude of one wall thickness δ/t=1 are described here. The first was in the form 
of the first eigenmode (Fig. 4b), since this is recommended in EN 1993-1-6 (2007) [5]. The 
load deflection path is highly nonlinear in the buckling range (Fig. 2) and passes through 
the limit point smoothly with a failure 30% lower than the failure load of the perfect shell. 
The second imperfection shape had the form of a weld depression Type A (Rotter [9]) 
which is commonly found in practical construction near a circumferential weld. The centre 
of the weld depression was located at a point 5 bλ  above the top of the column where 

2.44b rtλ =  is the linear bending half-wavelength of the cylinder. This distance was 
chosen because it has the most detrimental effect for the chosen imperfection shape and 
amplitude, as shown later (Fig. 3). By contrast with the eigenmode imperfection, the weld 
imperfection displays a pre-buckling path similar to that of the perfect shell, but it reduces 
the strength of the shell by 45%. While the location of the eigenmode imperfection 
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(Fig. 4b) is unique, the weld imperfection can occur at any location on the shell wall. Thus 
an exploration of different locations was undertaken to find the worst location (Fig. 3). 
When the weld centre is close to the column termination, the strength reduction is small, 
but as it is moved upwards, the strength drops until it lies around 5λb above the termination, 
after which the strength increases again. This appears counter-intuitive at first sight since 
the axial stresses are highest just above the termination, but the width of shell carrying 
these high stresses is very narrow so there is limited scope to develop a buckle.  At higher 
levels, the stress level is lower, but the zone is large enough for buckles to form easily.  
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Figure 3: The effect of the location of the weld depression on the failure load of the 

GMNIA analysis.  

     
          (a)     (b)        (c) 

Figure 4: The deformation patterns of the different numerical simulations for (a) MNA, (b) 
LBA, (c) GNA. 
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          (a)     (b)        (c) 

Figure 5: The deformation patterns of the different numerical simulations for (a) GMNA, 
(b) GMNIA with the first eigenmode as imperfection shape and (c) GMNIA with a weld 

depression as imperfection shape.  

Whilst the failure loads predicted by different numerical analyses (Fig. 2) are most 
significant, the corresponding deformation patterns lead to a deeper understanding of the 
structural response. The deformation patterns of the analyses of Fig. 2 are presented in Figs 
4 and 5. The maximum deformation in the LBA analysis buckle (Fig. 4b) is just 1.35λb 
above the column termination, but changes in geometry (i.e. reduced curvature) move the 
GNA maximum deformation (Fig. 4c) to a higher point about 5λb above the column 
termination. When the analysis includes plasticity in the perfect shell (GMNA) (Fig. 5a), 
the buckle location lies between these two locations. This move down again results from 
the smoothing by plasticity of the high stress concentrations at the corner of the engaged 
column, which produces a more uniform compressive stress field above the column 
termination, whilst the reduced shell curvature is still present. In the GMNIA analysis, both 
forms of imperfection lead to buckles at the point of maximum defect (Fig. 5b+c). 

4. Capacity curve 

4.1. Shell buckling capacity curve 
For columns subjected to compression, plasticity and instability are the two main failure 
phenomena. Both effects and their interaction are described by means of buckling curves. 
For shell structures, similar curves are needed. In these capacity curves (Fig. 6) the 
buckling strength relative to the material failure condition χ is plotted as a function of the 
relative slenderness λ. The effect of imperfections and the interaction between elastic 
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buckling and plasticity determine the shape of this capacity curve. This shape is defined by 
(EN 1993-1-6 [5] and ECCS [4]): 

 1χ =                       when             0λ λ≤              (2) 

 0
0

1
p

η
λ λ

λ λ
χ β

⎛ ⎞−⎜ ⎟
⎜ ⎟−⎝ ⎠

= −        when           0 pλ λ λ< <         (3) 

 2
α
λ

χ =                     when            pλ λ≤              (4) 

 
Figure 6: The shell buckling capacity curve  

If numerical simulations are used to determine the buckling strength, the relative 
slenderness λ is defined by  

 MNA
LBA

R
R

λ =  (5) 

where the dimensionless resistances Ri are the corresponding load factors on the design 
load at which the LBA and MNA analyses deliver. The relative buckling strength χ leads to 
the characteristic buckling resistance Rk of the structure as 

 k
MNA

R
R

χ =   (6) 

The values of the elastic imperfection reduction factor α, the plastic range factor β, the 
interaction exponent η and the squash limit relative slenderness λ0 depend on shell 
geometry, loading case and quality class, but the plastic limit relative slenderness λp is 
given by  

 
1p

α
βλ

−
=   (7) 

It is the goal of this study to determine these parameters for cylinders with engaged 
columns. For this purpose, a large parametric study is needed: in this paper just one 
geometry is studied, as a first step towards the full determination of these parameters. 
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4.2. Modified capacity curve 
To define the capacity curve for a specific structure, the parameters can be derived from 
numerical simulations. An easier extraction of these values can be obtained if the results of 
the numerical simulations are presented in the modified capacity curve devised by Rotter 
(Rotter [10] and Rotter [11]).  

 
Figure 7: The modified capacity curve 

In this modified capacity curve (Fig. 7), the relative buckling strength χ is plotted against 
χ.λ2. In terms of analysis types, the vertical axis represents the dimensionless strength 
relative to the ideal fully plastic state χ = RGMNIA/RMNA, whilst the horizontal axis represents 
the dimensionless strength relative to the ideal elastic buckling state χ.λ2 = RGMNIA/RLBA. 
Full details of this representation may be found elsewhere (Rotter [11]).  The elastic 
imperfection reduction factor α, the plastic range factor β and the squash limit relative 
slenderness λ0 can all be simply and accurately extracted using Fig. 7, whilst the interaction 
exponent η is easily found thereafter by a best fitting procedure. In EN 1993-1-6 [5], due to 
a lack of detailed relevant data, η is assumed to take the value η=1.0, corresponding to a 
straight line for elastic-plastic buckling in the traditional capacity curve (Fig. 6). 

4.3. Cylinders with engaged columns 
For steel cylinders with engaged columns, no capacity curve parameters can be found in the 
literature or in the codes. Numerical simulations were performed here to obtain appropriate 
values of the parameters of the capacity curve for the engaged column cylinder. The 
relative slenderness was varied by changing the assumed yield stress as proposed by Rotter 
[11] to avoid changes in geometric nonlinearity that result in changing α with slenderness.  
Three imperfection shapes were investigated, all with an amplitude of one wall thickness 
(δ/t=1). Whilst it is particularly well known that α depends strongly on the imperfection 
amplitude (Yamaki [15]), all the parameters have been shown to have a similar dependency 
(Rotter  [12], Chen et al. [1]). The first imperfection had the shape of the first eigenmode, 
the second and third imperfections had the shape of a weld depression Type A (Rotter [9]). 
For the two weld depression imperfections, the centre was located at 0.9λb and 5λb above 
the column termination, the latter having been found above as the most damaging position 
at this amplitude. The results of the numerical simulations are shown in Fig. 8. A 
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comparison of Figs 8b and 8c shows that, for this geometry and imperfection amplitude, the 
weld depression at 5λb gives the lowest strengths, beginning at high slenderness λ where 
plasticity has a limited influence but this effect propagating through to affect thicker shells 
too.  For very thick shells (λ<0.1), this is no longer the worst imperfection, where plasticity 
dominates (Fig. 4a).  
The capacity curve parameters (Fig. 7) have been extracted from Fig. 8 to yield the values 
shown in Fig. 9. The very high plastic range factors β indicate that yielding affects the 
buckling strength at very high slendernesses in cylinders with engaged columns, due to the 
high local stresses above the termination.   
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Figure 8: Modified capacity curves for (a) the first eigenmode, (b) the weld depression at 
0.9 λb and (c) the weld depression at 5 λb as imperfection shape  (δ/t=1) 

Weld depression 
Parameter 

Eigenmode 
imperfection 0.9 λb 5 λb 

α 0.55 0.58 0.42 
β 0.8 0.8 0.8 
λ0 0.0 0.0 0.2 

Figure 9: Deduced capacity curve parameters for different imperfection forms (δ/t=1) 

To define the capacity curve fully, it is finally necessary to obtain the value of the 
interaction exponent η. However, it has been shown (Doerich and Rotter [3]) that there are 
restrictions on the values that β, λo and η can take when yielding affects the buckling 
strength at high slendernesses.  Doerich and Rotter [3] showed that for η=1.0, the value of 
β must satisfy the inequality  

 
( )1
3 2 0

p

p

λ
β

λ λ
− ≥

−
.  (8) 

which, for the least demanding situation (λ0=0), requires that β ≤ 2/3. Clearly values given 
in Fig. 9 do not satisfy this restriction.  The remedy proposed by Doerich and Rotter [3] 
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was that the interaction exponent should be made to vary linearly with λ, which solves all 
these difficulties, provided two other conditions are met. 

 ( ) ( ) ( )0 0

0

p p

p

η λ λ η λ λ
η λ

λ λ

− + −
=

−
.  (9) 

where η0 is the plastic limit interaction exponent at λ0 and ηp is the elastic limit interaction 
exponent at λp.  

4.4. Capacity curve with varying interaction exponent 
Using the varying interaction exponent (Eq. 9) there are no limitations on β, λo and η, but 
there are limitations on the values that η0 and ηp can take.  Doerich and Rotter [3] found 
these as the two sequential inequalities  

 1 02 p
p

p

λ λβ
η

β λ

−−
≤

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.  (10) 

 ( )2

2
1 01 3 10

p
p

p

η λβ
η η

β λ
+

−
≤ + −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

.  (11) 

Weld depression Limit interaction 
exponent 

Eigenmode 
0.9 λb 5 λb 

ηp 0.500 0.500 0.431 
η0 1.125 1.125 0.865 

Figure 10: Deduced limiting values for the interaction exponents  

For the three modified capacity curves (Fig. 8) and the deduced basic capacity curve 
parameters (Fig. 9), the limiting interaction exponents that fulfil Eq. 10-11 were found (Fig. 
10). These limiting values were used with the values from Fig. 9 to calculate the resulting 
capacity curves for the engaged column cylinder, which are shown as solid lines in Fig. 11 
where the numerical simulation results (circular symbols) are also shown. A good 
approximation has clearly been obtained using this procedure. 
 

5. Conclusions 
This paper has presented an outline description of the behaviour of a cylindrical steel shell 
that is discretely supported on engaged columns. The linear (LBA), materially nonlinear 
(MNA), geometrically nonlinear (GNA) and combined (GMNA) bifurcation behaviours of 
the shell have been outlined. The example shell was chosen to match the geometry and 
loading condition of a planned scale model test. Geometric nonlinearity has been found to 
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play a significant role in this example, while plasticity only plays a lesser role. In the 
imperfect shell analyses (GMNIA), a single imperfection amplitude of one wall thickness 
was studied and the weld imperfection was found to cause the largest reduction in strength.  
The worst location was explored and found to lie five bending half-wavelengths above the 
termination of the column. 
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          (a)     (b)        (c) 

Figure 11: Approximation of modified capacity curves with varying η for (a) the first 
eigenmode, (b) the weld depression at 0.9 λb and (c) the weld depression at 5 λb as 

imperfection shape 

For the investigated geometry and different imperfection shapes, the parameters of the 
corresponding capacity curve have been deduced, based on the results of numerical 
simulations. The plastic range factor for this geometry is large, showing that yielding 
affects the buckling strength of engaged column cylinders at high slendernesses. Under 
these conditions, the interaction exponent must be treated as dependent on the slenderness.  
The linearly varying interaction exponent proposed by Doerich and Rotter [3] has produced 
a very accurate representation of the calculated strengths. In future studies, different 
imperfection amplitudes and different geometries must be explored to obtain a fuller range 
of capacity curve parameters that depend on the imperfection amplitude and the cylinder 
dimensions and properties.  This is a considerable task, as can be ascertained from the 
extensive calculations presented here that were required to define this vital information for 
a single geometry and imperfection amplitude.  
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